Fabrication of Thylakoid Membrane-Based Photo-Bioelectrochemical Bioanode for Self-Powered Light-Driven Electronics
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Thylakoid Extraction from Spinach
2.3. Fabrication of the Photoanode Electrode
2.4. Electrochemical Characterization
3. Results and Discussion
3.1. Morphological Characterization of Laser-Induced Graphene Surface Modification
3.2. Electrochemical Characterizations of LIG/PEDOT Electrode
3.3. Characterization of LIG/PEDOT/Thylakoid Bioanode-Based Fuel Cell
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Matheri, A.N.; Nabadda, E.; Mohamed, B. Sustainable and circularity in the decentralized hybrid solar-bioenergy system. Environ. Dev. Sustain. 2024, 26, 16987–17011. [Google Scholar] [CrossRef] [PubMed]
- Rathore, P.K.S.; Chauhan, D.S.; Singh, R.P. Decentralized solar rooftop photovoltaic in India: On the path of sustainable energy security. Renew. Energy 2019, 131, 297–307. [Google Scholar] [CrossRef]
- Yehezkeli, O.; Tel-Vered, R.; Michaeli, D.; Nechushtai, R.; Willner, I. Photosystem I (PSI)/Photosystem II (PSII)-Based Photo-Bioelectrochemical Cells Revealing Directional Generation of Photocurrents. Small 2013, 9, 2970–2978. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Zhang, H.; Sibbons, J.; Sun, H.; Wang, H.; Wang, S. Photoelectrochemical Water Oxidation and Longevous Photoelectric Conversion by a Photosystem II Electrode. Adv. Energy Mater. 2021, 11, 2100911. [Google Scholar] [CrossRef]
- Tapie, P.; Haworth, P.; Hervo, G.; Breton, J. Orientation of the pigments in the thylakoid membrane and in the isolated chlorophyll-protein complexes of higher plants. III. A quantitative comparison of the low-temperature linear dichroism spectra of thylakoids and isolated pigment-protein complexes. Biochim. Biophys. Acta (BBA)-Bioenerg. 1982, 682, 339–344. [Google Scholar] [CrossRef]
- Stoitchkova, K.; Busheva, M.; Apostolova, E.; Andreeva, A. Changes in the energy distribution in mutant thylakoid membranes of pea with modified pigment content. II. Changes due to magnesium ions concentration. J. Photochem. Photobiol. B 2006, 83, 11–20. [Google Scholar] [CrossRef]
- Popova, A.; Velitchkova, M. Effect of membrane lipid order on the degree of freezing damage of thylakoid membranes. CryoLetters 2004, 25, 255–264. [Google Scholar]
- Pankratov, D.; Pankratova, G.; Gorton, L. Thylakoid membrane–based photobioelectrochemical systems: Achievements, limitations, and perspectives. Curr. Opin. Electrochem. 2020, 19, 49–54. [Google Scholar] [CrossRef]
- Saini, R.; Debnath, A. Thylakoid Composition Facilitates Chlorophyll a Dimerization through Stronger Interlipid Interactions. J. Phys. Chem. B 2023, 127, 9082–9094. [Google Scholar] [CrossRef]
- Lemieux, S.; Carpentier, R. Properties of Immobilized Thylakoid Membranes in a Photosynthetic Photoelectrochemical Cell. Photochem. Photobiol. 1988, 48, 115–121. [Google Scholar] [CrossRef]
- van Eerden, F.J.; de Jong, D.H.; de Vries, A.H.; Wassenaar, T.A.; Marrink, S.J. Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. Biochim. Et Biophys. Acta (BBA)-Bioenerg. 2015, 1848, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Sarcina, M.; Mullineaux, C.; Murata, N. Thylakoid membrane fluidity and its crucial importance in photoinhibition. Sci. Access 2001, 3, 1–4. [Google Scholar] [CrossRef]
- Chang, Y.-S.; Yang, H.-C.; Chao, L. Formation of Supported Thylakoid Membrane Bioanodes for Effective Electron Transfer and Stable Photocurrent. ACS Appl. Mater. Interfaces 2022, 14, 22216–22224. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Kim, T.; Hong, H.; Kim, Y.J.; Kim, S.I.; Park, Y.; Kim, K.; Ryu, W. Conductive thylakoid composites with mussel-adhesive protein-coated carbon nanotubes for harvesting photosynthetic electrons. Appl. Surf. Sci. 2022, 575, 151697. [Google Scholar] [CrossRef]
- Son, J.; Yun, J.; Kang, Y.; Ryu, W.; Kim, J. Thin, Flexible, and Inkjet-Printed Biophotovoltaic Cell Based on Thylakoid Membrane. In Proceedings of the 2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS), Austin, TX, USA, 21–25 January 2024; pp. 288–291. [Google Scholar] [CrossRef]
- Hong, H.; Lee, J.M.; Yun, J.; Kim, Y.J.; Kim, S.I.; Shin, H.; Ahn, H.S.; Hwang, S.-J.; Ryu, W. Enhanced interfacial electron transfer between thylakoids and RuO2 nanosheets for photosynthetic energy harvesting. Sci. Adv. 2021, 7, eabf2543. [Google Scholar] [CrossRef]
- Sarode, A.; Torati, S.R.; Hossain, M.F.; Slaughter, G. A photo-driven bioanode based on MXene-decorated graphene. Electrochim. Acta 2024, 498, 144637. [Google Scholar] [CrossRef]
- Hasan, K.; Patil, S.A.; Górecki, K.; Leech, D.; Hägerhäll, C.; Gorton, L. Electrochemical communication between heterotrophically grown Rhodobacter capsulatus with electrodes mediated by an osmium redox polymer. Bioelectrochemistry 2013, 93, 30–36. [Google Scholar] [CrossRef]
- Leech, D.; Kavanagh, P.; Schuhmann, W. Enzymatic fuel cells: Recent progress. Electrochim. Acta 2012, 84, 223–234. [Google Scholar] [CrossRef]
- McCormick, A.J.; Bombelli, P.; Bradley, R.W.; Thorne, R.; Wenzel, T.; Howe, C.J. Biophotovoltaics: Oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy Environ. Sci. 2015, 8, 1092–1109. [Google Scholar] [CrossRef]
- Hasan, K.; Milton, R.D.; Grattieri, M.; Wang, T.; Stephanz, M.; Minteer, S.D. Photobioelectrocatalysis of Intact Chloroplasts for Solar Energy Conversion. ACS Catal. 2017, 7, 2257–2265. [Google Scholar] [CrossRef]
- Chen, C.-P.; Lin, P.-H.; Chen, L.-Y.; Ke, M.-Y.; Cheng, Y.-W.; Huang, J. Nanoparticle-coated n-ZnO/p-Si photodiodes with improved photoresponsivities and acceptance angles for potential solar cell applications. Nanotechnology 2009, 20, 245204. [Google Scholar] [CrossRef] [PubMed]
- Libert, M.; Schütz, M.K.; Esnault, L.; Féron, D.; Bildstein, O. Impact of microbial activity on the radioactive waste disposal: Long term prediction of biocorrosion processes. Bioelectrochemistry 2014, 97, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhai, F.; Hasebe, Y.; Jia, H.; Zhang, Z. A highly sensitive electrochemical biosensor for phenol derivatives using a graphene oxide-modified tyrosinase electrode. Bioelectrochemistry 2018, 122, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Bombelli, P.; Bradley, R.W.; Scott, A.M.; Philips, A.J.; McCormick, A.J.; Cruz, S.M.; Anderson, A.; Yunus, K.; Bendall, D.S.; Cameron, P.J.; et al. Quantitative analysis of the factors limiting solar power transduction by Synechocystis sp. PCC 6803 in biological photovoltaic devices. Energy Environ. Sci. 2011, 4, 4690–4698. [Google Scholar] [CrossRef]
- Zeng, Q.; Wu, J.; Yu, Z.; Luo, L. Conductive PEDOT-decorated Li4Ti5O12 as next-generation anode material for electrochemical lithium storage. Solid State Ion. 2018, 325, 7–11. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Wang, L.; Wang, J.; Meng, W.; Sun, J.; Li, Q.; He, X.; Liu, Z.; Lei, Z. Highly Reversible and Dendrite-Free Zinc Anodes Enabled by PEDOT Nanowire Interfacial Layers for Aqueous Zinc-Ion Batteries. ACS Appl. Mater. Interfaces 2024, 16, 43026–43037. [Google Scholar] [CrossRef]
- Li, S.; Huang, J.; Wang, J.; Han, K. Micro-sized porous silicon@PEDOT with high rate capacity and stability for Li-ion battery anode. Mater. Lett. 2021, 293, 129712. [Google Scholar] [CrossRef]
- Liu, J.; Xu, J.; Chen, Y.; Sun, W.; Zhou, X.; Ke, J. Synthesis and Electrochemical Performance of a PEDOT: PSS@Ge Composite as the Anode Materials for Lithium-Ion Batteries. Int. J. Electrochem. Sci. 2019, 14, 359–370. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, X.; Huang, X.; Liao, S.; Liang, K.; Yu, X.; Li, K.; Zhi, C.; Zhang, H.; Li, N. Cl−/SO32−-Codoped Poly(3,4-ethylenedioxythiophene) That Interpenetrates and Encapsulates Porous Fe2O3 To Form Composite Nanoframeworks for Stable Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 30801–30809. [Google Scholar] [CrossRef]
- Hsu, S.-C.; Wang, K.-S.; Lin, Y.-T.; Huang, J.-H.; Wu, N.-J.; Kang, J.-L.; Weng, H.-C.; Liu, T.-Y. Surface Modification of Li3VO4 with PEDOT:PSS Conductive Polymer as an Anode Material for Li-Ion Capacitors. Polymers 2023, 15, 2502. [Google Scholar] [CrossRef]
- Zhu, X.; Jack, J.; Bian, Y.; Chen, X.; Tsesmetzis, N.; Ren, Z.J. Electrocatalytic Membranes for Tunable Syngas Production and High-Efficiency Delivery to Biocompatible Electrolytes. ACS Sustain. Chem. Eng. 2021, 9, 6012–6022. [Google Scholar] [CrossRef]
- Chyan, Y.; Ye, R.; Li, Y.; Singh, S.P.; Arnusch, C.J.; Tour, J.M. Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food. ACS Nano 2018, 12, 2176–2183. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Huang, X.; Song, W. Physical and Chemical Sensors on the Basis of Laser-Induced Graphene: Mechanisms, Applications, and Perspectives. ACS Nano 2021, 15, 18708–18741. [Google Scholar] [CrossRef] [PubMed]
- Shinde, M.; Torati, S.R.; Slaughter, G. Nb4C3Tx MXene-AgNPs decorated laser-induced graphene for selective detection of dopamine. J. Electroanal. Chem. 2024, 959, 118180. [Google Scholar] [CrossRef]
- Pankratova, G.; Pankratov, D.; Di Bari, C.; Goñi-Urtiaga, A.; Toscano, M.D.; Chi, Q.; Pita, M.; Gorton, L.; De Lacey, A.L. Three-Dimensional Graphene Matrix-Supported and Thylakoid Membrane-Based High-Performance Bioelectrochemical Solar Cell. ACS Appl. Energy Mater. 2018, 1, 319–323. [Google Scholar] [CrossRef]
- Hamidi, H.; Hasan, K.; Emek, S.C.; Åkerlund, H.-E.; Albertsson, P.-Å.; Leech, D.; Gorton, L. Photocurrent Generation from Thylakoid Membranes on Osmium-Redox-Polymer-Modified Electrodes. ChemSusChem 2015, 8, 990–993. [Google Scholar] [CrossRef]
- Bunea, A.-I.; Heiskanen, A.; Pankratova, G.; Tesei, G.; Lund, M.; Åkerlund, H.-E.; Leech, D.; Larsen, N.B.; Keller, S.S.; Gorton, L.; et al. Micropatterned Carbon-on-Quartz Electrode Chips for Photocurrent Generation from Thylakoid Membranes. ACS Appl. Energy Mater. 2018, 1, 3313–3322. [Google Scholar] [CrossRef]
- Shin, H.; Kim, T.; Seo, I.; Kim, S.; Kim, Y.J.; Hong, H.; Park, Y.; Jeong, H.M.; Kim, K.; Ryu, W. Fabrication of scalable and flexible bio-photoanodes by electrospraying thylakoid/graphene oxide composites. Appl. Surf. Sci. 2019, 481, 1–9. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef]
- Rasmussen, M.; Wingersky, A.; Minteer, S.D. Comparative study of thylakoids from higher plants for solar energy conversion and herbicide detection. Electrochim. Acta 2014, 140, 304–308. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, L.; Zhang, P.; Lv, F.; Liu, L.; Qi, R.; Wang, Y.; Shen, M.-Y.; Yu, H.-H.; Bazan, G.; et al. Conducting Polymers–Thylakoid Hybrid Materials for Water Oxidation and Photoelectric Conversion. Adv. Electron. Mater. 2019, 5, 1800789. [Google Scholar] [CrossRef]
- Aviha, R.; Joshi, A.; Slaughter, G. Fabrication of Palladium-Decorated Zinc Oxide Nanostructures for Non-Enzymatic Glucose Sensing. Chemosensors 2025, 13, 6. [Google Scholar] [CrossRef]
- Shinde, M.; Slaughter, G. Advanced nanocomposite-based electrochemical sensor for ultra-sensitive dopamine detection in physiological fluids. Front. Lab Chip Technol. 2025, 4, 1549365. [Google Scholar] [CrossRef]
- Torati, S.R.; Slaughter, G. Advanced laser-induced graphene-based electrochemical immunosensor for the detection of C-reactive protein. Bioelectrochemistry 2025, 161, 108842. [Google Scholar] [CrossRef]
- Balamurugan, A.; Chen, S.M. Flow injection analysis of iodate reduction on PEDOT modified electrode. Electroanalysis 2008, 20, 1873–1877. [Google Scholar] [CrossRef]
- Slaughter, G.; Kulkarni, T. A self-powered glucose biosensing system. Biosens. Bioelectron. 2016, 78, 45–50. [Google Scholar] [CrossRef]
- Baingane, A.; Slaughter, G. A Glucose Monitoring System with Remote Data Access. IEEE Trans. NanoBioscience 2020, 19, 622–626. [Google Scholar] [CrossRef]
- Slaughter, G.; Kulkarni, T. Highly Selective and Sensitive Self-Powered Glucose Sensor Based on Capacitor Circuit. Sci. Rep. 2017, 7, 1471. [Google Scholar] [CrossRef]
- Ryu, D.; Kim, Y.J.; Kim, S.I.; Hong, H.; Ahn, H.S.; Kim, K.; Ryu, W. Thylakoid-deposited micro-pillar electrodes for enhanced direct extraction of photosynthetic electrons. Nanomaterials 2018, 8, 189. [Google Scholar] [CrossRef]
- Lee, J.; Im, J.; Kim, S. Mediatorless solar energy conversion by covalently bonded thylakoid monolayer on the glassy carbon electrode. Bioelectrochemistry 2016, 108, 21–27. [Google Scholar] [CrossRef]
- Rasmussen, M.; Minteer, S.D. Thylakoid direct photobioelectrocatalysis: Utilizing stroma thylakoids to improve bio-solar cell performance. Phys. Chem. Chem. Phys. 2014, 16, 17327–17331. [Google Scholar] [CrossRef]
No | Photoanode | OCV | Photocurrent | Power Density | Ref. |
---|---|---|---|---|---|
1 | Au/Expanded TM Au/stacked TM | 220 mV 190 mV | 214 nA cm−2 191 nA cm−2 | -- | [13] |
2 | LIG/MXene/Thylakoid | 450 mV | 29.18 µA cm−2 | 7.24 µW cm−2 | [17] |
3 | GC/rGO/Thylakoid | 500 mV | 5.24 µA cm−2 | 1.79 μW cm−2 | [36] |
4 | Carbon Paper/ Stroma Thylakoid | -- | 51 ± 4 nA cm−2 | 0.65 nW cm−2 | [42] |
5 | Thylakoid-Deposited Micro-Pillar Electrodes | 407 mV | 280 nA cm−2 | 64 nW cm−2 | [50] |
6 | Glassy Carbon/Thylakoid Monolayer | -- | 230 nA cm−2 | -- | [51] |
7 | Thylakoid/PFP Conducting Polymer | -- | 1246 nA cm−2 | -- | [52] |
8 | LIG/PEDOT/Thylakoid | 570 mV | 18 μA cm−2 | 36 µW cm−2 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarode, A.; Slaughter, G. Fabrication of Thylakoid Membrane-Based Photo-Bioelectrochemical Bioanode for Self-Powered Light-Driven Electronics. Energies 2025, 18, 3167. https://doi.org/10.3390/en18123167
Sarode A, Slaughter G. Fabrication of Thylakoid Membrane-Based Photo-Bioelectrochemical Bioanode for Self-Powered Light-Driven Electronics. Energies. 2025; 18(12):3167. https://doi.org/10.3390/en18123167
Chicago/Turabian StyleSarode, Amit, and Gymama Slaughter. 2025. "Fabrication of Thylakoid Membrane-Based Photo-Bioelectrochemical Bioanode for Self-Powered Light-Driven Electronics" Energies 18, no. 12: 3167. https://doi.org/10.3390/en18123167
APA StyleSarode, A., & Slaughter, G. (2025). Fabrication of Thylakoid Membrane-Based Photo-Bioelectrochemical Bioanode for Self-Powered Light-Driven Electronics. Energies, 18(12), 3167. https://doi.org/10.3390/en18123167