Toward Zero-Emission Buildings in Italy: A Holistic Approach to Identify Actions Under Current and Future Climates
Abstract
:1. Introduction
2. Theory and Methodology
2.1. Key Performance Indicators
2.1.1. Energy Performance
2.1.2. Environmental Performance
2.1.3. Thermal Comfort
2.1.4. Economic Assessment
2.2. Procedure for Verifying the Zero-Emission Building
2.3. Future Weather Data Creation
3. Application
3.1. Building Description
3.2. Energy Efficiency Measures
3.3. Economic Assessment Assumptions
3.4. Warm Weighted Hours of Discomfort Assessment Assumptions
3.5. Modelling Assumptions
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Union. Directive 2024/1275 of the European Parliament of the Council of 24 April 2024 on the Energy Performance of Buildings (Recast); European Union: Brussels, Belgium, 2024. [Google Scholar]
- Huovila, A.; Siikavirta, H.; Rozado, C.A.; Rökman, J.; Tuominen, P.; Paiho, S.; Hedman, Å.; Ylén, P. Carbon-neutral cities: Critical review of theory and practice. J. Clean. Prod. 2022, 341, 130912. [Google Scholar] [CrossRef]
- Tetteh, M.O.; Darko, A.; Chan, A.P.C.; Jafari, A.; Brilakis, I.; Chen, W.; Nani, G.; Yevu, S.K. Scientometric mapping of global research on green retrofitting of existing buildings (GREB): Pathway towards a holistic GREB framework. Energy Build. 2022, 277, 112532. [Google Scholar] [CrossRef]
- Ibañez Iralde, N.S.; Pascual, J.; Salom, J. Energy retrofit of residential building clusters. A literature review of crossover recommended measures, policies instruments and allocated funds in Spain. Energy Build. 2021, 252, 111409. [Google Scholar] [CrossRef]
- Huang, H.; Wang, H.; Hu, Y.J.; Li, C.; Wang, X. The development trends of existing building energy conservation and emission reduction—A comprehensive review. Energy Rep. 2022, 8, 13170–13188. [Google Scholar] [CrossRef]
- Qiao, J.; Zhang, X.; Hao, C.; Liu, S.; Zhang, Y.; Xing, K.; Yang, P. Post-occupancy evaluation of the actual performance of a low-carbon building. Energy Rep. 2023, 10, 228–243. [Google Scholar] [CrossRef]
- Marrero, M.; Rivero-Camacho, C.; Martinez-Rocamora, A.; Alba-Rodriguez, D.; Lucas-Ruiz, V. Holistic assessment of the economic, environmental, and social impact of building construction. Application to housing construction in Andalusia. J. Clean. Prod. 2024, 434, 140170. [Google Scholar] [CrossRef]
- Liu, Y.; Xue, S.; Guo, X.; Zhang, B.; Sun, X.; Zhang, Q.; Wang, Y.; Dong, Y. Towards the goal of zero-carbon building retrofitting with variant application degrees of low-carbon technologies: Mitigation potential and cost-benefit analysis for a kindergarten in Beijing. J. Clean. Prod. 2023, 393, 136316. [Google Scholar] [CrossRef]
- Kang, Y.; Zhang, D.; Cui, Y.; Xu, W.; Lu, S.; Wu, J.; Hu, Y. Integrated passive design method optimized for carbon emissions, economics, and thermal comfort of zero-carbon buildings. Energy 2023, 295, 131048. [Google Scholar] [CrossRef]
- Zong, C.; Chen, X.; Deghim, F.; Staudt, J.; Geyer, P.; Lang, W. A holistic two-stage decision-making methodology for passive and active building design strategies under uncertainty. Build. Environ. 2023, 251, 111211. [Google Scholar] [CrossRef]
- Hou, L.; Lin, H.; Yang, X.; Ren, H.; Shao, D. Low-carbon demand response strategy of buildings considering load rebound. Energy Rep. 2023, 10, 3599–3607. [Google Scholar] [CrossRef]
- Zhong, Y.; Qin, Z.; Feng, R.; Liu, Y. Low-carbon design: Building optimization considering carbon emission, material utilization, and daylighting. J. Clean. Prod. 2024, 434, 140087. [Google Scholar] [CrossRef]
- Maduta, C.; Melica, G.; D’Agostino, D.; Bertoldi, P. Towards a decarbonised building stock by 2050: The meaning and the role of zero emission buildings (ZEBs) in Europe. Energy Strateg. Rev. 2022, 44, 101009. [Google Scholar] [CrossRef]
- Izaola, B.; Akizu-Gardoki, O.; Oregi, X. Setting baselines of the embodied, operational and whole life carbon emissions of the average Spanish residential building. Sustain. Prod. Consum. 2023, 40, 252–264. [Google Scholar] [CrossRef]
- Bilardo, M.; Kämpf, J.; Fabrizio, E. From Zero Energy to Zero Power Buildings: A new paradigm for a sustainable transition of the building stock. Sustain. Cities Soc. 2024, 101, 105136. [Google Scholar] [CrossRef]
- Walker, L.; Hischier, I.; Schlueter, A. The impact of modeling assumptions on retrofit decision-making for low-carbon buildings. Build. Environ. 2022, 226, 109683. [Google Scholar] [CrossRef]
- Ascione, F.; Bianco, N.; De Masi, R.F.; Mauro, G.M.; Vanoli, G.P. Resilience of robust cost-optimal energy retrofit of buildings to global warming: A multi-stage, multi-objective approach. Energy Build. 2017, 153, 150–167. [Google Scholar] [CrossRef]
- Ansah, M.K.; Chen, X.; Yang, H. A holistic environmental and economic design optimization of low carbon buildings considering climate change and confounding factors. Sci. Total Environ. 2022, 821, 153442. [Google Scholar] [CrossRef]
- Tootkaboni, M.P.; De Luca, G.; Ballarini, I.; Corrado, V. Climate change impact on the future performance of nearly zero energy buildings: A case study base analysis. In Proceedings of the Building Simulation 2021: 17th Conference of IBPSA, Bruges, Belgium, 1–3 September 2021. [Google Scholar] [CrossRef]
- Rey-Hernández, J.M.; Yousif, C.; Gatt, D.; Velasco-Gómez, E.; San José-Alonso, J.; Rey-Martínez, F.J. Modelling the long-term effect of climate change on a zero energy and carbon dioxide building through energy efficiency and renewables. Energy Build. 2018, 174, 85–96. [Google Scholar] [CrossRef]
- Viganò, G.S.M.; Rugani, R.; Marengo, M.; Picco, M. Assessing the Impact of Climate Change on Building Energy Performance: A Future-Oriented Analysis on the UK. Architecture 2024, 4, 1201–1224. [Google Scholar] [CrossRef]
- Kim, D.; Cho, H.; Mago, P.J.; Yoon, J.; Lee, H. Impact on renewable design requirements of net-zero carbon buildings under potential future climate scenarios. Climate 2021, 9, 17. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- ISO 37100; Sustainable Cities and Communities—Vocabulary. International Organization for Standardization (ISO): Geneva, Switzerland, 2016.
- EN 15643; Sustainability of Construction Works—Framework for Assessment of Buildings and Civil Engineering Works. European Committee for Standardisation (CEN): Brussels, Belgium, 2021.
- EN ISO 52000-1; Energy Performance of Buildings—Overarching EPB Assessment—Part 1: General Framework and Procedures. European Committee for Standardisation (CEN): Brussels, Belgium, 2017.
- EN ISO 52016-1; Energy Performance of Buildings—Energy Needs for Heating and Cooling, Internal Temperatures and Sensible and Latent Heat Loads—Part 1: Calculation Procedures. European Committee for Standardisation (CEN): Brussels, Belgium, 2017.
- EN ISO 52003-1; Energy Performance of Buildings—Indicators, Requirements, Ratings and Certificates—Part 1: General Aspects and Application to the Overall Energy Performance. European Committee for Standardisation (CEN): Brussels, Belgium, 2017.
- EN 15978; Sustainability of Construction Works—Assessment of Environmental Performance of Buildings—Calculation Method. European Committee for Standardisation (CEN): Brussels, Belgium, 2011.
- EN 15459-1; Energy Performance of Buildings—Economic Evaluation Procedure for Energy Systems in Buildings—Part 1: Calculation Procedures, Module M1-14. European Committee for Standardisation (CEN): Brussels, Belgium, 2017.
- EN 16798-1; Energy Performance of Buildings—Ventilation for Buildings—Part 1: Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics—Module M1-6. European Committee for Standardisation (CEN): Brussels, Belgium, 2019.
- CEN/TR 16798-2; Energy Performance of Buildings—Ventilation for Buildings—Part 2: Interpretation of the Requirements in EN 16798-1—Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics (Module M1-6). European Committee for Standardisation (CEN): Brussels, Belgium, 2019.
- Hamdy, M.; Carlucci, S.; Hoes, P.J.; Hensen, J.L. The impact of climate change on the overheating risk in dwellings—A Dutch case study. Build. Environ. 2017, 122, 307–323. [Google Scholar] [CrossRef]
- Sengupta, A.; Al Assaad, D.; Bastero, J.B.; Steeman, M.; Breesh, H. Impact of heatwaves and system shocks on a nearly zero energy educational building: Is it resilient to overheating? Build. Environ. 2023, 234, 110152. [Google Scholar] [CrossRef]
- ISO 52018-1; Energy Performance of Buildings—Indicators for Partial EPB Requirements Related to Thermal Energy Balance and Fabric Features—Part 1: Overview of Options. European Committee for Standardisation (CEN): Brussels, Belgium, 2017.
- EN 17423; Energy Performance of Buildings—Determination and Reporting of Primary Energy Factors (PEF) and CO2 Emission Coefficient—General Principles, Module M1-7. European Committee for Standardisation (CEN): Brussels, Belgium, 2020.
- European Commission. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources (Recast); European Union: Brussels, Belgium, 2018. [Google Scholar]
- ANSI/ASHRAE Standard 55-2023; Thermal Environmental Conditions for Human Occupancy. American Society of Heating Refrigerating and Air-Conditioning Engineers (ASHRAE): Atlanta, GA, USA, 2023.
- EN ISO 7730; Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. European Committee for Standardisation (CEN): Brussels, Belgium, 2005.
- Energy in Buildings and Communities Programme (EBC) Website. Available online: https://www.iea-ebc.org/ (accessed on 6 April 2025).
- Attia, S.; Rahif, R.; Corrado, V.; Levinson, R.; Laouadi, A.; Wang, L.; Sodagar, B.; Machard, A.; Gupta, R.; Olesen, B.W.; et al. Framework to Evaluate the Resilience of Different Cooling Technologies; IEA Annex 80, Thermal Conditions Task Force; SBD Lab: Liege, Belgium, 2021. [Google Scholar] [CrossRef]
- Zhang, C.; Kazanci, O.B.; Attia, S.; Levinson, R.; Lee, S.H.; Holzer, P.; Salvatif, A.; Machard, A.; Tootkaboni, M.P.; Gaur, A.; et al. IEA EBC Annex 80—Dynamic Simulation Guideline for the Performance Testing of Resilient Cooling Strategies; DCE Technical Reports 299; Department of the Built Environment, Aalborg University: Aalborg, Denmark, 2021. [Google Scholar]
- Fuerst, F.; Cardia Haddad, M.F.; Adan, H. Is there an economic case for energy-efficient dwellings in the UK private rental market? J. Clean. Prod. 2020, 245, 118642. [Google Scholar] [CrossRef]
- European Union. Regulation (EU) 2018/1999 of the European Parliament of the Council of 11 December 2018 on the Governance of the Energy Union Climate Action Amending Regulations (EC) No, 6.6.3./.2.0.0.9.; (EC) No 715/2009 of the European Parliament of the Council Directives, 9.4./.2.2./.E.C.; 98/70/EC; 2009/31/EC; 2009/73/EC; 2010/31/EU; 2012/27/EU; 2013/30/EU of the European Parliament of the Council Council Directives, 2.0.0.9./.1.1.9./.E.C.; (EU), 2.0.1.5./.6.5.2.; Repealing Regulation (EU) No 525/2013 of the European Parliament of the Council (Text with EEARelevance); European Union: Brussels, Belgium, 2018. [Google Scholar]
- Italian Republic. Decreto Interministeriale 26 Giugno 2015—Applicazione Delle Metodologie di Calcolo Delle Prestazioni Energetiche e Definizione Delle Prescrizioni e dei Requisiti Minimi Degli Edifici. 2015. Available online: https://www.mimit.gov.it/index.php/it/normativa/decreti-interministeriali/decreto-interministeriale-26-giugno-2015-adeguamento-linee-guida-nazionali-per-la-certificazione-energetica-degli-edifici (accessed on 31 March 2025).
- Machard, A.; Salvati, A.; Tootkaboni, M.P.; Gaur, A.; Zou, J.; Wang, L.L.; Baba, F.; Ge, H.; Bre, F.; Bozonnet, E.; et al. Typical and extreme weather datasets for studying the resilience of buildings to climate change and heatwaves. Sci. Data. 2024, 11, 531. [Google Scholar] [CrossRef] [PubMed]
- Soares, P.M.; Cardoso, R.M.; Miranda, P.M.; de Medeiros, J.; Belo-Pereira, M.; Espirito-Santo, F. WRF high resolution dynamical downscaling of ERA-Interim for Portugal. Clim. Dyn. 2012, 39, 2497–2522. [Google Scholar] [CrossRef]
- Flato, G.; Marotzke, J.; Abiodun, B.; Braconnot, P.; Chou, S.C.; Collins, W.; Cox, P.; Driouech, F.; Emori, S.; Eyring, V.; et al. Evaluation of Climate Models. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- EURO-CORDEX: The European Branch of the Coordinated Regional Downscaling Experiment. Available online: https://www.euro-cordex.net/ (accessed on 31 March 2025).
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Cannon, A.J. Multivariate quantile mapping bias correction: An N-dimensional probability density function transform for climate model simulations of multiple variables. Clim. Dyn. 2018, 50, 31–49. [Google Scholar] [CrossRef]
- EN ISO 15927-4; Hygrothermal Performance of Buildings Calculation and Presentation of Climatic Data, Part 4: Hourly Data for Assessing the Annual Energy Use for Heating and Cooling. European Committee for Standardisation (CEN): Brussels, Belgium, 2005.
- Finkelstein, J.M.; Schafer, R.E. Improved goodness-of-fit tests. Biometrika 1971, 58, 641–645. [Google Scholar] [CrossRef]
- Citterio, M. Analisi Statistica sul Parco Edilizio non Residenziale e Sviluppo di Modelli di Calcolo Semplificati; Report RSE/2009/161; ENEA, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile: Rome, Italy, 2009. [Google Scholar]
- Italian Thermo-technical Committee (CTI). Italian National Annex to EN 16798-1 (Draft), Document No. 024100360; Restricted Document; Italian Thermo-technical Committee (CTI): Milan, Italy, 2022. [Google Scholar]
- Guillén-Lambea, S.; Rodríguez-Soria, B.; Marín, J.M. Control strategies for Energy Recovery Ventilators in the South of Europe for residential nZEB—Quantitative analysis of the air conditioning demand. Energy Build. 2017, 146, 271–282. [Google Scholar] [CrossRef]
- Italian Republic. Legislative Decree 2021/199 Attuazione della direttiva (UE) 2018/2001 del Parlamento europeo e del Consiglio, dell’11 dicembre 2018, sulla promozione dell’uso dell’energia da fonti rinnovabili. Off. J. Ital. Repub. Ser. Gen. 2021, 285, 1–197. [Google Scholar]
- DEI. Prezzi Informativi dell’Edilizia—Recupero Ristrutturazione Manutenzione 1° Semestre 2024; DEI: Milan, Italy, 2024. [Google Scholar]
- Gas Prices Components for Non-Household Consumers—Annual Data. Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_pc_203_c/default/table?lang=en&category=nrg.nrg_price.nrg_pc (accessed on 31 March 2025).
- Electricity Prices Components for Non-Household Consumers—Annual Data (from 2007 Onwards). Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_pc_205_c/default/table?lang=en&category=nrg.nrg_price.nrg_pc (accessed on 31 March 2025).
- Italian Thermo-Technical Committee (CTI). Italian National Annex to EN ISO 52000-1 (Draft), Document No. 20400124; Restricted Document; Italian Thermo-Technical Committee (CTI): Milan, Italy, 2022. [Google Scholar]
- Validazione del Fattore di Emissione del Teleriscaldamento—Validazione dei Fattori di Conversione in Energia Primaria del Teleriscaldamento. Available online: https://www.gruppoiren.it/content/dam/iren/documents/it/i-nostri-servizi/teleriscaldamento/2023/FETR-PECF-015-IREN_ENERGIA_TLR_TORINO.pdf?view=yes/ (accessed on 31 March 2025).
Field | Symbol | Quantity | Unit | Ref. |
---|---|---|---|---|
Energy performance | ||||
EPH/C;nd | Energy need for space heating or cooling per unit conditioned floor area | kWh·m−2 | [26,27] | |
EPgl;nren | Overall non-renewable energy performance | kWh·m−2 | [26,28] | |
EPgl;tot | Overall total energy performance | kWh·m−2 | [26,28] | |
RER | Renewable energy ratio | ─ | [26] | |
Environmental performance | ||||
Annual operational greenhouse gas emissions | kg·m−2 | [29] | ||
GWP | Global warming potential | kg·m−2 | [29] | |
Economic assessment | ||||
CG·Ause−1 | Global Cost per unit conditioned floor area | €·m−2 | [30] | |
PB | Payback Period | a | [30] | |
NPV·COinv−1 | Ratio of net present value to initial investment cost | ─ | [30] | |
Thermal comfort | ||||
PDH | Percentage of discomfort hours | % | [31,32] | |
WHDw/c | Warm/Cold Weighted Hours of Discomfort | h | [31,32] | |
IOD | Indoor Overheating Degree | °C | [33] | |
AWD | Ambient Warmness Degree | °C | [33] | |
α | Overheating Escalation Factor | ─ | [33] | |
SET DH | Degree.hours above the setpoint | °C·h | [34] | |
Δabs | Absorptivity Time rate | °C·h | [34] | |
Δrec | Recovery Time rate | °C·h | [34] |
Parameter | Unit | Value |
---|---|---|
Number of floors | ─ | 5 |
Building height | m | 15 |
Length | m | 30 |
Depth | m | 16 |
Inter-floor height | m | 3 |
Gross conditioned volume, Vg | m3 | 7200 |
Net floor area, Afl | m2 | 2400 |
Envelope gross area, Aenv | m2 | 2340 |
Compactness ratio, Aenv/Vg | m−1 | 0.33 |
Component | Thickness s [m] | Thermal Transmittance U [W·m−2·K−1] |
---|---|---|
External wall | 0.45 | 0.964 |
Ground floor slab | 0.30 | 1.127 |
Roof deck | 0.30 | 0.849 |
Window | ─ | 2.870 |
Component | Thermal Transmittance U [W·m−2·K−1] |
---|---|
External wall | 0.260 |
Ground floor slab | 0.260 |
Roof deck | 0.220 |
Window | 1.400 |
Quantity | Unit | Value | |
---|---|---|---|
North Office | South Office | ||
Length | m | 5.0 | 5.0 |
Depth | m | 2.9 | 4.2 |
Conditioned net volume, V | m3 | 39.7 | 56.8 |
Conditioned net floor area, Afl | m2 | 14.7 | 21.0 |
Energy carrier | fPnren [─] | fPren [─] | fPtot [─] | KCO2 [kg·kWh−1] |
---|---|---|---|---|
Natural gas | 1.05 | 0.00 | 1.05 | 0.21 |
Electricity from the grid | 1.95 | 0.47 | 2.42 | 0.46 |
District heating | 0.39 | 0.04 | 0.42 | 0.09 |
Electricity from PV | 0.00 | 1.00 | 1.00 | 0.00 |
Component | Thickness s [m] | Thermal Transmittance U [W·m−2·K−1] |
---|---|---|
External wall | 0.55 | 0.257 |
Ground floor slab | 0.41 | 0.248 |
Roof deck | 0.42 | 0.217 |
Window | ─ | 1.200 |
KPI | OS | RF | ||||
---|---|---|---|---|---|---|
2010s | 2050s | 2090s | 2010s | 2050s | 2090s | |
EPH;nd [kWh·m−2] | 66.0 | 57.8 | 38.9 | 33.8 | 28.5 | 17.2 |
EPC;nd [kWh·m−2] | 34.6 | 39.5 | 58.1 | 35.6 | 39.4 | 53.2 |
EPgl;nren [kWh·m−2] | 122.3 | 112.0 | 68.5 | 37.6 | 39.3 | 47.4 |
Annual operational GHG emissions [kg·m−2] | 39.1 | 37.0 | 25.6 | 23.3 | 24.9 | 30.4 |
NPV·COinv−1 [─] | ─ | ─ | ─ | 0.2 | ─ | ─ |
WHDw (north office) [h] | 4197 | 4772 | 6278 | 1298 | 1918 | 3451 |
WHDw (south office) [h] | 5070 | 5617 | 7000 | 1830 | 2462 | 3878 |
KPI | 2010s | 2050s | 2090s |
---|---|---|---|
EPH;nd [kWh·m−2] | −49% | −51% | −56% |
EPC;nd [kWh·m−2] | +3% | ±0% | −8% |
EPgl;nren [kWh·m−2] | −69% | −65% | −31% |
Annual operational GHG emissions [kg·m−2] | −40% | −33% | +19% |
NPV·COinv−1 [─] | ─ | ─ | ─ |
WHDw (north office) [h] | −69% | −60% | −45% |
WHDw (south office) [h] | −64% | −56% | −45% |
KPI | OS | RF | ||
---|---|---|---|---|
2050s | 2090s | 2050s | 2090s | |
EPH;nd [kWh·m−2] | −12% | −41% | −16% | −49% |
EPC;nd [kWh·m−2] | +14% | +68% | +11% | +50% |
EPgl;nren [kWh·m−2] | −8% | −44% | +5% | +26% |
Annual operational GHG emissions [kg·m−2] | −5% | −35% | +7% | + 30% |
NPV·COinv−1 [─] | ─ | ─ | ─ | ─ |
WHDw (north office) [h] | +14% | +50% | +48% | +166% |
WHDw (south office) [h] | +11% | +38% | +35% | +112% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianco Mauthe Degerfeld, F.; Tootkaboni, M.P.; Piro, M.; Ballarini, I.; Corrado, V. Toward Zero-Emission Buildings in Italy: A Holistic Approach to Identify Actions Under Current and Future Climates. Energies 2025, 18, 2721. https://doi.org/10.3390/en18112721
Bianco Mauthe Degerfeld F, Tootkaboni MP, Piro M, Ballarini I, Corrado V. Toward Zero-Emission Buildings in Italy: A Holistic Approach to Identify Actions Under Current and Future Climates. Energies. 2025; 18(11):2721. https://doi.org/10.3390/en18112721
Chicago/Turabian StyleBianco Mauthe Degerfeld, Franz, Mamak P. Tootkaboni, Matteo Piro, Ilaria Ballarini, and Vincenzo Corrado. 2025. "Toward Zero-Emission Buildings in Italy: A Holistic Approach to Identify Actions Under Current and Future Climates" Energies 18, no. 11: 2721. https://doi.org/10.3390/en18112721
APA StyleBianco Mauthe Degerfeld, F., Tootkaboni, M. P., Piro, M., Ballarini, I., & Corrado, V. (2025). Toward Zero-Emission Buildings in Italy: A Holistic Approach to Identify Actions Under Current and Future Climates. Energies, 18(11), 2721. https://doi.org/10.3390/en18112721