Experimental Study on the Impact of Flow Rate Strategies on the Mass Transfer Impedance of PEM Electrolyzers
Abstract
:1. Introduction
2. Experiment
3. Results
4. Conclusions
- (1)
- When the current density is relatively low, regardless of the performance of the PTL, the flow rate modes have no significant impact on the mass transfer impedance of the electrolyzer.
- (2)
- When the current density is high, for the PTL with better performance (PTL-1), the periodic cycling flow has no significant effect on the mass transfer impedance of the PEM electrolyzer, while for the two PTLs (PTL-2 and PTL-3) with poorer performance, the periodic cycling flow increases their mass transfer impedance by 251% and 354%, respectively.
- (3)
- By integrating the bubble transport force model within the porous media of PEM electrolyzers, it was found that for the PTL with smaller mass transfer impedance, the periodic flow cycling mode demonstrates negligible interference with gas detachment processes, and the mass transfer impedance of the electrolyzer changes slightly under the two flow rate modes. The PTL with relatively larger mass transfer impedance shows significantly increased mass transfer impedance under periodic flow conditions. The reduced flow velocity during cycling phases impedes effective bubble removal from the porous structure, resulting in the accumulation of gas in the porous medium and consequently elevated mass transfer impedance. This study provides critical insights for optimizing flow field control strategies in PEM water electrolysis systems.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PEM | Proton Exchange Membrane |
DI | Deionized |
PTL | Porous Transport Layer |
CL | Catalyst Layer |
GDL | Gas Diffusion Layer |
References
- Losiewicz, B. Technology for Green Hydrogen Production: Desk Analysis. Energies 2024, 17, 4514. [Google Scholar] [CrossRef]
- Angelico, R.; Giametta, F.; Bianchi, B.; Catalano, P. Green Hydrogen for Energy Transition: A Critical Perspective. Energies 2025, 18, 404. [Google Scholar] [CrossRef]
- Nafchi, F.M.; Baniasadi, E.; Afshari, E.; Javani, N. Performance assessment of a solar hydrogen and electricity production plant using high temperature PEM electrolyzer and energy storage. Int. J. Hydrogen Energy 2018, 43, 5820–5831. [Google Scholar] [CrossRef]
- Shen, L.F.; Zhang, C.; Shan, F.Y.; Chen, L.; Liu, S.; Zheng, Z.Q.; Zhu, L.T.; Wang, J.D.; Wu, X.Z.; Zhai, Y.J. Review and Prospects of Key Technologies for Integrated Systems in Hydrogen Production from Offshore Superconducting Wind Power. Energies 2025, 18, 19. [Google Scholar] [CrossRef]
- Rego, G.; Rocha, J.; Faria, J.A.; Afonso, J.L.; Monteiro, V. A Review of Hydrogen Production Methods and Power Electronics Converter Topologies for Green Hydrogen Applications. Energies 2024, 17, 5579. [Google Scholar] [CrossRef]
- Salehmin, M.N.I.; Husaini, T.; Goh, J.; Sulong, A.B. High-pressure PEM water electrolyser: A review on challenges and mitigation strategies towards green and low-cost hydrogen production. Energy Convers. Manag. 2022, 268, 115985. [Google Scholar] [CrossRef]
- Wismer, S.E.; Jimenez, A.; Al-Douri, A.; Grabovetska, V.; Groth, K.M. PEM electrolyzer failure scenarios identified by failure modes and effects analysis (FMEA). Int. J. Hydrogen Energy 2024, 89, 1280–1289. [Google Scholar] [CrossRef]
- Millet, P.; Andolfatto, F.; Durand, R. Design and performance of a solid polymer electrolyte water electrolyzer. Int. J. Hydrogen Energy 1996, 21, 87–93. [Google Scholar] [CrossRef]
- Garcia-Navarro, J.C.; Schulze, M.; Friedrich, K.A. Measuring and modeling mass transport losses in proton exchange membrane water electrolyzers using electrochemical impedance spectroscopy. J. Power Sources 2019, 431, 189–204. [Google Scholar] [CrossRef]
- Wang, K.; Feng, Y.; Xiao, F.; Zhang, T.; Wang, Z.; Ye, F.; Xu, C. Operando analysis of through-plane interlayer temperatures in the PEM electrolyzer cell under various operating conditions. Appl. Energy 2023, 348, 121588. [Google Scholar] [CrossRef]
- Selamet, Ö.F.; Acar, M.C.; Mat, M.D.; Kaplan, Y. Effects of operating parameters on the performance of a high-pressure proton exchange membrane electrolyzer. Int. J. Energy Res. 2013, 37, 457–467. [Google Scholar] [CrossRef]
- Upadhyay, M.; Kim, A.; Paramanantham, S.S.; Kim, H.; Lim, D.; Lee, S.; Moon, S.; Lim, H. Three-dimensional CFD simulation of proton exchange membrane water electrolyser: Performance assessment under different condition. Appl. Energy 2022, 306, 118016. [Google Scholar] [CrossRef]
- Upadhyay, M.; Lee, S.; Jung, S.; Choi, Y.; Moon, S.; Lim, H. Systematic assessment of the anode flow field hydrodynamics in a new circular PEM water electrolyser. Int. J. Hydrogen Energy 2020, 45, 20765–20775. [Google Scholar] [CrossRef]
- An, L.; Tian, Y.; Zhao, H. Research on Water Flow Control Strategy for PEM Electrolyzer Considering the Anode Bubble Effect. Energies 2025, 18, 273. [Google Scholar] [CrossRef]
- Yuan, H.; Dai, H.F.; Ming, P.W.; Zhao, L.; Tang, W.; Wei, X.Z. Understanding dynamic behavior of proton exchange membrane fuel cell in the view of internal dynamics based on impedance. Chem. Eng. J. 2022, 431, 134035. [Google Scholar] [CrossRef]
- Li, Y.Y.; Jiang, Y.Y.; Dang, J.; Deng, X.T.; Liu, B.; Ma, J.G.; Yang, F.Y.; Ouyang, M.G.; Shen, X.J. Application of distribution of relaxation times method in polymer electrolyte membrane water electrolyzer. Chem. Eng. J. 2023, 451, 138327. [Google Scholar] [CrossRef]
- Ruiz Diaz, D.F.; Wang, Y. Performance loss due to gas coverage on catalyst surface in polymer electrolyte membrane electrolysis cell. eTransportation 2023, 18, 100263. [Google Scholar] [CrossRef]
- Komini Babu, S.; Yilmaz, A.; Uddin, M.A.; LaManna, J.; Baltic, E.; Jacobson, D.L.; Pasaogullari, U.; Spendelow, J.S. A Goldilocks Approach to Water Management: Hydrochannel Porous Transport Layers for Unitized Reversible Fuel Cells. Adv. Energy Mater. 2023, 13, 2203952. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Cao, Y.P.; Zhang, Y.P.; Wang, K.C.; Xu, C.; Ye, F. Relationship of local current and two-phase flow in proton exchange membrane electrolyzer cells. J. Power Sources 2022, 542, 231742. [Google Scholar] [CrossRef]
- Yilmaz, A.; Babu, S.K.; Kissane, J.; Pasaogullari, U.; Spendelow, J.S. Stratified Porous Transport Layers for Unitized Reversible Fuel Cells. ACS Appl. Energy Mater. 2025, 8, 1986–1993. [Google Scholar] [CrossRef]
- Nouri-Khorasani, A.; Ojong, E.T.; Smolinka, T.; Wilkinson, D.P. Model of oxygen bubbles and performance impact in the porous transport layer of PEM water electrolysis cells. Int. J. Hydrogen Energy 2017, 42, 28665–28680. [Google Scholar] [CrossRef]
- Larimi, S.Z.H.; Ramiar, A.; Esmaili, Q.; Shafaghat, R. The effect of inlet velocity of water on the two-phase flow regime in the porous transport layer of polymer electrolyte membrane electrolyzer. Heat Mass Transf. 2019, 55, 1863–1870. [Google Scholar] [CrossRef]
- Sourya, D.P.; Gurugubelli, P.S.; Bhaskaran, S.; Vorhauer-Huget, N.; Tsotsas, E.; Surasani, V.K. A comparative study on the Lattice Boltzmann Method and the VoF-Continuum method for oxygen transport in the anodic porous transport layer of an electrolyzer. Int. J. Hydrogen Energy 2024, 92, 1091–1098. [Google Scholar] [CrossRef]
Number | R2 (mΩ·cm2, @2.0 A/cm2) | |||
---|---|---|---|---|
Constant | Periodic (10 mL/min) | Periodic (50 mL/min) | Relative Growth Rate | |
PTL-1 | 44.1 (6.8%) | 44.9 (6.7%) | 44.1 (6.8%) | 1% |
PTL-2 | 54.5 (4.7%) | 188.8 (2.5%) | 193.4 (3.3%) | 251% |
PTL-3 | 67.9 (0.9%) | 297.7 (1%) | 319.2 (1.1%) | 354% |
Number | R0 (mΩ·cm2, @2.0 A/cm2) | ||
---|---|---|---|
Constant | Periodic (10 mL/min) | Periodic (50 mL/min) | |
PTL-1 | 176.7 (0.1%) | 177.7 (0.1%) | 178.3 (0.2%) |
PTL-2 | 166.1 (0.1%) | 171.7 (0.3%) | 173.3 (0.3%) |
PTL-3 | 173.6 (0.2%) | 175.5 (0.2%) | 176.6 (0.2%) |
R1 (mΩ·cm2, @2.0 A/cm2) | |||
PTL-1 | 23.6 (6.0%) | 24.8 (6.8%) | 24.0 (6.7%) |
PTL-2 | 26.2 (7.2%) | 28.4 (7.8%) | 29.3 (7.5%) |
PTL-3 | 42.5 (5.0%) | 45.0 (6.5%) | 46.2 (5.5%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhu, J.; Wang, C.; Yuan, H.; Dai, H.; Wei, X. Experimental Study on the Impact of Flow Rate Strategies on the Mass Transfer Impedance of PEM Electrolyzers. Energies 2025, 18, 2700. https://doi.org/10.3390/en18112700
Zhang H, Zhu J, Wang C, Yuan H, Dai H, Wei X. Experimental Study on the Impact of Flow Rate Strategies on the Mass Transfer Impedance of PEM Electrolyzers. Energies. 2025; 18(11):2700. https://doi.org/10.3390/en18112700
Chicago/Turabian StyleZhang, Haoyu, Jiangong Zhu, Chao Wang, Hao Yuan, Haifeng Dai, and Xuezhe Wei. 2025. "Experimental Study on the Impact of Flow Rate Strategies on the Mass Transfer Impedance of PEM Electrolyzers" Energies 18, no. 11: 2700. https://doi.org/10.3390/en18112700
APA StyleZhang, H., Zhu, J., Wang, C., Yuan, H., Dai, H., & Wei, X. (2025). Experimental Study on the Impact of Flow Rate Strategies on the Mass Transfer Impedance of PEM Electrolyzers. Energies, 18(11), 2700. https://doi.org/10.3390/en18112700