Doubly Fed Induction Generator Robust Design for Avoiding Converter-Driven Instability: Perspective
Abstract
:1. Introduction
2. Practical Experience
2.1. Slow Interactions
2.2. Fast Interactions
3. WTG Solutions
3.1. General Overview
- Modification of and .
- ○
- Hardware modifications changing the plant.
- Modification of
- ○
- Incorporation of resonant controllers.
- ○
- Modification of gains of current control loops, changing bandwidth of existing controllers.
- ○
- Incorporation of filters.
- Modification of
- ○
- Incorporation of a feedforward term. Specifically, a new term is added to the current/voltage controller for modifying passivity in a specific narrow bandwidth.
- Modification of PLL gains—Synchronization method gains can be modified, which inherently affect all the elements of the closed-loop transfer function. This option is adequate for improving passivity in the low frequencies of <200 Hz.
3.2. SW Solutions
4. Plant Solutions
4.1. General Overview
4.2. Methodology for Filter Design
4.3. Application to a Case Study
5. Trade-Off Analysis
- : 10–15%
- (48 mH, 33 kV): 20–30%
- (210 , 33 kV): 15–25%
- : 10–15%
- Switches and protection: 20–25%
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kundur, P. Power System Stability; McGraw-Hill Inc.: New York, NY, USA, 1994. [Google Scholar]
- Hatziargyriou, N.; Milanovic, J.; Rahmann, C.; Ajjarapu, V.; Canizares, C.; Erlich, I.; Hill, D.; Hiskens, I.; Kamwa, I.; Pal, B.; et al. Definition and Classification of Power System Stability—Revisited & Extended. IEEE Trans. Power Syst. 2021, 36, 3271–3281. [Google Scholar]
- Bose, B.K. Power Electronics, Smart Grid, and Renewable Energy Systems. Proc. IEEE 2017, 105, 2011–2018. [Google Scholar] [CrossRef]
- Sacristán, J.; Goñi, N.; Berrueta, A.; López, J.; Rodríguez, J.L.; Ursúa, A.; Sanchis, P. Inertial Response and Inertia Emulation in DFIG and PMSG Wind Turbines: Emulating Inertia from a Supercapacitor-based Energy Storage System. In Proceedings of the EEEIC/I and CPS Europe, Bari, Italy, 7–10 September 2021. [Google Scholar] [CrossRef]
- Berrueta, A.; Sacristán, J.; López, J.; Rodríguez, J.L.; Ursúa, A.; Sanchis, P. Inclusion of a Supercapacitor Energy Storage System in DFIG and Full-Converter PMSG Wind Turbines for Inertia Emulation. IEEE Trans. Ind. App. 2023, 59, 3754–3763. [Google Scholar] [CrossRef]
- Jie, H.; Zhao, Z.; Zeng, Y.; Chang, Y.; Fan, F.; Wang, C.; See, K.Y. A review of intentional electromagnetic interference in power electronics: Conducted and radiated susceptibility. IET Power Electron. 2024, 17, 1487–1506. [Google Scholar] [CrossRef]
- Shair, J.; Li, H.; Hu, J.; Xie, X. Power system stability issues, classifications and research prospects in the context of high-penetration of renewables and power electronics. Renew. Sustain. Energy Rev. 2021, 145, 111111. [Google Scholar] [CrossRef]
- Kong, L.; Xue, Y.; Qiao, L.; Wang, F. Review of Small-Signal Converter-Driven Stability Issues in Power Systems. IEEE Open Access J. Power Energy 2022, 9, 29–41. [Google Scholar] [CrossRef]
- Singh, A.; Debusschere, V.; Hadjsaid, N.; Legrand, X.; Bouzigon, B. Slow-Interaction Converter-Driven Stability in the Distribution Grid: Small-Signal Stability Analysis With Grid-Following and Grid-Forming Inverters. IEEE Trans. Power Syst. 2024, 39, 4521–4536. [Google Scholar] [CrossRef]
- Ghimire, S.; Kkuni, K.V.; Guerreiro, G.M.G.; Guest, E.D.; Jensen, K.H.; Yang, G. Oscillations between Grid-Forming Converters in Weakly Connected Offshore WPPs. In Proceedings of the 2024 IEEE Power & Energy Society General Meeting (PESGM), Seattle, WA, USA, 21–25 July 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Ma, H.T.; Brogan, P.B.; Jensen, K.H.; Nelson, R.J. Sub-Synchronous Control Interaction studies between full-converter wind turbines and series-compensated AC transmission lines. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Liu, H.; Xie, X.; He, J.; Xu, T.; Yu, Z.; Wang, C.; Zhang, C. Subsynchronous Interaction Between Direct-Drive PMSG Based Wind Farms and Weak AC Networks. IEEE Trans. Power Syst. 2017, 32, 4708–4720. [Google Scholar] [CrossRef]
- Australian Energy Market Operator Limited. System Strength in the NEM explainded. Available online: https://aemo.com.au/-/media/files/electricity/nem/system-strength-explained.pdf (accessed on 2 May 2025).
- Cheng, Y.; Fan, L.; Rose, J.; Huang, S.-H.; Schmall, J.; Wang, X.; Xie, X.; Shair, J.; Ramamurthy, J.R.; Modi, N.; et al. Real-World Subsynchronous Oscillation Events in Power Grids With High Penetrations of Inverter-Based Resources. IEEE Trans. Power Syst. 2023, 38, 316–330. [Google Scholar] [CrossRef]
- IEEE Std 1204-1997; IEEE Guide for Planning DC Link Terminating at AC Locations Having Low Short-Circuit Capacities. Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 1997.
- Bengtsson, T.; Roxenborg, S.; Saha, M.M.; Lindström, P.-O.; Eriksson, H.; Lindström, M. Case studies and experiences with Sub-synchronous resonance (SSR) detection technique. In Proceedings of the 2016 Power Systems Computation Conference (PSCC), Genoa, Italy, 20–24 June 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Zhou, J.Z.; Ding, H.; Fan, S.; Zhang, Y.; Gole, A.M. Impact of Short-Circuit Ration and Pahse-Locked-Loop Parameters on the Small-Signal Behaviour of a VSC-HVDC Converter. IEEE Trans. Power Deliv. 2014, 29, 2287–2296. [Google Scholar] [CrossRef]
- Fan, L.; Miao, Z. Wind in weak grids: 4 Hz or 30 Hz oscillations? IEEE Trans. Power Syst. 2018, 33, 5803–5804. [Google Scholar] [CrossRef]
- Mohammed, N.; Udawatte, H.; Zhou, W.; Hill, D.J.; Bahrani, B. Grid-Forming Inverters: A Comparative Study of Different Control Strategies in Frequency and Time Domains. IEEE Open J. Ind. Electron. Soc. 2024, 5, 185–214. [Google Scholar] [CrossRef]
- Mitsugi, Y.; Baba, J. Analysis of Subsynchronous Control Interaction of a Grid Forming Inverter. In Proceedings of the 2024 IEEE Power & Energy Society General Meeting (PESGM), Seattle, WA, USA, 21–25 July 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Gu, K.; Wu, F.; Zhang, X.-P.; Ju, P.; Zhou, H.; Luo, J.; Li, J. SSR Analysis of DFIG-Based Wind Farm With VSM Control Strategy. IEEE Access 2019, 7, 118702–118711. [Google Scholar] [CrossRef]
- IEC 61400-21-1; Wind Energy Generation Systems—Part 21-1: Measurement and Assessment of Electrical Characteristics—Wind Turbines. International Electrotechnical Commission: Geneva, Switzerland, 2019.
- IEEE STD 519; IEEE Standard for Harmonic Control in Electric Power Systems. Institute of Electrical and Electronics Engineers: New York, NY, USA, 2022.
- Bradt, M.; Badrzadeh, B.; Camm, E.; Mueller, D.; Schoene, J.; Siebert, T.; Smith, T.; Starke, M.; Walling, R. Harmonics and resonance issues in wind power plants. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–29 July 2011; pp. 1–8. [Google Scholar] [CrossRef]
- Yin, H.; Sahni, M.; Karnik, N.; Nia, H.K. Root cause analysis for harmonic resonance tripping in wind power plants: An ERCOT case study. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Guest, E.; Jensen, K.H.; Rasmussen, T.W. Mitigation of Harmonic Voltage Amplification in Offshore Wind Power Plants by Wind Turbines With Embedded Active Filters. IEEE Trans. Sustain. Energy 2020, 11, 785–794. [Google Scholar] [CrossRef]
- Harnefors, L.; Wang, X.; Yepes, A.G.; Blaabjerg, F. Passivity-Based Stability Assessment of Grid-Connected VSCs—An Overview. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 116–125. [Google Scholar] [CrossRef]
- Harnefors, L.; Yepes, A.G.; Vidal, A.; Doval-Gandoy, J. Passivity-Based Stabilization of Resonant Current Controllers with Consideration of Time Delay. IEEE Trans. Power Electron. 2014, 29, 6260–6263. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhao, J.; Mao, S. Theory for the design of C-type filter. In Proceedings of the 11th International Conference on Harmonics and Quality of Power (IEEE Cat. No.04EX951), Lake Placid, NY, USA, 12–15 September 2004; pp. 11–15. [Google Scholar] [CrossRef]
Interplant Mode Oscillation | Local Plant Mode Oscillation | Inter-Area Mode Oscillation | Sub-Synchronous Resonances |
---|---|---|---|
2–3 Hz | 1–2 Hz | <1 Hz (usually) | >10 Hz |
Machines on the same generation site oscillate against each other. | One plant oscillates against the rest of the system. | Related to poorly tuned controllers. | Interaction between generator and/or mechanical system and the grid, especially when series compensation is included. |
Alternative | Software | Plant Filter |
---|---|---|
Cost (EUR/MW) | 0 | 2778 |
Potentials | Achieves sub-synchronous stability | Q compensation |
Limitations | Passivity issues around harmonic 20 | Cost |
Harmonic emission | Wind turbines not compliant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sáiz-Marín, E.; Zarei, M.E.; Medina, D.; Curbelo, Ó.; Babiano, A.M.; Berrueta, A.; Ursúa, A.; Sanchis, P. Doubly Fed Induction Generator Robust Design for Avoiding Converter-Driven Instability: Perspective. Energies 2025, 18, 2736. https://doi.org/10.3390/en18112736
Sáiz-Marín E, Zarei ME, Medina D, Curbelo Ó, Babiano AM, Berrueta A, Ursúa A, Sanchis P. Doubly Fed Induction Generator Robust Design for Avoiding Converter-Driven Instability: Perspective. Energies. 2025; 18(11):2736. https://doi.org/10.3390/en18112736
Chicago/Turabian StyleSáiz-Marín, Elena, Mohammad Ebrahim Zarei, Diego Medina, Óscar Curbelo, Almudena Muñoz Babiano, Alberto Berrueta, Alfredo Ursúa, and Pablo Sanchis. 2025. "Doubly Fed Induction Generator Robust Design for Avoiding Converter-Driven Instability: Perspective" Energies 18, no. 11: 2736. https://doi.org/10.3390/en18112736
APA StyleSáiz-Marín, E., Zarei, M. E., Medina, D., Curbelo, Ó., Babiano, A. M., Berrueta, A., Ursúa, A., & Sanchis, P. (2025). Doubly Fed Induction Generator Robust Design for Avoiding Converter-Driven Instability: Perspective. Energies, 18(11), 2736. https://doi.org/10.3390/en18112736