Partially Segmented Permanent-Magnet Losses in Interior Permanent-Magnet Motors
Abstract
:1. Introduction
2. Permanent-Magnet Loss Reduction Through Segmentation
2.1. Permanent Magnet Eddy Current Loss for an Individual Magnet Segment
- Resistance-limited; no skin or proximity effect.
- Uniform magnet field B.
- Isotropic resistivity within the magnet.
- Eddy currents flow in one plane so that the density is the same throughout the thickness h of the magnet.
2.2. Partially Segmented Permanent Magnet Eddy Current Loss
3. Finite Element Simulation of Partially Segmented Magnets
3.1. Partially Segmented Magnet Comparisons
3.2. Partial Axial Segmentation Refinement
3.3. Average Torque Reduction Through Partial Segmentation
4. Materials and Methods
5. Results
- DC bus voltage of 350 V.
- Switching frequency sweep of 2 kHz, 5 kHz, and 8 kHz.
- Phase angle sweep of 30°, 40°, 50°, 60°, and 80°. A 0° phase angle corresponds to purely current, while 90° corresponds to purely negative .
- Modulation index sweep of 0.1 to 0.9 with 0.1 increments.
5.1. Experimental Test Loss Calculations
5.2. The Effect of Switching Frequency on AC Losses
5.3. The Effect of Phase Angle on Permanent-Magnet Loss
5.4. Reduction in Permanent-Magnet Losses Through Slotting
5.5. Temperature Test
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. Department of Energy. Critical Materials Assessment; DOE/EE-2756; U.S. Department of Energy: Washington, DC, USA, 2023. [Google Scholar]
- Global Wind Energy Council. Global Wind Report; Global Wind Energy Council: Brussels, Belgium, 2022. [Google Scholar]
- Yamazaki, K.; Shina, M.; Kanou, Y.; Miwa, M.; Hagiwara, J. Effect of Eddy Current Loss Reduction by Segmentation of Magnets in Synchronous Motors: Difference Between Interior and Surface Types. IEEE Trans. Magn. 2009, 45, 4756–4759. [Google Scholar] [CrossRef]
- Sirimanna, S.; Zhang, X.; Haran, K. Investigation of the Impact of Magnet Segmentation on High Frequency Eddy Current Losses in an Interior Permanent Magnet Motor. In Proceedings of the 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 9–13 October 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Tong, W.; Hou, M.; Sun, L.; Wu, S. Analysis and Experimental Verification of Segmented Rotor Structure on Rotor Eddy Current Loss of High-Speed Surface-Mounted Permanent Magnet Machine. In Proceedings of the 2021 IEEE International Magnetic Conference (INTERMAG), Lyon, France, 26–30 April 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Sergeant, P.; Van den Bossche, A. Segmentation of Magnets to Reduce Losses in Permanent-Magnet Synchronous Machines. IEEE Trans. Magn. 2008, 44, 4409–4412. [Google Scholar] [CrossRef]
- Li, J.; Xu, Y.; Zou, J.; Wang, Q.; Liang, W. Analysis and Reduction of Magnet Loss by Deepening Magnets in Interior Permanent-Magnet Machines With a Pole/Slot Ratio of 2/3. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef]
- Oh, S.Y.; Cho, S.Y.; Han, J.H.; Lee, H.J.; Ryu, G.H.; Kang, D.; Lee, J. Design of IPMSM Rotor Shape for Magnet Eddy-Current Loss Reduction. IEEE Trans. Magn. 2014, 50, 841–844. [Google Scholar] [CrossRef]
- Wang, G.; Wang, P.; Wang, X. Equivalent Magnetic Circuit Reluctance Optimization for Rotor Loss Reduction in Permanent Magnet Synchronous Motor for UPS-FESS. IEEE Access 2020, 8, 107593–107600. [Google Scholar] [CrossRef]
- Yamazaki, K.; Togashi, Y.; Ikemi, T.; Ohki, S.; Mizokami, R. Reduction of Inverter Carrier Harmonic Losses in Interior Permanent Magnet Synchronous Motors by Optimizing Rotor and Stator Shapes. IEEE Trans. Ind. Appl. 2019, 55, 306–315. [Google Scholar] [CrossRef]
- Yamazaki, K.; Kanou, Y.; Fukushima, Y.; Ohki, S.; Nezu, A.; Ikemi, T.; Mizokami, R. Reduction of Magnet Eddy-Current Loss in Interior Permanent-Magnet Motors With Concentrated Windings. IEEE Trans. Ind. Appl. 2010, 46, 2434–2441. [Google Scholar] [CrossRef]
- Yamazaki, K.; Kato, Y.; Ikemi, T.; Ohki, S. Reduction of rotor losses in multi layer interior permanent magnet synchronous motors by introducing novel topology of rotor flux barriers. In Proceedings of the 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 15–19 September 2013; pp. 1220–1226. [Google Scholar] [CrossRef]
- Ding, M.; Fang, H.; Qu, R. Reduction of Rotor Loss in High-Speed Electrical Machines With a Novel Composite Sleeve. In Proceedings of the 2023 26th International Conference on Electrical Machines and Systems (ICEMS), Zhuhai, China, 5–8 November 2023; pp. 78–81. [Google Scholar] [CrossRef]
- Khan, H.A.; Khan, F.; Sami, I.; Ahmad, N. Suppression of Permanent Magnet Eddy Current Loss in High-Speed Machines. In Proceedings of the 2021 IEEE International Power and Renewable Energy Conference (IPRECON), Kollam, India, 24–26 September 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Shen, J.X.; Hao, H.; Jin, M.J.; Yuan, C. Reduction of Rotor Eddy Current Loss in High Speed PM Brushless Machines by Grooving Retaining Sleeve. IEEE Trans. Magn. 2013, 49, 3973–3976. [Google Scholar] [CrossRef]
- Horiuchi, M.; Masuda, R.; Sato, M.; Bu, Y.; Nirei, M.; Mizuno, T. Reduction of Rotor Loss and Torque Ripple in an IPMSM using Magnetic Wedges. In Proceedings of the 2020 23rd International Conference on Electrical Machines and Systems (ICEMS), Hamamatsu, Japan, 24–27 November 2020; pp. 498–503. [Google Scholar] [CrossRef]
- Wills, D.A.; Kamper, M.J. Reducing PM eddy current rotor losses by partial magnet and rotor yoke segmentation. In Proceedings of the The XIX International Conference on Electrical Machines—ICEM 2010, Rome, Italy, 6–8 September 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, J.; Liu, C.; Lei, G.; Guo, Y.; Zhu, J. Reduction of Magnet Eddy Current Loss in PMSM by Using Partial Magnet Segment Method. IEEE Trans. Magn. 2019, 55, 1–5. [Google Scholar] [CrossRef]
- Zoubida, B.; Mekideche, M.R. Investigation of magnet segmentation techniques for eddy current losses reduction in permanent magnets electrical machines. Compel 2015, 34, 46–60. [Google Scholar] [CrossRef]
- Stoll, R.L. The Analysis of Eddy Currents; Oxford University Press: Oxford, UK, 1974. [Google Scholar]
- Paradkar, M.; Bocker, J. 2D analytical model for estimation of eddy current loss in the magnets of IPM machines considering the reaction field of the induced eddy currents. In Proceedings of the 2015 IEEE International Electric Machines and Drives Conference (IEMDC), Miami, FL, USA, 21–24 May 2017; pp. 1096–1102. [Google Scholar] [CrossRef]
- Ruoho, S.; Santa-Nokki, T.; Kolehmainen, J.; Arkkio, A. Modeling Magnet Length In 2-D Finite-Element Analysis of Electric Machines. IEEE Trans. Magn. 2009, 45, 3114–3120. [Google Scholar] [CrossRef]
- Yamazaki, K.; Abe, A. Loss Investigation of Interior Permanent-Magnet Motors Considering Carrier Harmonics and Magnet Eddy Currents. IEEE Trans. Ind. Appl. 2009, 45, 659–665. [Google Scholar] [CrossRef]
- Tessarolo, A. A survey of state-of-the-art methods to compute rotor eddy-current losses in synchronous permanent magnet machines. In Proceedings of the 2017 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Nottingham, UK, 20–21 April 2017; pp. 12–19. [Google Scholar] [CrossRef]
- Tong, W.; Sun, L.; Wu, S.; Hou, M.; Tang, R. Analytical Model and Experimental Verification of Permanent Magnet Eddy Current Loss in Permanent Magnet Machines With Nonconcentric Magnetic Poles. IEEE Trans. Ind. Electron. 2022, 69, 8815–8824. [Google Scholar] [CrossRef]
- Kim, D.M.; Kim, J.H.; Lee, S.G.; Park, M.R.; Lee, G.H.; Lim, M.S. Estimation Method for Rotor Eddy Current Loss in Ultrahigh-Speed Surface-Mounted Permanent Magnet Synchronous Motor. IEEE Trans. Magn. 2021, 57, 1–5. [Google Scholar] [CrossRef]
- Chong, L.; Dutta, R.; Rahman, M.F.; Lovatt, H. Experimental verification of core and magnet losses in a concentrated wound IPM machine with V-shaped magnets used in field weakening applications. In Proceedings of the 2011 IEEE International Electric Machines and Drives Conference (IEMDC), Niagara Falls, ON, Canada, 15–18 May 2011; pp. 977–982. [Google Scholar] [CrossRef]
- Alberti, L.; Fornasiero, E.; Bianchi, N. Impact of the Rotor Yoke Geometry on Rotor Losses in Permanent-Magnet Machines. IEEE Trans. Ind. Appl. 2012, 48, 98–105. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, S.; Liu, C. Magnet Eddy-Current Loss Analysis of Interior PM Machines for Electric Vehicle Application. IEEE Trans. Magn. 2017, 53, 1–4. [Google Scholar] [CrossRef]
- Balamurali, A.; Anik, A.K.; Clandfield, W.; Kar, N.C. Non-Invasive Parameter and Loss Determination in PMSM Considering the Effects of Saturation, Cross-Saturation, Time Harmonics, and Temperature Variations. IEEE Trans. Magn. 2021, 57, 1–6. [Google Scholar] [CrossRef]
- Gerlach, T.; Steckel, R.; Hubert, T.; Kremser, A. Eddy current loss analysis in permanent magnets of synchronous machines. In Proceedings of the 2016 6th International Electric Drives Production Conference (EDPC), Nuremberg, Germany, 30 November–1 December 2016; pp. 246–252. [Google Scholar] [CrossRef]
- Yamazaki, K.; Fukuoka, T.; Akatsu, K.; Nakao, N.; Ruderman, A. Investigation of Locked Rotor Test for Estimation of Magnet PWM Carrier Eddy Current Loss in Synchronous Machines. IEEE Trans. Magn. 2012, 48, 3327–3330. [Google Scholar] [CrossRef]
- van der Geest, M.; Polinder, H.; Ferreira, J.A. Influence of PWM switching frequency on the losses in PM machines. In Proceedings of the 2014 International Conference on Electrical Machines (ICEM), Berlin, Germany, 2–5 September 2014; pp. 1243–1247. [Google Scholar] [CrossRef]
- Velic, T.; Barkow, M.; Bauer, D.; Fuchs, P.; Wende, J.; Hubert, T.; Reinlein, M.; Nägelkrämer, J.; Parspour, N. Efficiency Optimization of Electric Drives with Full Variable Switching Frequency and Optimal Modulation Methods. In Proceedings of the 2021 17th Conference on Electrical Machines, Drives and Power Systems (ELMA), Sofia, Bulgaria, 1–4 July 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Tornello, L.D.; Vaschetto, S.; Agamloh, E.B.; Scelba, G.; De Donato, G.; Cavagnino, A. Investigating PWM-Induced Iron Losses: Measurements and Estimation Models up to 350 kHz Switching Frequency. IEEE Open J. Ind. Appl. 2024, 5, 338–355. [Google Scholar] [CrossRef]
Outer Diameter | 230 mm |
Stack Length | 70 mm |
Rotor Outer Diameter | 150.8 mm |
Poles | 8 |
Peak Torque | 250 Nm |
Magnet Width | 14.3 mm |
Magnet Thickness | 6.5 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vannest, J.; Zhang, J. Partially Segmented Permanent-Magnet Losses in Interior Permanent-Magnet Motors. Energies 2025, 18, 2879. https://doi.org/10.3390/en18112879
Vannest J, Zhang J. Partially Segmented Permanent-Magnet Losses in Interior Permanent-Magnet Motors. Energies. 2025; 18(11):2879. https://doi.org/10.3390/en18112879
Chicago/Turabian StyleVannest, Jeremiah, and Julia Zhang. 2025. "Partially Segmented Permanent-Magnet Losses in Interior Permanent-Magnet Motors" Energies 18, no. 11: 2879. https://doi.org/10.3390/en18112879
APA StyleVannest, J., & Zhang, J. (2025). Partially Segmented Permanent-Magnet Losses in Interior Permanent-Magnet Motors. Energies, 18(11), 2879. https://doi.org/10.3390/en18112879