Ensemble of Artificial Neural Networks for Seasonal Forecasting of Wind Speed in Eastern Canada
Abstract
:1. Introduction
2. Background
2.1. Wind Forecasting
2.2. Case
3. Materials and Methods
3.1. Data
3.2. Dynamical Models Data
3.3. Artificial Neural Network Ensembles
3.4. Forecast Verification and Evaluation
4. Results
4.1. Climate Indices as Predictands
4.2. Season Selection
4.3. Sets of Hyperparameters
4.4. Ensemble Size
4.5. Model Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EANN | Ensemble of Artificial Neural Networks |
ECMWF | European Centre for Medium-Range Weather Forecasts |
ML | Machine Learning |
NWP | Numerical weather prediction |
ANN | Artificial Neural Network |
GNN | Graph Neural Networks |
LSTM | Long Short Term Memeory |
CNN | Convolutional Neural Network |
WPF | Wind Power Forecasting |
ARIMA | Autoregressive Integrated Moving Average |
ENSO | El Niño-Southern Oscillation |
AMO | Atlantic Multi-decadal Oscillation |
ECMWF | European Centre for Medium-Range Weather Forecasts |
FMA | Season February–March–April |
AMJ | Season April–May–June |
JJA | Season June–July–August |
ASO | Season August–September–October |
OND | Season October–November–December |
DJF | Season December–January–February |
References
- CanREA. Canadian Renewable Energy Association: Wind Energy; CanREA: Ottawa, ON, Canada, 2023. [Google Scholar]
- Dehghani-Sanij, A.R.; Al-Haq, A.; Bastian, J.; Luehr, G.; Nathwani, J.; Dusseault, M.B.; Leonenko, Y. Assessment of current developments and future prospects of wind energy in Canada. Sustain. Energy Technol. Assess. 2022, 50, 101819. [Google Scholar] [CrossRef]
- Hanifi, S.; Liu, X.; Lin, Z.; Lotfian, S. A critical review of wind power forecasting methods—Past, present and future. Energies 2020, 13, 3764. [Google Scholar] [CrossRef]
- WMO. Guidance on Operational Practices for Objective Seasonal Forecasting; WMO: Geneva, Switzerland, 2020. [Google Scholar]
- Weisheimer, A.; Befort, D.J.; MacLeod, D.; Palmer, T.; O’Reilly, C.; Strømmen, K. Seasonal forecasts of the twentieth century. Bull. Am. Meteorol. Soc. 2020, 101, E1413–E1426. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J.; Bukovsky, M.S.; Leung, L.R.; Sakaguchi, K. Climate change impacts on wind power generation. Nat. Rev. Earth Environ. 2020, 1, 627–643. [Google Scholar] [CrossRef]
- Ouyang, T.; Zha, X.; Qin, L.; He, Y.; Tang, Z. Prediction of wind power ramp events based on residual correction. Renew. Energy 2019, 136, 781–792. [Google Scholar] [CrossRef]
- Potter, C.W.; Negnevitsky, M. Very short-term wind forecasting for Tasmanian power generation. IEEE Trans. Power Syst. 2006, 21, 965–972. [Google Scholar] [CrossRef]
- Candy, B.; English, S.J.; Keogh, S.J. A Comparison of the impact of QuikScat and WindSat wind vector products on met office analyses and forecasts. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1632–1640. [Google Scholar] [CrossRef]
- Tascikaraoglu, A.; Uzunoglu, M. A review of combined approaches for prediction of short-term wind speed and power. Renew. Sustain. Energy Rev. 2014, 34, 243–254. [Google Scholar] [CrossRef]
- Yan, J.; Ouyang, T. Advanced wind power prediction based on data-driven error correction. Energy Convers. Manag. 2019, 180, 302–311. [Google Scholar] [CrossRef]
- Naizghi, M.S.; Ouarda, T.B. Teleconnections and analysis of long-term wind speed variability in the UAE. Int. J. Climatol. 2017, 37, 230–248. [Google Scholar] [CrossRef]
- González-Sopeña, J.; Pakrashi, V.; Ghosh, B. An overview of performance evaluation metrics for short-term statistical wind power forecasting. Renew. Sustain. Energy Rev. 2021, 138, 110515. [Google Scholar] [CrossRef]
- Kim, Y.; Hur, J. An ensemble forecasting model of wind power outputs based on improved statistical approaches. Energies 2020, 13, 1071. [Google Scholar] [CrossRef]
- Soman, S.S.; Zareipour, H.; Malik, O.; Mandal, P. A review of wind power and wind speed forecasting methods with different time horizons. In Proceedings of the North American Power Symposium 2010, Arlington, TX, USA, 26–28 September 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–8. [Google Scholar] [CrossRef]
- Khazaei, S.; Ehsan, M.; Soleymani, S.; Mohammadnezhad-Shourkaei, H. A high-accuracy hybrid method for short-term wind power forecasting. Energy 2022, 238, 122020. [Google Scholar] [CrossRef]
- Woldesellasse, H.; Marpu, P.R.; Ouarda, T.B. Long-term forecasting of wind speed in the UAE using nonlinear canonical correlation analysis (NLCCA). Arab. J. Geosci. 2020, 13, 962. [Google Scholar] [CrossRef]
- Bentsen, L.Ø.; Warakagoda, N.D.; Stenbro, R.; Engelstad, P. Spatio-temporal wind speed forecasting using graph networks and novel Transformer architectures. Appl. Energy 2023, 333, 120565. [Google Scholar] [CrossRef]
- Sarkar, M.R.; Anavatti, S.G.; Dam, T.; Pratama, M.; Al Kindhi, B. Enhancing wind power forecast precision via multi-head attention transformer: An investigation on single-step and multi-step forecasting. In Proceedings of the 2023 International Joint Conference on Neural Networks (IJCNN), Gold Coast, Australia, 18–23 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–8. [Google Scholar] [CrossRef]
- Huang, S.; Yan, C.; Qu, Y. Deep learning model-transformer based wind power forecasting approach. Front. Energy Res. 2023, 10, 1055683. [Google Scholar] [CrossRef]
- Watson, S.; Landberg, L.; Halliday, J. Application of wind speed forecasting to the integration of wind energy into a large scale power system. IEE Proc.-Gener. Transm. Distrib. 1994, 141, 357–362. [Google Scholar] [CrossRef]
- Costa, A.; Crespo, A.; Navarro, J.; Lizcano, G.; Madsen, H.; Feitosa, E. A review on the young history of the wind power short-term prediction. Renew. Sustain. Energy Rev. 2008, 12, 1725–1744. [Google Scholar] [CrossRef]
- Giebel, G.; Brownsword, R.; Kariniotakis, G.; Denhard, M.; Draxl, C. The State-of-the-Art in Short-Term Prediction of Wind Power: A Literature Overview; DTU Orbit: Kongens Lyngby, Denmark, 2011. [Google Scholar] [CrossRef]
- Palmer, T.N. The economic value of ensemble forecasts as a tool for risk assessment: From days to decades. Q. J. R. Meteorol. Soc. A J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2002, 128, 747–774. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Wang, X. Review on probabilistic forecasting of wind power generation. Renew. Sustain. Energy Rev. 2014, 32, 255–270. [Google Scholar] [CrossRef]
- Ouarda, T.B.; Charron, C. Non-stationary statistical modelling of wind speed: A case study in eastern Canada. Energy Convers. Manag. 2021, 236, 114028. [Google Scholar] [CrossRef]
- Lam, R.; Sanchez-Gonzalez, A.; Willson, M.; Wirnsberger, P.; Fortunato, M.; Alet, F.; Ravuri, S.; Ewalds, T.; Eaton-Rosen, Z.; Hu, W.; et al. Learning skillful medium-range global weather forecasting. Science 2023, 382, 1416–1421. [Google Scholar] [CrossRef]
- Alexiadis, M.; Dokopoulos, P.; Sahsamanoglou, H. Wind speed and power forecasting based on spatial correlation models. IEEE Trans. Energy Convers. 1999, 14, 836–842. [Google Scholar] [CrossRef]
- Corotis, R.B.; Sigl, A.B.; Cohen, M.P. Variance analysis of wind characteristics for energy conversion. J. Appl. Meteorol. Climatol. 1977, 16, 1149–1157. [Google Scholar] [CrossRef]
- Giebel, G.; Landberg, L.; Badger, J.; Sattler, K. Using Ensemble Forecasting for Wind Power; OSTI: Oak Ridge, TN, USA, 2003.
- Ti, Z.; Deng, X.W.; Zhang, M. Artificial Neural Networks based wake model for power prediction of wind farm. Renew. Energy 2021, 172, 618–631. [Google Scholar] [CrossRef]
- Wu, H.; Meng, K.; Fan, D.; Zhang, Z.; Liu, Q. Multistep short-term wind speed forecasting using transformer. Energy 2022, 261, 125231. [Google Scholar] [CrossRef]
- Lipu, M.H.; Miah, M.S.; Hannan, M.; Hussain, A.; Sarker, M.R.; Ayob, A.; Saad, M.H.M.; Mahmud, M.S. Artificial intelligence based hybrid forecasting approaches for wind power generation: Progress, challenges and prospects. IEEE Access 2021, 9, 102460–102489. [Google Scholar] [CrossRef]
- Singh, P.K.; Singh, N.; Negi, R. Wind power forecasting using hybrid ARIMA-ANN technique. In Ambient Communications and Computer Systems: RACCCS-2018; Springer: Singapore, 2019; pp. 209–220. [Google Scholar] [CrossRef]
- Yang, L.; Sun, Z.; Smith, T. Graph neural networks for multi-site wind forecasting using spatially-aware modeling. Energy AI 2024, 10, 100222. [Google Scholar]
- Oskarsson, J.; Brown, C.; Lee, W. Graph-EFM: Probabilistic ensemble forecasting of wind using graph neural networks. Renew. Sustain. Energy Rev. 2024, 185, 113714. [Google Scholar]
- Price, I.; Sanchez-Gonzalez, A.; Alet, F.; Andersson, T.R.; El-Kadi, A.; Masters, D.; Ewalds, T.; Stott, J.; Mohamed, S.; Battaglia, P.; et al. Probabilistic weather forecasting with machine learning. Nature 2025, 637, 84–90. [Google Scholar] [CrossRef]
- Kent, T.; Saha, S.; MacLachlan, C. Seasonal forecast skill using large-scale climate representations in ACE2. Q. J. R. Meteorol. Soc. 2025; in press. [Google Scholar]
- Kapica, J.; Canales, F.A.; Jurasz, J. Global atlas of solar and wind resources temporal complementarity. Energy Convers. Manag. 2021, 246, 114692. [Google Scholar] [CrossRef]
- Zhao, C.; Brissette, F. Impacts of large-scale oscillations on climate variability over North America. Clim. Chang. 2022, 173, 4. [Google Scholar] [CrossRef]
- Statistics Canada. Electric Power Generation, Monthly Generation by Type of Electricity; Statistics Canada: Ottawa, ON, Canada, 2024.
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, MA, USA, 2011; Volume 100. [Google Scholar]
- NOAA. Climate Indices: Monthly Atmospheric and Ocean Time Series; NOAA: Washington, DC, USA.
- Johnson, S.J.; Stockdale, T.N.; Ferranti, L.; Balmaseda, M.A.; Molteni, F.; Magnusson, L.; Tietsche, S.; Decremer, D.; Weisheimer, A.; Balsamo, G.; et al. SEAS5: The new ECMWF seasonal forecast system. Geosci. Model Dev. 2019, 12, 1087–1117. [Google Scholar] [CrossRef]
- Doblas-Reyes, F.J.; García-Serrano, J.; Lienert, F.; Biescas, A.P.; Rodrigues, L.R. Seasonal climate predictability and forecasting: Status and prospects. Wiley Interdiscip. Rev. Clim. Chang. 2013, 4, 245–268. [Google Scholar] [CrossRef]
- Alessandrini, S.; Sperati, S.; Pinson, P. A comparison between the ECMWF and COSMO Ensemble Prediction Systems applied to short-term wind power forecasting on real data. Appl. Energy 2013, 107, 271–280. [Google Scholar] [CrossRef]
- Leung, L.R.; Hamlet, A.F.; Lettenmaier, D.P.; Kumar, A. Simulations of the ENSO hydroclimate signals in the Pacific Northwest Columbia River basin. Bull. Am. Meteorol. Soc. 1999, 80, 2313–2330. [Google Scholar] [CrossRef]
- Torralba, V.; Doblas-Reyes, F.J.; MacLeod, D.; Christel, I.; Davis, M. Seasonal climate prediction: A new source of information for the management of wind energy resources. J. Appl. Meteorol. Climatol. 2017, 56, 1231–1247. [Google Scholar] [CrossRef]
- Dave, V.S.; Dutta, K. Neural network based models for software effort estimation: A review. Artif. Intell. Rev. 2014, 42, 295–307. [Google Scholar] [CrossRef]
- Pinheiro, E.; Ouarda, T.B. Short-lead seasonal precipitation forecast in northeastern Brazil using an ensemble of artificial neural networks. Sci. Rep. 2023, 13, 20429. [Google Scholar] [CrossRef]
- Shu, C.; Burn, D.H. Artificial neural network ensembles and their application in pooled flood frequency analysis. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Sharkey, A.J. Combining Artificial Neural Nets: Ensemble and Modular Multi-Net Systems; Springer Science & Business Media: London, UK, 2012. [Google Scholar] [CrossRef]
- Kai, L.; Salamon, P. Neural Network Ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 993–1001. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Shu, C.; Ouarda, T.B. Flood frequency analysis at ungauged sites using artificial neural networks in canonical correlation analysis physiographic space. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Jeong, D.I.; Sushama, L. Projected changes to mean and extreme surface wind speeds for North America based on regional climate model simulations. Atmosphere 2019, 10, 497. [Google Scholar] [CrossRef]
- Gualtieri, G. Reliability of ERA5 reanalysis data for wind resource assessment: A comparison against tall towers. Energies 2021, 14, 4169. [Google Scholar] [CrossRef]
Climate Index | Symbol |
---|---|
Atlantic Meridional Mode | AMM |
Atlantic Multidecadal Oscillation | AMO |
Arctic Oscillation | AO |
Dipole Mode Index | DMI |
North Atlantic Oscillation | NAO |
Niño 4 | Nino4 |
Niño 1 + 2 | Nino12 |
Pacific Decadal Oscillation | PDO |
Pacific North American Index | PNA |
Regularization | Units | RMSE | Bias |
---|---|---|---|
1 | 0.868 | −0.084 | |
1 | 0.871 | −0.084 | |
3 | 0.893 | −0.087 | |
3 | 0.924 | −0.088 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leminski, P.; Pinheiro, E.; Ouarda, T.B.M.J. Ensemble of Artificial Neural Networks for Seasonal Forecasting of Wind Speed in Eastern Canada. Energies 2025, 18, 2975. https://doi.org/10.3390/en18112975
Leminski P, Pinheiro E, Ouarda TBMJ. Ensemble of Artificial Neural Networks for Seasonal Forecasting of Wind Speed in Eastern Canada. Energies. 2025; 18(11):2975. https://doi.org/10.3390/en18112975
Chicago/Turabian StyleLeminski, Pia, Enzo Pinheiro, and Taha B. M. J. Ouarda. 2025. "Ensemble of Artificial Neural Networks for Seasonal Forecasting of Wind Speed in Eastern Canada" Energies 18, no. 11: 2975. https://doi.org/10.3390/en18112975
APA StyleLeminski, P., Pinheiro, E., & Ouarda, T. B. M. J. (2025). Ensemble of Artificial Neural Networks for Seasonal Forecasting of Wind Speed in Eastern Canada. Energies, 18(11), 2975. https://doi.org/10.3390/en18112975