CFD in Urban Wind Resource Assessments: A Review
Abstract
:1. Introduction
- (a)
- General framework of CFD-aided urban wind resource assessments, in order to produce reliable and mutually recognized results;
- (b)
- Stringency and permissiveness in case settings, leading to balance between accuracy and computational cost;
- (c)
- Remarks on current methods, as well as potential challenges and prospects.
2. Urban Wind Environment and Resource
2.1. Characteristics of Urban Wind Environment
2.2. Description of Urban Wind Resource
- (a)
- Wind direction and corresponding frequency;
- (b)
- Wind velocity and turbulence variables;
- (c)
- Extreme conditions considering natural windstorm disasters, especially tropical cyclones.
2.3. Calculation of Energy Yield and Identification of Potential Wind Resource
3. CFD-Aided Assessment of Wind Resource
3.1. Handling of Turbulent Terms
3.2. Computational Grid
- (a)
- Distinguishing the core region from the peripheral region, and ensuring the cell sizes in the core region are one order smaller than local building size.
- (b)
- Refining the boundary layer region with cells parallel to the wall, and ensuring the expansion ratio is smaller than 1.5.
- (c)
- Generating three computational grids for validation purposes.
3.3. Computational Domain and Boundary Conditions
3.4. Validation of Authenticity
4. Challenges and Prospects
4.1. Limited Fidelity Brought by Turbulence Model
4.2. Limited Fidelity Brought by Geometry Simplification
4.3. Wake Problems, Limitation of Benchmarking, and Extreme Conditions
4.4. Integration of Multi-Scale Modeling
4.5. Optimization Towards Application
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- IEA. Renewables 2024; IEA: Paris, France, 2024. [Google Scholar]
- Mobayen, S.; Assareh, E.; Izadyar, N.; Jamei, E.; Ahmadinejad, M.; Ghasemi, A.; Agarwal, S.; Pak, W. Multi-Functional Hybrid Energy System for Zero-Energy Residential Buildings: Integrating Hydrogen Production and Renewable Energy Solutions. Int. J. Hydrogen Energy 2025, 102, 647–672. [Google Scholar] [CrossRef]
- Bilgili, A.; Arda, T.; Kilic, B. Explainability in Wind Farm Planning: A Machine Learning Framework for Automatic Site Selection of Wind Farms. Energy Convers. Manag. 2024, 309, 118441. [Google Scholar] [CrossRef]
- Zhou, H.; Cao, Z.; Wang, Z.L.; Wu, Z. A Tightly Coupled Electromagnetic-Triboelectric Hybrid Generator for Wind Energy Harvesting and Environmental Monitoring. Nano Today 2025, 61, 102628. [Google Scholar] [CrossRef]
- Cooney, C.; Byrne, R.; Lyons, W.; O’Rourke, F. Performance Characterisation of a Commercial-Scale Wind Turbine Operating in an Urban Environment, Using Real Data. Energy Sustain. Dev. 2017, 36, 44–54. [Google Scholar] [CrossRef]
- Elagamy, M.; Tiwari, N.; Gallego-Castillo, C.; Cuerva-Tejero, A.; Lopez-Garcia, O.; Avila-Sanchez, S. Large Eddy Simulation of the Flow around a High-Rise Building with Special Focus on the Two-Points Two-Times Second Order Statistics of the Velocity Field. J. Wind Eng. Ind. Aerodyn. 2024, 254, 105914. [Google Scholar] [CrossRef]
- Prudden, S.; Fisher, A.; Marino, M.; Mohamed, A.; Watkins, S.; Wild, G. Measuring Wind with Small Unmanned Aircraft Systems. J. Wind Eng. Ind. Aerodyn. 2018, 176, 197–210. [Google Scholar] [CrossRef]
- Van Hooff, T.; Blocken, B. Full-Scale Measurements of Indoor Environmental Conditions and Natural Ventilation in a Large Semi-Enclosed Stadium: Possibilities and Limitations for CFD Validation. J. Wind Eng. Ind. Aerodyn. 2012, 104–106, 330–341. [Google Scholar] [CrossRef]
- Vranešević, K.K.; Vita, G.; Bordas, S.P.A.; Glumac, A.Š. Furthering Knowledge on the Flow Pattern around High-Rise Buildings: LES Investigation of the Wind Energy Potential. J. Wind Eng. Ind. Aerodyn. 2022, 226, 105029. [Google Scholar] [CrossRef]
- Stathopoulos, T.; Alrawashdeh, H.; Al-Quraan, A.; Blocken, B.; Dilimulati, A.; Paraschivoiu, M.; Pilay, P. Urban Wind Energy: Some Views on Potential and Challenges. J. Wind Eng. Ind. Aerodyn. 2018, 179, 146–157. [Google Scholar] [CrossRef]
- Juan, Y.-H.; Rezaeiha, A.; Montazeri, H.; Blocken, B.; Wen, C.-Y.; Yang, A.-S. CFD Assessment of Wind Energy Potential for Generic High-Rise Buildings in Close Proximity: Impact of Building Arrangement and Height. Appl. Energy 2022, 321, 119328. [Google Scholar] [CrossRef]
- Boikos, C.; Ioannidis, G.; Rapkos, N.; Tsegas, G.; Katsis, P.; Ntziachristos, L. Estimating Daily Road Traffic Pollution in Hong Kong Using CFD Modelling: Validation and Application. Build. Environ. 2025, 267, 112168. [Google Scholar] [CrossRef]
- Zou, J.; Yu, Y.; Mortezazadeh, M.; Lu, H.; Gaur, A.; Wang, L. Evaluating Climate Change Impacts on Building Level Steady-State and Dynamic Outdoor Thermal Comfort. Build. Environ. 2025, 271, 112604. [Google Scholar] [CrossRef]
- Santiago, J.L.; Martín, F.; Martilli, A. A Computational Fluid Dynamic Modelling Approach to Assess the Representativeness of Urban Monitoring Stations. Sci. Total Environ. 2013, 454–455, 61–72. [Google Scholar] [CrossRef]
- Toja-Silva, F.; Kono, T.; Peralta, C.; Lopez-Garcia, O.; Chen, J. A Review of Computational Fluid Dynamics (CFD) Simulations of the Wind Flow around Buildings for Urban Wind Energy Exploitation. J. Wind Eng. Ind. Aerodyn. 2018, 180, 66–87. [Google Scholar] [CrossRef]
- Vadhyar, A.; Sridhar, S.; Reshma, T.; Radhakrishnan, J. A Critical Assessment of the Factors Associated with the Implementation of Rooftop VAWTs: A Review. Energy Convers. Manag. X 2024, 22, 100563. [Google Scholar] [CrossRef]
- Richards, P.J. Appropriate Boundary Conditions for Computational Wind Engineering Models Using the K-E Turbulence Model. J. Wind. Eng. Ind. Aerodyn. 1974, 46–47, 145–153. [Google Scholar]
- Tominaga, Y.; Mochida, A.; Yoshie, R.; Kataoka, H.; Nozu, T.; Yoshikawa, M.; Shirasawa, T. AIJ Guidelines for Practical Applications of CFD to Pedestrian Wind Environment around Buildings. J. Wind Eng. Ind. Aerodyn. 2008, 96, 1749–1761. [Google Scholar] [CrossRef]
- Yang, Y.; Gu, M.; Chen, S.; Jin, X. New Inflow Boundary Conditions for Modelling the Neutral Equilibrium Atmospheric Boundary Layer in Computational Wind Engineering. J. Wind Eng. Ind. Aerodyn. 2009, 97, 88–95. [Google Scholar] [CrossRef]
- Richards, P.J.; Norris, S.E. Appropriate Boundary Conditions for Computational Wind Engineering Models Revisited. J. Wind Eng. Ind. Aerodyn. 2011, 99, 257–266. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Barlow, J.F. Progress in Observing and Modelling the Urban Boundary Layer. Urban Clim. 2014, 10, 216–240. [Google Scholar] [CrossRef]
- Škvorc, P.; Kozmar, H. Wind Energy Harnessing on Tall Buildings in Urban Environments. Renew. Sustain. Energy Rev. 2021, 152, 111662. [Google Scholar] [CrossRef]
- Justus, C.G.; Hargraves, W.R.; Yalcin, A. Nationwide Assessment of Potential Output from Wind-Powered Generators. J. Appl. Meteorol. 1976, 15, 673–678. [Google Scholar] [CrossRef]
- Sunderland, K.; Woolmington, T.; Blackledge, J.; Conlon, M. Small Wind Turbines in Turbulent (Urban) Environments: A Consideration of Normal and Weibull Distributions for Power Prediction. J. Wind Eng. Ind. Aerodyn. 2013, 121, 70–81. [Google Scholar] [CrossRef]
- Weibull, W. A Statistical Distribution Function of Wide Applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar] [CrossRef]
- Bulut, A.; Bingöl, O. Weibull Parameter Estimation Methods on Wind Energy Applications—A Review of Recent Developments. Theor. Appl. Climatol. 2024, 155, 9157–9184. [Google Scholar] [CrossRef]
- Bingöl, F. Comparison of Weibull Estimation Methods for Diverse Winds. Adv. Meteorol. 2020, 2020, 3638423. [Google Scholar] [CrossRef]
- Carrillo, C.; Cidrás, J.; Díaz-Dorado, E.; Obando-Montaño, A. An Approach to Determine the Weibull Parameters for Wind Energy Analysis: The Case of Galicia (Spain). Energies 2014, 7, 2676–2700. [Google Scholar] [CrossRef]
- Wang, W.; Okaze, T. Statistical Analysis of Low-Occurrence Strong Wind Speeds at the Pedestrian Level around a Simplified Building Based on the Weibull Distribution. Build. Environ. 2022, 209, 108644. [Google Scholar] [CrossRef]
- Okaze, T.; Kikumoto, H.; Ono, H.; Imano, M.; Ikegaya, N.; Hasama, T.; Nakao, K.; Kishida, T.; Tabata, Y.; Nakajima, K.; et al. Large-Eddy Simulation of Flow around an Isolated Building: A Step-by-Step Analysis of Influencing Factors on Turbulent Statistics. Build. Environ. 2021, 202, 108021. [Google Scholar] [CrossRef]
- Mathew, S. Wind Energy; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-30905-5. [Google Scholar]
- Hyams, M.A. Wind Energy in the Built Environment. In Metropolitan Sustainability; Elsevier: Amsterdam, The Netherlands, 2012; pp. 457–499. ISBN 978-0-85709-046-1. [Google Scholar]
- Dai, Y.; Tu, W.; Zhang, X.; Li, J.; Yue, X.; Wang, H. Dynamic Wind Patterns and Indoor/Outdoor Pollutant Dispersion in the Simplified Building Array: Statistical and Spectral Analyses from Scaled Outdoor Experiments. Build. Environ. 2025, 276, 112861. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, L.; Lu, J.; Zhang, X.; Wang, K.; Gan, Z.; Liu, X.; Jing, Z.; Cui, X.; Wang, H. Advances in Urban Wind Resource Development and Wind Energy Harvesters. Renew. Sustain. Energy Rev. 2025, 207, 114943. [Google Scholar] [CrossRef]
- Micallef, D.; Van Bussel, G. A Review of Urban Wind Energy Research: Aerodynamics and Other Challenges. Energies 2018, 11, 2204. [Google Scholar] [CrossRef]
- Park, J.; Jung, H.-J.; Lee, S.-W.; Park, J. A New Building-Integrated Wind Turbine System Utilizing the Building. Energies 2015, 8, 11846–11870. [Google Scholar] [CrossRef]
- Zhang, S.; Du, B.; Ge, M.; Zuo, Y. Study on the Operation of Small Rooftop Wind Turbines and Its Effect on the Wind Environment in Blocks. Renew. Energy 2022, 183, 708–718. [Google Scholar] [CrossRef]
- Balduzzi, F.; Bianchini, A.; Carnevale, E.A.; Ferrari, L.; Magnani, S. Feasibility Analysis of a Darrieus Vertical-Axis Wind Turbine Installation in the Rooftop of a Building. Appl. Energy 2012, 97, 921–929. [Google Scholar] [CrossRef]
- Allen, S.R.; Hammond, G.P.; McManus, M.C. Energy Analysis and Environmental Life Cycle Assessment of a Micro-Wind Turbine. Proc. Inst. Mech. Eng. A J. Power Energy 2008, 222, 669–684. [Google Scholar] [CrossRef]
- Spalart, P.; Allmaras, S. A One-Equation Turbulence Model for Aerodynamic Flows. In Proceedings of the 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1992; American Institute of Aeronautics and Astronautics: Reston, VG, USA, 1992. [Google Scholar]
- Jones, W.P.; Launder, B.E. The Prediction of Laminarization with a Two-Equation Model of Turbulence. Int. J. Heat Mass Transfer. 1972, 15, 301–314. [Google Scholar] [CrossRef]
- Shih, T.-H.; Liou, W.W.; Shabbir, A.; Yang, Z.; Zhu, J. A New K-ϵ Eddy Viscosity Model for High Reynolds Number Turbulent Flows. Comput. Fluids 1995, 24, 227–238. [Google Scholar] [CrossRef]
- Yakhot, V.; Orszag, S.A. Renormalization Group Analysis of Turbulence. I. Basic Theory. J. Sci. Comput. 1986, 1, 3–51. [Google Scholar] [CrossRef]
- Launder, B.E. Turbulence Modelling for CFD. J. Fluid Mech. 1995, 289, 406–407. [Google Scholar] [CrossRef]
- Launder, B.E.; Reece, G.J.; Rodi, W. Progress in the Development of a Reynolds-Stress Turbulence Closure. J. Fluid Mech. 1975, 68, 537–566. [Google Scholar] [CrossRef]
- Blocken, B. LES over RANS in Building Simulation for Outdoor and Indoor Applications: A Foregone Conclusion? Build. Simul. 2018, 11, 821–870. [Google Scholar] [CrossRef]
- Zanforlin, S.; Letizia, S. Improving the Performance of Wind Turbines in Urban Environment by Integrating the Action of a Diffuser with the Aerodynamics of the Rooftops. Energy Procedia 2015, 82, 774–781. [Google Scholar] [CrossRef]
- Wang, B.; Cot, L.D.; Adolphe, L.; Geoffroy, S.; Morchain, J. Estimation of Wind Energy over Roof of Two Perpendicular Buildings. Energy Build. 2015, 88, 57–67. [Google Scholar] [CrossRef]
- Simões, T.; Estanqueiro, A. A New Methodology for Urban Wind Resource Assessment. Renew. Energy 2016, 89, 598–605. [Google Scholar] [CrossRef]
- Kono, T.; Kogaki, T.; Kiwata, T. Numerical Investigation of Wind Conditions for Roof-Mounted Wind Turbines: Effects of Wind Direction and Horizontal Aspect Ratio of a High-Rise Cuboid Building. Energies 2016, 9, 907. [Google Scholar] [CrossRef]
- Krishnan, A.; Paraschivoiu, M. 3D Analysis of Building Mounted VAWT with Diffuser Shaped Shroud. Sustain. Cities Soc. 2016, 27, 160–166. [Google Scholar] [CrossRef]
- Larin, P.; Paraschivoiu, M.; Aygun, C. CFD Based Synergistic Analysis of Wind Turbines for Roof Mounted Integration. J. Wind Eng. Ind. Aerodyn. 2016, 156, 1–13. [Google Scholar] [CrossRef]
- Zhou, H.; Lu, Y.; Liu, X.; Chang, R.; Wang, B. Harvesting Wind Energy in Low-Rise Residential Buildings: Design and Optimization of Building Forms. J. Clean. Prod. 2017, 167, 306–316. [Google Scholar] [CrossRef]
- Abohela, I.; Hamza, N.; Dudek, S. Effect of Roof Shape, Wind Direction, Building Height and Urban Configuration on the Energy Yield and Positioning of Roof Mounted Wind Turbines. Renew. Energy 2013, 50, 1106–1118. [Google Scholar] [CrossRef]
- Aquino, A.I.; Calautit, J.K.; Hughes, B.R. Integration of Aero-Elastic Belt into the Built Environment for Low-Energy Wind Harnessing: Current Status and a Case Study. Energy Convers. Manag. 2017, 149, 830–850. [Google Scholar] [CrossRef]
- Hassanli, S.; Hu, G.; Kwok, K.C.S.; Fletcher, D.F. Utilizing Cavity Flow within Double Skin Façade for Wind Energy Harvesting in Buildings. J. Wind Eng. Ind. Aerodyn. 2017, 167, 114–127. [Google Scholar] [CrossRef]
- Liu, S.; Pan, W.; Zhang, H.; Cheng, X.; Long, Z.; Chen, Q. CFD Simulations of Wind Distribution in an Urban Community with a Full-Scale Geometrical Model. Build. Environ. 2017, 117, 11–23. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Hou, Y.; Yuan, R.; Luo, K.; Fan, J. Micrositing of Roof Mounting Wind Turbine in Urban Environment: CFD Simulations and Lidar Measurements. Renew. Energy 2018, 115, 1118–1133. [Google Scholar] [CrossRef]
- Zabarjad Shiraz, M.; Dilimulati, A.; Paraschivoiu, M. Wind Power Potential Assessment of Roof Mounted Wind Turbines in Cities. Sustain. Cities Soc. 2020, 53, 101905. [Google Scholar] [CrossRef]
- Longo, R.; Nicastro, P.; Natalini, M.; Schito, P.; Mereu, R.; Parente, A. Impact of Urban Environment on Savonius Wind Turbine Performance: A Numerical Perspective. Renew. Energy 2020, 156, 407–422. [Google Scholar] [CrossRef]
- Alanis Ruiz, C.; Kalkman, I.; Blocken, B. Aerodynamic Design Optimization of Ducted Openings through High-Rise Buildings for Wind Energy Harvesting. Build. Environ. 2021, 202, 108028. [Google Scholar] [CrossRef]
- Fan, X.; Ge, M.; Tan, W.; Li, Q. Impacts of Coexisting Buildings and Trees on the Performance of Rooftop Wind Turbines: An Idealized Numerical Study. Renew. Energy 2021, 177, 164–180. [Google Scholar] [CrossRef]
- Juan, Y.-H.; Wen, C.-Y.; Li, Z.; Yang, A.-S. Impacts of Urban Morphology on Improving Urban Wind Energy Potential for Generic High-Rise Building Arrays. Appl. Energy 2021, 299, 117304. [Google Scholar] [CrossRef]
- Dai, S.F.; Liu, H.J.; Peng, H.Y. Assessment of Parapet Effect on Wind Flow Properties and Wind Energy Potential over Roofs of Tall Buildings. Renew. Energy 2022, 199, 826–839. [Google Scholar] [CrossRef]
- Mi, L.; Han, Y.; Shen, L.; Cai, C.; Wu, T. Multi-Scale Numerical Assessments of Urban Wind Resource Using Coupled WRF-BEP and RANS Simulation: A Case Study. Atmosphere 2022, 13, 1753. [Google Scholar] [CrossRef]
- Paula, C.; José, C.; Leorlen, M.; Daniel, G.; Alexandre, C.; Teresa, S. Wind Resource Assessment in Building Environment: Benchmarking of Numerical Approaches and Validation with Wind Tunnel Data. Wind 2022, 2, 659–690. [Google Scholar] [CrossRef]
- Dai, S.F.; Liu, H.J.; Chu, Y.J.; Lam, H.F.; Peng, H.Y. Impact of Corner Modification on Wind Characteristics and Wind Energy Potential over Flat Roofs of Tall Buildings. Energy 2022, 241, 122920. [Google Scholar] [CrossRef]
- Tominaga, Y. CFD Prediction for Wind Power Generation by a Small Vertical Axis Wind Turbine: A Case Study for a University Campus. Energies 2023, 16, 4912. [Google Scholar] [CrossRef]
- Rezaei, F.; Paraschivoiu, M. Computational Study of the Effect of Building Height on the Performance of Roof-Mounted VAWT. J. Wind Eng. Ind. Aerodyn. 2023, 241, 105540. [Google Scholar] [CrossRef]
- Juan, Y.-H.; Rezaeiha, A.; Montazeri, H.; Blocken, B.; Yang, A.-S. Improvement of Wind Energy Potential through Building Corner Modifications in Compact Urban Areas. J. Wind Eng. Ind. Aerodyn. 2024, 248, 105710. [Google Scholar] [CrossRef]
- Shirzadi, M.; Tominaga, Y. CFD Evaluation of Mean and Turbulent Wind Characteristics around a High-Rise Building Affected by Its Surroundings. Build. Environ. 2022, 225, 109637. [Google Scholar] [CrossRef]
- Courant, R.; Friedrichs, K.; Lewy, H. On the Partial Difference Equations of Mathematical Physics. IBM J. Res. Dev. 1967, 11, 215–234. [Google Scholar] [CrossRef]
- Spalart, P.R. Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach. In Proceedings of the First AFOSR International Conference on DNS/LES, Ruston, LA, USA, 4–8 August 1997. [Google Scholar]
- Spalart, P.R. Detached-Eddy Simulation. Annu. Rev. Fluid Mech. 2009, 41, 181–202. [Google Scholar] [CrossRef]
- Liu, J.; Niu, J. Delayed Detached Eddy Simulation of Pedestrian-Level Wind around a Building Array—The Potential to Save Computing Resources. Build. Environ. 2019, 152, 28–38. [Google Scholar] [CrossRef]
- Liu, J.; Niu, J.; Mak, C.M.; Xia, Q. Detached Eddy Simulation of Pedestrian-Level Wind and Gust around an Elevated Building. Build. Environ. 2017, 125, 168–179. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, S.; Cao, J. A Framework for Efficient Simulation of Urban Strong Wind Field during Typhoon Process Using Coupled WRF-UCM and Embedded LES Model. J. Wind Eng. Ind. Aerodyn. 2024, 250, 105757. [Google Scholar] [CrossRef]
- Zhang, Y.; Habashi, W.G.; Khurram, R.A. Predicting Wind-Induced Vibrations of High-Rise Buildings Using Unsteady CFD and Modal Analysis. J. Wind Eng. Ind. Aerodyn. 2015, 136, 165–179. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, S.; Cao, J. Implementation of an Embedded LES Model with Parameter Assessment for Predicting Surface Pressure and Surrounding Flow of an Isolated Building. Build. Environ. 2023, 243, 110633. [Google Scholar] [CrossRef]
- Wang, X.; Lei, H.; Han, Z.; Zhou, D.; Shen, Z.; Zhang, H.; Zhu, H.; Bao, Y. Three-Dimensional Delayed Detached-Eddy Simulation of Wind Flow and Particle Dispersion in the Urban Environment. Atmos. Environ. 2019, 201, 173–189. [Google Scholar] [CrossRef]
- Sharma, A.; Mittal, H.; Gairola, A. Detached-Eddy Simulation of Interference between Buildings in Tandem Arrangement. J. Build. Eng. 2019, 21, 129–140. [Google Scholar] [CrossRef]
- Dadioti, R.; Rees, S. Performance of Detached Eddy Simulation Applied to Analysis of a University Campus Wind Environment. Energy Procedia 2017, 134, 366–375. [Google Scholar] [CrossRef]
- Tominaga, Y.; Mochida, A.; Murakami, S.; Sawaki, S. Comparison of Various Revised k–ε Models and LES Applied to Flow around a High-Rise Building Model with 1:1:2 Shape Placed within the Surface Boundary Layer. J. Wind Eng. Ind. Aerodyn. 2008, 96, 389–411. [Google Scholar] [CrossRef]
- Blocken, B. 50 Years of Computational Wind Engineering: Past, Present and Future. J. Wind Eng. Ind. Aerodyn. 2014, 129, 69–102. [Google Scholar] [CrossRef]
- Van Hooff, T.; Blocken, B.; Tominaga, Y. On the Accuracy of CFD Simulations of Cross-Ventilation Flows for a Generic Isolated Building: Comparison of RANS, LES and Experiments. Build. Environ. 2017, 114, 148–165. [Google Scholar] [CrossRef]
- Franke, J.; Hirsch, C.; Jensen, A.G.; Krüs, H.W.; Schatzmann, M.; Westbury, P.S.; Miles, S.D.; Wisse, J.A.; Wright, N.G. Recommendations on the Use of CFD in Wind Engineering. 2004. Available online: http://ftp.demec.ufpr.br/CFD/bibliografia/erros_numericos/Franke_et_al_sem-data.pdf (accessed on 1 April 2025).
- Franke, J.; Hellsten, A.; Schlunzen, K.H.; Carissimo, B. The COST 732 Best Practice Guideline for CFD Simulation of Flows in the Urban Environment: A Summary. Int. J. Environ. Pollut. 2011, 44, 419. [Google Scholar] [CrossRef]
- Tamura, T.; Nozawa, K.; Kondo, K. AIJ Guide for Numerical Prediction of Wind Loads on Buildings. J. Wind Eng. Ind. Aerodyn. 2008, 96, 1974–1984. [Google Scholar] [CrossRef]
- Launder, B.E.; Spalding, D.B. The Numerical Computation of Turbulent Flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- Georgiadis, N.J.; Rizzetta, D.P.; Fureby, C. Large-Eddy Simulation: Current Capabilities, Recommended Practices, and Future Research. AIAA J. 2010, 48, 1772–1784. [Google Scholar] [CrossRef]
- Liu, J.; Niu, J.; Du, Y.; Mak, C.M.; Zhang, Y. LES for Pedestrian Level Wind around an Idealized Building Array—Assessment of Sensitivity to Influencing Parameters. Sustain. Cities Soc. 2019, 44, 406–415. [Google Scholar] [CrossRef]
- Ai, Z.T.; Mak, C.M. Large-Eddy Simulation of Flow and Dispersion around an Isolated Building: Analysis of Influencing Factors. Comput. Fluids 2015, 118, 89–100. [Google Scholar] [CrossRef]
- Pope, S.B. Turbulent Flows; 1. publ., 12. print.; Cambridge University Press: Cambridge, UK, 2015; ISBN 978-0-521-59886-6. [Google Scholar]
- Celik, I.B.; Cehreli, Z.N.; Yavuz, I. Index of Resolution Quality for Large Eddy Simulations. J. Fluids Eng. 2005, 127, 949–958. [Google Scholar] [CrossRef]
- Roache, P.J. Quantification of Uncertainty in Computational Fluid Dynamics. Annu. Rev. Fluid Mech. 1997, 29, 123–160. [Google Scholar] [CrossRef]
- Blocken, B. Computational Fluid Dynamics for Urban Physics: Importance, Scales, Possibilities, Limitations and Ten Tips and Tricks towards Accurate and Reliable Simulations. Build. Environ. 2015, 91, 219–245. [Google Scholar] [CrossRef]
- Ricci, A.; Burlando, M.; Repetto, M.P.; Blocken, B. Simulation of Urban Boundary and Canopy Layer Flows in Port Areas Induced by Different Marine Boundary Layer Inflow Conditions. Sci. Total Environ. 2019, 670, 876–892. [Google Scholar] [CrossRef]
- Abu-Zidan, Y.; Mendis, P.; Gunawardena, T. Impact of Atmospheric Boundary Layer Inhomogeneity in CFD Simulations of Tall Buildings. Heliyon 2020, 6, e04274. [Google Scholar] [CrossRef] [PubMed]
- Blocken, B.; Carmeliet, J.; Stathopoulos, T. CFD Evaluation of Wind Speed Conditions in Passages between Parallel Buildings—Effect of Wall-Function Roughness Modifications for the Atmospheric Boundary Layer Flow. J. Wind Eng. Ind. Aerodyn. 2007, 95, 941–962. [Google Scholar] [CrossRef]
- Parente, A.; Benocci, C. On the RANS Simulation of Neutral ABL Flows. In Proceedings of the Fifth International Symposium on Computational Wind Engineering, Chapel Hill, NC, USA, 23–27 May 2010. [Google Scholar]
- Mathey, F.; Cokljat, D.; Bertoglio, J.P.; Sergent, E. Assessment of the Vortex Method for Large Eddy Simulation Inlet Conditions. Prog. Comput. Fluid Dyn. Int. J. 2006, 6, 58. [Google Scholar] [CrossRef]
- Gousseau, P.; Blocken, B.; Van Heijst, G.J.F. Quality Assessment of Large-Eddy Simulation of Wind Flow around a High-Rise Building: Validation and Solution Verification. Comput. Fluids 2013, 79, 120–133. [Google Scholar] [CrossRef]
- Tominaga, Y.; Wang, L.; Zhai, Z.; Stathopoulos, T. Accuracy of CFD Simulations in Urban Aerodynamics and Microclimate: Progress and Challenges. Build. Environ. 2023, 243, 110723. [Google Scholar] [CrossRef]
- Karthikeya, B.R.; Negi, P.S.; Srikanth, N. Wind Resource Assessment for Urban Renewable Energy Application in Singapore. Renew. Energy 2016, 87, 403–414. [Google Scholar] [CrossRef]
- Meteorological and Air Quality Models for Urban Areas; Baklanov, A., Sue, G., Alexander, M., Athanassiadou, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 978-3-642-00297-7. [Google Scholar]
- Lane, S.E.; Barlow, J.F.; Wood, C.R. An Assessment of a Three-Beam Doppler Lidar Wind Profiling Method for Use in Urban Areas. J. Wind Eng. Ind. Aerodyn. 2013, 119, 53–59. [Google Scholar] [CrossRef]
- Song, M.X.; Chen, K.; He, Z.Y.; Zhang, X. Wind Resource Assessment on Complex Terrain Based on Observations of a Single Anemometer. J. Wind Eng. Ind. Aerodyn. 2014, 125, 22–29. [Google Scholar] [CrossRef]
- Schatzmann, M.; Olesen, H.; Franke, J. Cost 732 Model Evaluation Case Studies: Approach and Results; COST Office: Brussels, Belgium, 2010. [Google Scholar]
- Iousef, S.; Montazeri, H.; Blocken, B.; Van Wesemael, P.J.V. On the Use of Non-Conformal Grids for Economic LES of Wind Flow and Convective Heat Transfer for a Wall-Mounted Cube. Build. Environ. 2017, 119, 44–61. [Google Scholar] [CrossRef]
- Ricci, A.; Kalkman, I.; Blocken, B.; Burlando, M.; Repetto, M.P. Impact of Turbulence Models and Roughness Height in 3D Steady RANS Simulations of Wind Flow in an Urban Environment. Build. Environ. 2020, 171, 106617. [Google Scholar] [CrossRef]
- Tominaga, Y.; Shirzadi, M. Wind Tunnel Measurement Dataset of 3D Turbulent Flow around a Group of Generic Buildings with and without a High-Rise Building. Data Brief 2021, 39, 107504. [Google Scholar] [CrossRef] [PubMed]
- Shaukat, U.; Jakobsen, J.B.; Ikegaya, N.; Giljarhus, K.E.T. Validation of Large Eddy Simulations in Urban Wind Studies Using a New Overall Area Metric. Build. Environ. 2025, 267, 112285. [Google Scholar] [CrossRef]
- Yan, Z.; Chen, R.; Cai, X.-C. Large Eddy Simulation of the Wind Flow in a Realistic Full-Scale Urban Community with a Scalable Parallel Algorithm. Comput. Phys. Commun. 2022, 270, 108170. [Google Scholar] [CrossRef]
- Ricci, A.; Kalkman, I.; Blocken, B.; Burlando, M.; Freda, A.; Repetto, M.P. Local-Scale Forcing Effects on Wind Flows in an Urban Environment: Impact of Geometrical Simplifications. J. Wind Eng. Ind. Aerodyn. 2017, 170, 238–255. [Google Scholar] [CrossRef]
- Toja-Silva, F.; Peralta, C.; Lopez-Garcia, O.; Navarro, J.; Cruz, I. On Roof Geometry for Urban Wind Energy Exploitation in High-Rise Buildings. Computation 2015, 3, 299–325. [Google Scholar] [CrossRef]
- Yang, A.-S.; Su, Y.-M.; Wen, C.-Y.; Juan, Y.-H.; Wang, W.-S.; Cheng, C.-H. Estimation of Wind Power Generation in Dense Urban Area. Appl. Energy 2016, 171, 213–230. [Google Scholar] [CrossRef]
- Wang, C.; Ferrando, M.; Causone, F.; Jin, X.; Zhou, X.; Shi, X. Data Acquisition for Urban Building Energy Modeling: A Review. Build. Environ. 2022, 217, 109056. [Google Scholar] [CrossRef]
- Vermeer, L.J.; Sørensen, J.N.; Crespo, A. Wind Turbine Wake Aerodynamics. Prog. Aerosp. Sci. 2003, 39, 467–510. [Google Scholar] [CrossRef]
- Sanderse, B. Aerodynamics of Wind Turbine Wakes Literature Review; Energy Research Centre of the Netherlands (ECN): Petten, The Netherlands, 2009. [Google Scholar]
- Sedaghatizadeh, N.; Arjomandi, M.; Kelso, R.; Cazzolato, B.; Ghayesh, M.H. Modelling of Wind Turbine Wake Using Large Eddy Simulation. Renew. Energy 2018, 115, 1166–1176. [Google Scholar] [CrossRef]
- Li, Z.; Yang, X. Evaluation of Actuator Disk Model Relative to Actuator Surface Model for Predicting Utility-Scale Wind Turbine Wakes. Energies 2020, 13, 3574. [Google Scholar] [CrossRef]
- Li, G.; Li, Y.; Li, J.; Huang, H.; Huang, L. Research on Dynamic Characteristics of Vertical Axis Wind Turbine Extended to the Outside of Buildings. Energy 2023, 272, 127182. [Google Scholar] [CrossRef]
- Li, Z.; Liu, X.; Yang, X. Review of Turbine Parameterization Models for Large-Eddy Simulation of Wind Turbine Wakes. Energies 2022, 15, 6533. [Google Scholar] [CrossRef]
- Emanuel, K. Increasing Destructiveness of Tropical Cyclones over the Past 30 Years. Nature 2005, 436, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, K.; Vecchi, G.; Murakami, H.; Underwood, S.; Kossin, J. Projected Response of Tropical Cyclone Intensity and Intensification in a Global Climate Model. J. Clim. 2018, 31, 8281–8303. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, J.; Zhang, Y.; Wang, J.; He, S.; Zhou, X. Study on Sustainable Urbanization Literature Based on Web of Science, Scopus, and China National Knowledge Infrastructure: A Scientometric Analysis in CiteSpace. J. Clean. Prod. 2020, 264, 121537. [Google Scholar] [CrossRef]
- Bandoc, G.; Prăvălie, R.; Patriche, C.; Degeratu, M. Spatial Assessment of Wind Power Potential at Global Scale. A Geographical Approach. J. Clean. Prod. 2018, 200, 1065–1086. [Google Scholar] [CrossRef]
- Castorrini, A.; Gentile, S.; Geraldi, E.; Bonfiglioli, A. Investigations on Offshore Wind Turbine Inflow Modelling Using Numerical Weather Prediction Coupled with Local-Scale Computational Fluid Dynamics. Renew. Sustain. Energy Rev. 2023, 171, 113008. [Google Scholar] [CrossRef]
- Wieringa, J. Updating the Davenport Roughness Classification; IQPC: New York, NY, USA, 1992. [Google Scholar]
- He, X.; Li, Y.; Wang, X.; Chen, L.; Yu, B.; Zhang, Y.; Miao, S. High-Resolution Dataset of Urban Canopy Parameters for Beijing and Its Application to the Integrated WRF/Urban Modelling System. J. Clean. Prod. 2019, 208, 373–383. [Google Scholar] [CrossRef]
- Khan, A.; Chatterjee, S.; Weng, Y. Context and Background of Urban Heat Island. In Urban Heat Island Modeling for Tropical Climates; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–35. ISBN 978-0-12-819669-4. [Google Scholar]
- Toja-Silva, F.; Lopez-Garcia, O.; Peralta, C.; Navarro, J.; Cruz, I. An Empirical–Heuristic Optimization of the Building-Roof Geometry for Urban Wind Energy Exploitation on High-Rise Buildings. Appl. Energy 2016, 164, 769–794. [Google Scholar] [CrossRef]
- Ledo, L.; Kosasih, P.B.; Cooper, P. Roof Mounting Site Analysis for Micro-Wind Turbines. Renew. Energy 2011, 36, 1379–1391. [Google Scholar] [CrossRef]
- Lu, L.; Ip, K.Y. Investigation on the Feasibility and Enhancement Methods of Wind Power Utilization in High-Rise Buildings of Hong Kong. Renew. Sustain. Energy Rev. 2009, 13, 450–461. [Google Scholar] [CrossRef]
- Lim, J.; Ooka, R.; Lim, H. Multicollinearity Issue for the Parameterization of Urban Ventilation Potential with Urban Morphology. Sustain. Cities Soc. 2022, 87, 104218. [Google Scholar] [CrossRef]
- Li, J.; You, W.; Peng, Y.; Ding, W. Exploring the Potential of the Aspect Ratio to Predict Flow Patterns in Actual Urban Spaces for Ventilation Design by Comparing the Idealized and Actual Canyons. Sustain. Cities Soc. 2024, 102, 105214. [Google Scholar] [CrossRef]
- Li, Z.; Han, B.; Chu, Y.; Shi, Y.; Huang, N.; Shi, T. Evaluating the Impact of Road Layout Patterns on Pedestrian-Level Ventilation Using Computational Fluid Dynamics (CFD). Atmosphere 2025, 16, 123. [Google Scholar] [CrossRef]
- Shao, X.; Liu, Z.; Zhang, S.; Zhao, Z.; Hu, C. PIGNN-CFD: A Physics-Informed Graph Neural Network for Rapid Predicting Urban Wind Field Defined on Unstructured Mesh. Build. Environ. 2023, 232, 110056. [Google Scholar] [CrossRef]
Ref. | Year | Turbulence Model |
---|---|---|
[48] | 2015 | RANS, SST k-ω |
[49] | 2015 | RANS, standard k-ε |
[50] | 2016 | RANS, standard k-ε |
[51] | 2016 | LES, dynamic Smagorinsky |
[52] | 2016 | RANS, realizable k-ε |
[53] | 2016 | RANS, realizable k-ε |
[54] | 2017 | RANS, standard k-ε |
[55] | 2017 | RANS, realizable k-ε |
[56] | 2017 | RANS, standard k-ε |
[57] | 2017 | RANS, SST k-ω, and SST-SAS |
[58] | 2017 | RANS, RNG k-ε |
[59] | 2018 | RANS, realizable k-ε |
[60] | 2020 | RANS, realizable k-ε |
[61] | 2020 | RANS, standard k-ε |
[62] | 2021 | RSM |
[63] | 2021 | LES, dynamic Smagorinsky |
[64] | 2021 | RSM |
[9] | 2022 | LES, WALE |
[11] | 2022 | RSM |
[65] | 2022 | RANS, SST k-ω |
[66] | 2022 | RANS, SST k-ω |
[67] | 2022 | RANS, standard k-ε |
[68] | 2022 | RANS, SST k-ω |
[38] | 2022 | LES, dynamic Smagorinsky |
[69] | 2023 | RANS, realizable k-ε |
[70] | 2023 | RSM |
[71] | 2024 | RSM |
Performance | RANS | LES | ELES | DES |
---|---|---|---|---|
Handling of turbulence | Modeled | Resolved | Modeled (peripheral domain)/Resolved (core domain) | Modeled (boundary layer)/Resolved (rest of domain) |
Accuracy of turbulence reconstructing | Low (k-ε and k-ω series)/Medium (RSM) | High | High | High |
Computational cost | Low (k-ε and k-ω series)/Medium (RSM) | High | Medium-high | Medium-high |
Boundary | Condition |
---|---|
Inlet | Velocity inlet with ABL profile |
Outlet | Pressure outlet |
Sides | Zero-gradient wall |
Top | Zero-gradient wall |
Ground | Rough wall |
Building walls | Smooth wall |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, R.; Wang, K. CFD in Urban Wind Resource Assessments: A Review. Energies 2025, 18, 2626. https://doi.org/10.3390/en18102626
Chu R, Wang K. CFD in Urban Wind Resource Assessments: A Review. Energies. 2025; 18(10):2626. https://doi.org/10.3390/en18102626
Chicago/Turabian StyleChu, Ruoping, and Kai Wang. 2025. "CFD in Urban Wind Resource Assessments: A Review" Energies 18, no. 10: 2626. https://doi.org/10.3390/en18102626
APA StyleChu, R., & Wang, K. (2025). CFD in Urban Wind Resource Assessments: A Review. Energies, 18(10), 2626. https://doi.org/10.3390/en18102626