The Influential Mechanism of Absorbers and Active Metal on Microwave-Assisted Pyrolysis of Sargassum
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Setup
2.3. Experimental Procedure
2.4. Analytical Methods
2.5. Computational Methods
3. Results and Discussion
3.1. Microwave Pyrolysis Characteristics of Sargassum
3.2. Effects of SiC and MgO on Microwave Pyrolysis of Algae
3.3. Reaction Mechanism of MgO Introduction
4. Conclusions
- H2, CO, and CH4 exhibit similar evolution trends (initial increase followed by decline), contrasting with the monotonic decrease of CO2. Bio-oil composition is dominated by oxygenated compounds (61%) and nitrogenous species (30%).
- SiC enhances bio-oil yields through an improved heating rate in the pyrolysis region, whereas MgO selectively promotes bio-gas yield (increase by 12%) via catalytic cracking. MgO reduces the content of oxygenated compounds and aromatics while increasing hydrocarbons.
- SiC accelerates MAP reactions via bulk heating effects, while MgO lowers reaction barriers in gas-forming pathways, and decreases the bond order of aromatics. Therefore, in the design of composite catalysts, increasing the content of SiC helps to shorten the MAP duration and increase the yield of bio-oil, while increasing the content of MgO contributes to the production of high-value hydrogen and hydrocarbons.
5. Limitations and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MAP | Microwave-assisted pyrolysis |
TCD | Thermal conductivity detector |
IRC | Intrinsic reaction coordinate |
DFT | Density functional theory |
References
- Chen, X.; Li, S.; Liu, Z.; Chen, Y.; Yang, H.; Wang, X.; Che, Q.; Chen, W.; Chen, H. Pyrolysis characteristics of lignocellulosic biomass components in the presence of CaO. Bioresour. Technol. 2019, 287, 121493. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Fu, Q.; Liao, Q.; Xiao, C.; Huang, Y.; Xia, A.; Zhu, X.; Kang, Z. Rheokinetics of microalgae slurry during hydrothermal pretreatment processes. Bioresour. Technol. 2019, 289, 121650. [Google Scholar] [CrossRef]
- Li, F.; Srivatsa, S.C.; Bhattacharya, S. A review on catalytic pyrolysis of microalgae to high-quality bio-oil with low oxygeneous and nitrogenous compounds. Renew. Sustain. Energy Rev. 2019, 108, 481–497. [Google Scholar] [CrossRef]
- Azizi, K.; Keshavarz Moraveji, M.; Abedini Najafabadi, H. A review on bio-fuel production from microalgal biomass by using pyrolysis method. Renew. Sustain. Energy Rev. 2018, 82, 3046–3059. [Google Scholar] [CrossRef]
- Tang, Z.; Chen, W.; Chen, X.; Chen, Y.; Hu, Q.; Cheng, W.; Yang, H.; Chen, H. Pyrolysis characteristics and kinetics of co-pyrolysis of microalgae and plastics. J. Fuel Chem. Technol. 2023, 51, 1145–1154. [Google Scholar]
- Chen, C.; Cheng, Z.; Lu, Z.; Long, J.; Liu, H. Study on microwave catalytic pyrolysis characteristics of microalgae and catalytic effect analysis of pyrolysis residue. J. Guangxi Univ. (Nat. Sci. Ed.) 2018, 43, 554–560. [Google Scholar]
- Xu, Q.; Chen, Z.; Xian, S.; Wu, Y.; Li, M. Sulfur release behavior and sulfur fixation mechanism during biomass microwave co-pyrolysis of Ascophyllum and rice straw. Bioresour. Technol. 2024, 407, 131073. [Google Scholar] [CrossRef]
- Chen, C.; Cheng, Z.; Chen, F.; Lu, Z.; Long, J. Comparative study on pyrolysis characteristics of microalgae, seaweed, and oil shale under different microwave power levels. Renew. Energy Resour. 2018, 36, 662–668. [Google Scholar]
- Gao, H.; Li, W.; Xie, P.; Zhang, N.; Lv, X.; Xiong, J.; Yang, J.; Huang, L. Research progress on biochar prepared by microwave pyrolysis technology for wastewater treatment applications. Yunnan Chem. Technol. 2023, 50, 107178. [Google Scholar]
- Zhou, C.; You, X.; Chen, J.; Yang, L.; Zhou, X.; Zhang, Y. Current status and prospects of microwave pyrolysis technology for microalgae. Chem. Ind. Eng. Prog. 2024, 1–15. [Google Scholar] [CrossRef]
- De La Cruz Iturbides, R.; Ubiera, L.; Jauregui Haza, U.; Polaert, I. Pyrolysis of sargassum in a single mode microwave cavity: Use of SiC and biochar as microwave absorbers. React. Chem. Eng. 2024, 9, 1235–1250. [Google Scholar] [CrossRef]
- Sanabria Pérez, F.J.; Solis Maldonado, C.; Luna Sánchez, R.A.; Ortíz Silos, N.; Cristóbal-Salas, A.; Sandoval-Rangel, L.; Rivera de la Rosa, J.; Dimas-Rivera, G.L.; Atehortua Garcés, L. Natural and Calcined Clinoptilolite as Catalyst for Co-pyrolysis of Sargassum and HDPE: Characterization and Application of Byproducts. Top. Catal. 2025. [Google Scholar] [CrossRef]
- Chen, C.; Bu, X.; Qi, Q.; Huang, D.; Zeng, T.; Huang, Y.; Huang, H. Experimental Study on Microwave Pyrolysis of Dunaliella salina Using Compound Additives. BioEnergy Res. 2021, 14, 1300–1311. [Google Scholar] [CrossRef]
- Dong, Y.; Tian, B.; Guo, F.; Du, S.; Zhan, Y.; Zhou, H.; Qian, L. Application of low-cost Fe-based catalysts in the microwave-assisted pyrolysis of macroalgae and lignocellulosic biomass for the upgradation of bio-oil. Fuel 2021, 300, 120944. [Google Scholar] [CrossRef]
- Chen, C.; Qi, Q.; Huang, D.; Zeng, T.; Bu, X.; Huang, Y.; Huang, H. Effect of additive mixture on microwave-assisted catalysis pyrolysis of microalgae. Energy 2021, 229, 120752. [Google Scholar] [CrossRef]
- Xian, S.; Xu, Q.; Li, H.; Wu, Y.; Ling, J.; Jiang, L. Investigation on microwave pyrolysis mechanism and synergism of seaweed and rice husk with comprehensive experimental and theoretical study. Fuel 2024, 364, 131060. [Google Scholar] [CrossRef]
- Sun, J.; Norouzi, O.; Mašek, O. A state-of-the-art review on algae pyrolysis for bioenergy and biochar production. Bioresour. Technol. 2022, 346, 126258. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system—Version 5.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Lu, T.; Chen, Q. Shermo: A general code for calculating molecular thermochemistry properties. Comput. Theor. Chem. 2021, 1200, 113249. [Google Scholar] [CrossRef]
- Ren, L.; Wang, F.; Cheng, F.; Yang, F.; Zhang, K. Mechanisms of gas generation from conventional and microwave pyrolysis of coal slime. Chem. Eng. J. 2023, 452, 139388. [Google Scholar] [CrossRef]
- Wang, S.; Xia, Z.; Wang, Q.; He, Z.; Li, H. Mechanism research on the pyrolysis of seaweed polysaccharides by Py-GC/MS and subsequent density functional theory studies. J. Anal. Appl. Pyrolysis 2017, 126, 118–131. [Google Scholar] [CrossRef]
- Zhuang, S.; Chen, Y.; Zhang, X.; Li, X.; Wang, J.; Zhang, W. Process and response surface optimization of hydrotreating pyrolysis oil for aviation fuel production. Acta Energiae Solaris Sin. 2021, 42, 311–316. [Google Scholar]
- Feng, D.; Shang, Q.; Dong, H.; Zhang, Y.; Wang, Z.; Li, D.; Xie, M.; Wei, Q.; Zhao, Y.; Sun, S. Catalytic mechanism of Na on coal pyrolysis-derived carbon black formation: Experiment and DFT simulation. Fuel Process. Technol. 2021, 224, 107011. [Google Scholar] [CrossRef]
- Liu, J.; Hou, Q.; Ju, M.; Ji, P.; Sun, Q.; Li, W. Biomass Pyrolysis Technology by Catalytic Fast Pyrolysis, Catalytic Co-Pyrolysis and Microwave-Assisted Pyrolysis: A Review. Catalysts 2020, 10, 742. [Google Scholar] [CrossRef]
- Xian, S.; Xu, Q.; Feng, Y. Simultaneously remove organic pollutants and improve pyrolysis gas quality during the co-pyrolysis of soybean straw and oil shale. J. Anal. Appl. Pyrolysis 2022, 167, 105665. [Google Scholar] [CrossRef]
- Niu, M.; Zhang, L.; Xue, Y.; Niu, B.; Chai, X.; Li, D.; Ma, B. Simulating the coal tar hydrodeoxygenation reaction process based on three perspectives: Deoxygenation, hydrogenation, and cracking. React. Kinet. Mech. Catal. 2024, 137, 2701–2724. [Google Scholar] [CrossRef]
Sample | Proximate Analysis (wt.%) | Ultimate Analysis (wt. %) | ||||||
---|---|---|---|---|---|---|---|---|
FCd | Vd | Ad | Cd | Hd | Od | Nd | Sd | |
Sargassum | 6.32 | 60.01 | 33.67 | 31.47 | 4.21 | 28.82 | 0.82 | 1.01 |
Reaction | Decarboxylation (R1) | Decarbonylation (R2) | Methyl Ether Cleavage (R3) | Carbon-Chain Scission for H Production (R4) | Alcohol Scission for H production (R5) | O-H bond Cleavage for H Generation (R6) |
---|---|---|---|---|---|---|
Energy barriers (kJ/mol) | 296.1 | 364.4 | 393.6 | 468.6 | 359.1 | 389.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.; Xu, Q.; Zhang, S. The Influential Mechanism of Absorbers and Active Metal on Microwave-Assisted Pyrolysis of Sargassum. Energies 2025, 18, 2723. https://doi.org/10.3390/en18112723
Chen K, Xu Q, Zhang S. The Influential Mechanism of Absorbers and Active Metal on Microwave-Assisted Pyrolysis of Sargassum. Energies. 2025; 18(11):2723. https://doi.org/10.3390/en18112723
Chicago/Turabian StyleChen, Kai, Qing Xu, and Shenwei Zhang. 2025. "The Influential Mechanism of Absorbers and Active Metal on Microwave-Assisted Pyrolysis of Sargassum" Energies 18, no. 11: 2723. https://doi.org/10.3390/en18112723
APA StyleChen, K., Xu, Q., & Zhang, S. (2025). The Influential Mechanism of Absorbers and Active Metal on Microwave-Assisted Pyrolysis of Sargassum. Energies, 18(11), 2723. https://doi.org/10.3390/en18112723