Review on Distribution System State Estimation Considering Renewable Energy Sources
Abstract
:1. Introduction
2. Problem Formulation
2.1. Pseudo-Measurement
2.2. Virtual Measurement
3. Physical-Model-Based Algorithms
3.1. Direct Integration of Physical Models into PSSE
3.2. Integrating Fitted Functions of Generation Models into PSSE
3.3. DSSE Problem in Alternative Forms
3.4. Comparative Analysis and Summary of Physical-Model-Based Categories
- Use direct integration when detailed RES dynamic models and parameters are available and maximum observability is required.
- Choose surrogate modeling if historical RES data are abundant but detailed physical parameters are unavailable.
- Apply alternative formulations when robust convergence under constraints is critical, accepting higher computational cost.
3.5. Summary
4. Forecasting-Aided Approach
4.1. Kalman-Filter-Based Algorithms
4.2. Neural Network-Based Algorithms for Generating Pseudo-Measurements
4.3. Other Approaches
4.4. Comparative Analysis and Summary of Forecasting-Aided Categories
- KF–based methods when measurement noise characteristics are known and moderate computational resources are available.
- NN–based methods if rich historical datasets exist and sub-second estimation is required.
- Other approaches for quick, low-complexity implementations in data-scarce scenarios.
4.5. Summary
5. NN-Performed DSSE
Comparative Analysis and Summary of NN-Performed DSSE Categories
- Employ standard ANNs for very fast, large-scale deployments when uncertainty quantification is not critical.
- Use Bayesian NNs in applications where robust uncertainty estimates and non-Gaussian handling are required.
- Opt for physics-informed NNs to enforce power-flow and equipment constraints within the learning process.
- Consider hybrid architectures for scenarios with low observability or bespoke robustness needs.
6. Discussion and Suggestions for Future Work
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
WTG | Wind Turbine Generator |
PV | Photovoltaics |
PSSE | Power System State Estimation |
WLS | Weighted Least Square |
RESs | Renewable Energy Resources |
PSAT | Power System Analysis Toolbox |
DSSE | Distribution System State Estimation |
FASE | Forecasting-Aided State Estimation |
NNs | Neural Networks |
BPNN | Back-Propagation Neural Network |
ANN | Artificial Neural Network |
ISE | Interval State Estimation |
MKO | Modified Krawczyk Operator |
KF | Kalman Filter |
PV-IEKF | Photovoltaic-Assisted Interleaved Extended Kalman Filter |
UKF | Unscented Kalman Filter |
EnKF | Ensemble Kalman Filter |
REnKF | Robust Ensemble Kalman Filter |
AEKF | Adaptive Extended Kalman Filter |
ELM | Extreme Learning Machine |
GA | Genetic Algorithm |
LSTM | Long Short-Term Memory |
DREL | Demand-Response-Enabled Load |
KNN | K-Nearest Neighbor |
USENN | Unobservable State Estimation Neural Network |
BNN | Bayesian Neural Network |
PINN | Physics-Informed Neural Network |
GNN | Graph Neural Network |
MV | Medium Voltage |
NM | Nelder–Mead (Simplex Search) |
PSO | Particle Swarm Optimization |
DLM-PSO | Mutated Two-Loop Particle Swarm Optimization |
PASE | Past-Aware State Estimation |
PS | Projection Statistics |
PGNN | Physics-Guided Neural Network |
ML | Machine Learning |
References
- Schweppe, F.C.; Wildes, J. Power System Static-State Estimation, Part I: Exact Model. IEEE Trans. Power Appar. Syst. 1970, PAS-89, 120–125. [Google Scholar] [CrossRef]
- Schweppe, F.C.; Rom, D.B. Power System Static-State Estimation, Part II: Approximate Model. IEEE Trans. Power Appar. Syst. 1970, PAS-89, 125–130. [Google Scholar] [CrossRef]
- Schweppe, F.C. Power System Static-State Estimation, Part III: Implementation. IEEE Trans. Power Appar. Syst. 1970, PAS-89, 130–135. [Google Scholar] [CrossRef]
- PSS®E; Power Transmission System Planning Software; Siemens Industry, Inc.: Munich, Germany, 2025. Available online: https://www.siemens.com/global/en/products/energy/grid-software/planning/pss-software/pss-e.html (accessed on 12 May 2025).
- PSAT; Power System Analysis Toolbox; GE Grid Solutions: Boulogne-Billancourt, France, 2025. Available online: https://www.gegridsolutions.com/ (accessed on 12th May 2025).
- DIgSILENT PowerFactory; Power System Analysis Software; DIgSILENT GmbH: Gomaringen, Germany, 2025. Available online: https://www.digsilent.de/en/powerfactory.html (accessed on 12 May 2025).
- Gonzalez-Longatt, F.M.; Rueda, J.L. PowerFactory Applications for Power System Analysis; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Zimmerman, R.D.; Murillo-Sánchez, C.E.; Thomas, R.J. MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans. Power Syst. 2010, 26, 12–19. [Google Scholar] [CrossRef]
- OpenDSS. The Open Distribution System Simulator; Electric Power Research Institute (EPRI): Palo Alto, CA, USA, 2010; Available online: https://www.epri.com/pages/sa/opendss (accessed on 12 May 2025).
- Chassin, D.P.; Fuller, J.C.; Djilali, N. GridLAB-D: An agent-based simulation framework for smart grids. J. Appl. Math. 2014, 2014, 492320. [Google Scholar] [CrossRef]
- Chassin, D.P.; Schneider, K.; Gerkensmeyer, C. GridLAB-D: An open-source power systems modeling and simulation environment. In Proceedings of the 2008 IEEE/PES Transmission and Distribution Conference and Exposition, Chicago, IL, USA, 21–24 April 2008; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, G.; Giannakis, G.B.; Chen, J.; Sun, J. Distribution system state estimation: An overview of recent developments. Front. Inf. Technol. Electron. Eng. 2019, 20, 4–17. [Google Scholar] [CrossRef]
- Jin, X.B.; Robert Jeremiah, R.J.; Su, T.L.; Bai, Y.T.; Kong, J.L. The New Trend of State Estimation: From Model-Driven to Hybrid-Driven Methods. Sensors 2021, 21, 2085. [Google Scholar] [CrossRef]
- Dehghanpour, K.; Wang, Z.; Wang, J.; Yuan, Y.; Bu, F. A survey on state estimation techniques and challenges in smart distribution systems. IEEE Trans. Smart Grid 2018, 10, 2312–2322. [Google Scholar] [CrossRef]
- Fotopoulou, M.; Petridis, S.; Karachalios, I.; Rakopoulos, D. A Review on Distribution System State Estimation Algorithms. Appl. Sci. 2022, 12, 11073. [Google Scholar] [CrossRef]
- Primadianto, A.; Lu, C.N. A review on distribution system state estimation. IEEE Trans. Power Syst. 2016, 32, 3875–3883. [Google Scholar] [CrossRef]
- Wu, F.F. Power system state estimation: A survey. Int. J. Electr. Power Energy Syst. 1990, 12, 80–87. [Google Scholar] [CrossRef]
- Ahmad, F.; Rasool, A.; Ozsoy, E.; Sekar, R.; Sabanovic, A.; Elitaş, M. Distribution System state estimation—A step towards smart grid. Renew. Sustain. Energy Rev. 2018, 81, 2659–2671. [Google Scholar] [CrossRef]
- Abur, A.; Exposito, A.G. Power System State Estimation: Theory and Implementation; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Sun, G.Q.; Wei, Z.N.; Pang, B. Power System State Estimation Containing Wind Generators. In Proceedings of the 2009 Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 27–31 March 2009; pp. 1–6. [Google Scholar] [CrossRef]
- Sun, G.Q.; Wei, Z.N.; Pang, B. Impact of wind generators on power system state estimation. In Proceedings of the 2009 International Conference on Sustainable Power Generation and Supply, Nanjing, China, 6–7 April 2009; pp. 1–4. [Google Scholar] [CrossRef]
- Wei, Z.; Yang, X.; Sun, G.; Sun, Y.; Ju, P. Wind power system state estimation with automatic differentiation technique. Int. J. Electr. Power Energy Syst. 2013, 53, 297–306. [Google Scholar] [CrossRef]
- Miranda-Blanco, B.N.; Díaz-Dorado, E.; Carrillo, C.; Cidrás, J. State estimation for wind farms including the wind turbine generator models. Renew. Energy 2014, 71, 453–465. [Google Scholar] [CrossRef]
- Ranković, A.; Sarić, A.T. Modeling of photovoltaic and wind turbine based distributed generation in state estimation. In Proceedings of the 2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC), Novi Sad, Serbia, 4–6 September 2012; pp. LS2b.2-1–LS2b.2-6. [Google Scholar] [CrossRef]
- Ranković, A.; Maksimović, B.M.; Sarić, A.T. A three-phase state estimation in active distribution networks. Int. J. Electr. Power Energy Syst. 2014, 54, 154–162. [Google Scholar] [CrossRef]
- Fang, Z.; Lin, Y.; Song, S.; Song, C.; Lin, X.; Cheng, G. Active distribution system state estimation incorporating photovoltaic generation system model. Electr. Power Syst. Res. 2020, 182, 106247. [Google Scholar] [CrossRef]
- Niknam, T.; Firouzi, B.B. A practical algorithm for distribution state estimation including renewable energy sources. Renew. Energy 2009, 34, 2309–2316. [Google Scholar] [CrossRef]
- Khorshidi, R.; Shabaninia, F.; Niknam, T. A new smart approach for state estimation of distribution grids considering renewable energy sources. Energy 2016, 94, 29–37. [Google Scholar] [CrossRef]
- Shaghaghi, A.; Zahedi, R.; Ghorbani, M.; Ranjbar, Z.; Arzhangi, S.S.; Keshavarzzadeh, M.; Alipour, H. State estimation for distribution power systems by applying an advanced optimization approach. Expert Syst. Appl. 2024, 240, 122325. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Li, Z. Interval State Estimation With Uncertainty of Distributed Generation and Line Parameters in Unbalanced Distribution Systems. IEEE Trans. Power Syst. 2020, 35, 762–772. [Google Scholar] [CrossRef]
- Do Coutto Filho, M.B.; de Souza, J.C.S. Forecasting-aided state estimation—Part I: Panorama. IEEE Trans. Power Syst. 2009, 24, 1667–1677. [Google Scholar] [CrossRef]
- Do Coutto Filho, M.B.; Stacchini de Souza, J.C.; Freund, R.S. Forecasting-Aided State Estimation—Part II: Implementation. IEEE Trans. Power Syst. 2009, 24, 1678–1685. [Google Scholar] [CrossRef]
- Nishiya, K.; Hasegawa, J.; Koike, T. Dynamic state estimation including anomaly detection and identification for power systems. IEE Proc. C (Gener. Transm. Distrib.) 1982, 129, 192–198. [Google Scholar] [CrossRef]
- Servadio, S. High Order Filters for Relative Pose Estimation of an Uncooperative Target. Master Thesis, Politecnico di Milano, Milan, Italy, 2017. [Google Scholar]
- Barchi, G.; Macii, D. A photovoltaics-aided interlaced extended Kalman filter for distribution systems state estimation. Sustain. Energy Grids Netw. 2021, 26, 100438. [Google Scholar] [CrossRef]
- Huang, M.; Wei, Z.; Sun, G.; Sun, Y.; Zang, H.; Cheung, K.W. A historical data-driven unscented Kalman filter for distribution system state estimation. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Carquex, C.; Rosenberg, C.; Bhattacharya, K. State Estimation in Power Distribution Systems Based on Ensemble Kalman Filtering. IEEE Trans. Power Syst. 2018, 33, 6600–6610. [Google Scholar] [CrossRef]
- Huang, M.; Wei, Z.; Zhao, J.; Jabr, R.A.; Pau, M.; Sun, G. Robust Ensemble Kalman Filter for Medium-Voltage Distribution System State Estimation. IEEE Trans. Instrum. Meas. 2020, 69, 4114–4124. [Google Scholar] [CrossRef]
- Mili, L.; Cheniae, M.; Vichare, N.; Rousseeuw, P. Robust state estimation based on projection statistics [of power systems]. IEEE Trans. Power Syst. 1996, 11, 1118–1127. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Dinavahi, V. Robust Forecasting-Aided State Estimation for Power System Against Uncertainties. IEEE Trans. Power Syst. 2020, 35, 691–702. [Google Scholar] [CrossRef]
- Yem Souhe, F.G.; Boum, A.T.; Ele, P.; Mbey, C.F.; Foba Kakeu, V.J. A novel smart method for state estimation in a smart grid using smart meter data. Appl. Comput. Intell. Soft Comput. 2022, 2022, 7978263. [Google Scholar] [CrossRef]
- Hu, H.; Wang, L.; Lv, S.X. Forecasting energy consumption and wind power generation using deep echo state network. Renew. Energy 2020, 154, 598–613. [Google Scholar] [CrossRef]
- Zhu, H.; Li, X.; Sun, Q.; Nie, L.; Yao, J.; Zhao, G. A Power Prediction Method for Photovoltaic Power Plant Based on Wavelet Decomposition and Artificial Neural Networks. Energies 2016, 9, 11. [Google Scholar] [CrossRef]
- Kalogirou, S.A. Artificial neural networks in renewable energy systems applications: A review. Renew. Sustain. Energy Rev. 2001, 5, 373–401. [Google Scholar] [CrossRef]
- Manitsas, E.; Singh, R.; Pal, B.C.; Strbac, G. Distribution System State Estimation Using an Artificial Neural Network Approach for Pseudo Measurement Modeling. IEEE Trans. Power Syst. 2012, 27, 1888–1896. [Google Scholar] [CrossRef]
- Zamzam, A.S.; Fu, X.; Sidiropoulos, N.D. Data-Driven Learning-Based Optimization for Distribution System State Estimation. IEEE Trans. Power Syst. 2019, 34, 4796–4805. [Google Scholar] [CrossRef]
- Cheng, G.; Song, S.; Lin, Y.; Huang, Q.; Lin, X.; Wang, F. Enhanced state estimation and bad data identification in active power distribution networks using photovoltaic power forecasting. Electr. Power Syst. Res. 2019, 177, 105974. [Google Scholar] [CrossRef]
- Alduhaymi, M.; Singh, R.; Nazir, F.U.; Pal, B.C. Deep Learning Based Forecasting-Aided State Estimation in Active Distribution Networks. arXiv 2023, arXiv:2310.13817. [Google Scholar]
- Stowell, D.; Kelly, J.; Tanner, D.; Taylor, J.; Jones, E.; Geddes, J.; Chalstrey, E. A harmonised, high-coverage, open dataset of solar photovoltaic installations in the UK. Sci. Data 2020, 7, 394. [Google Scholar] [CrossRef]
- Liu, J.; Singh, R.; Pal, B.C. Distribution system state estimation with high penetration of demand response enabled loads. IEEE Trans. Power Syst. 2021, 36, 3093–3104. [Google Scholar] [CrossRef]
- Abdel-Nasser, M.; Mahmoud, K.; Kashef, H. A novel smart grid state estimation method based on neural networks. IJIMAI 2018, 5, 92–100. [Google Scholar] [CrossRef]
- Weng, Y.; Negi, R.; Faloutsos, C.; Ilić, M.D. Robust Data-Driven State Estimation for Smart Grid. IEEE Trans. Smart Grid 2017, 8, 1956–1967. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, G.; Giannakis, G.B. Real-Time Power System State Estimation and Forecasting via Deep Unrolled Neural Networks. IEEE Trans. Signal Process. 2019, 67, 4069–4077. [Google Scholar] [CrossRef]
- Tian, G.; Gu, Y.; Shi, D.; Fu, J.; Yu, Z.; Zhou, Q. Neural-network-based Power System State Estimation with Extended Observability. J. Mod. Power Syst. Clean Energy 2021, 9, 1043–1053. [Google Scholar] [CrossRef]
- Vanin, M.; Van Acker, T.; D’hulst, R.; Van Hertem, D. Exact Modeling of Non-Gaussian Measurement Uncertainty in Distribution System State Estimation. IEEE Trans. Instrum. Meas. 2023, 72, 9002911. [Google Scholar] [CrossRef]
- Pegoraro, P.A.; Angioni, A.; Pau, M.; Monti, A.; Muscas, C.; Ponci, F.; Sulis, S. Bayesian approach for distribution system state estimation with non-Gaussian uncertainty models. IEEE Trans. Instrum. Meas. 2017, 66, 2957–2966. [Google Scholar] [CrossRef]
- Mestav, K.R.; Luengo-Rozas, J.; Tong, L. Bayesian state estimation for unobservable distribution systems via deep learning. IEEE Trans. Power Syst. 2019, 34, 4910–4920. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Cuomo, S.; Di Cola, V.S.; Giampaolo, F.; Rozza, G.; Raissi, M.; Piccialli, F. Scientific machine learning through physics–informed neural networks: Where we are and what’s next. J. Sci. Comput. 2022, 92, 88. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Q.; Jin, S. Physics-guided Deep Learning for Power System State Estimation. J. Mod. Power Syst. Clean Energy 2020, 8, 607–615. [Google Scholar] [CrossRef]
- Stiasny, J.; Misyris, G.S.; Chatzivasileiadis, S. Physics-Informed Neural Networks for Non-linear System Identification for Power System Dynamics. In Proceedings of the 2021 IEEE Madrid PowerTech, Madrid, Spain, 28 June–2 July 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Pagnier, L.; Chertkov, M. Physics-informed graphical neural network for parameter & state estimations in power systems. arXiv 2021, arXiv:2102.06349. [Google Scholar]
- Wu, Z.; Wang, Q.; Liu, X. State Estimation for Power System Based on Graph Neural Network. In Proceedings of the 2022 IEEE 5th International Electrical and Energy Conference (CIEEC), Nangjing, China, 27–29 May 2022; pp. 1431–1436. [Google Scholar] [CrossRef]
- Habib, B.; Isufi, E.; van Breda, W.; Jongepier, A.; Cremer, J.L. Deep statistical solver for distribution system state estimation. IEEE Trans. Power Syst. 2023, 39, 4039–4050. [Google Scholar] [CrossRef]
- Zamzam, A.S.; Sidiropoulos, N.D. Physics-aware neural networks for distribution system state estimation. IEEE Trans. Power Syst. 2020, 35, 4347–4356. [Google Scholar] [CrossRef]
- Tran, M.Q.; Zamzam, A.S.; Nguyen, P.H.; Pemen, G. Multi-area distribution system state estimation using decentralized physics-aware neural networks. Energies 2021, 14, 3025. [Google Scholar] [CrossRef]
- Dehghani, M.; Trojovskỳ, P. Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems. Front. Mech. Eng. 2023, 8, 1126450. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Trojovská, E.; Trojovskỳ, P. Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl.-Based Syst. 2023, 259, 110011. [Google Scholar] [CrossRef]
- AlKandari, M.; Ahmad, I. Solar power generation forecasting using ensemble approach based on deep learning and statistical methods. Appl. Comput. Informatics 2024, 20, 231–250. [Google Scholar] [CrossRef]
- Karim, F.K.; Khafaga, D.S.; Eid, M.M.; Towfek, S.; Alkahtani, H.K. A novel bio-inspired optimization algorithm design for wind power engineering applications time-series forecasting. Biomimetics 2023, 8, 321. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Vaidya, S.; Ruehle, F.; Halverson, J.; Soljačić, M.; Hou, T.Y.; Tegmark, M. Kan: Kolmogorov-arnold networks. arXiv 2024, arXiv:2404.19756. [Google Scholar]
- Cranmer, M.; Greydanus, S.; Hoyer, S.; Battaglia, P.; Spergel, D.; Ho, S. Lagrangian neural networks. arXiv 2020, arXiv:2003.04630. [Google Scholar]
- Yang, L.; Meng, X.; Karniadakis, G.E. B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data. J. Comput. Phys. 2021, 425, 109913. [Google Scholar] [CrossRef]
- Ullah, Z.; Elkadeem, M.R.; Wang, S.; Radosavljević, J. A novel PSOS-CGSA method for state estimation in unbalanced DG-integrated distribution systems. IEEE Access 2020, 8, 113219–113229. [Google Scholar] [CrossRef]
- Song, S.; Xiong, H.; Lin, Y.; Huang, M.; Wei, Z.; Fang, Z. Robust three-phase state estimation for PV-Integrated unbalanced distribution systems. Appl. Energy 2022, 322, 119427. [Google Scholar] [CrossRef]
- Kong, X.; Zhang, X.; Zhang, X.; Wang, C.; Chiang, H.D.; Li, P. Adaptive dynamic state estimation of distribution network based on interacting multiple model. IEEE Trans. Sustain. Energy 2021, 13, 643–652. [Google Scholar] [CrossRef]
- Saric, A.; Ciric, R. Integrated fuzzy state estimation and load flow analysis in distribution networks. IEEE Trans. Power Deliv. 2003, 18, 571–578. [Google Scholar] [CrossRef]
- Sarić, A.T.; Ranković, A. Load reallocation based algorithm for state estimation in distribution networks with distributed generators. Electr. Power Syst. Res. 2012, 84, 72–82. [Google Scholar] [CrossRef]
- Boris, A. Alcaide Moreno, Claudio R. Fuerte Esquivel, L.M.C.; Cárdenas, E.A.Z. Generalized State Estimation of Flexible AC Power Systems Considering Wind Generators and Primary Frequency Control. Electr. Power Components Syst. 2015, 43, 1534–1547. [Google Scholar] [CrossRef]
- Sotavento—Parque Eólico Experimental, 2020. Available online: https://www.sotaventogalicia.com/en/ (accessed on 12 May 2025).
- Resources—IEEE PES Test Feeder. Available online: https://cmte.ieee.org/pes-testfeeders/resources/ (accessed on 12 May 2025).
- Das, D.; Kothari, D.; Kalam, A. Simple and efficient method for load flow solution of radial distribution networks. Int. J. Electr. Power Energy Syst. 1995, 17, 335–346. [Google Scholar] [CrossRef]
- Baran, M.; Wu, F. Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans. Power Deliv. 1989, 4, 1401–1407. [Google Scholar] [CrossRef]
Category | Subcategory | Method |
---|---|---|
Physical-model-aided approach | Direct integrating generation models | Complete model |
Simplified model | ||
Integrating fitted function and NNs | Fitted functions | |
Neural network | ||
Alternative forms | ||
Forecasting-aided approach | FASE based on Kalman filter (KF) | Original form |
Convergence improved | ||
Forecasting improved | ||
Robustness improved | ||
NN-based algorithms by generating pseudo-measurements | ||
Other approach | ||
NN-performed DSSE | ANN | |
Bayesian neural network (BNN) | ||
Physics-informed neural network (PINN) | ||
Others |
Category | Collective Strengths | Collective Weaknesses | Ideal Application Context |
---|---|---|---|
Direct integration of RES models | Full representation of generator dynamics; maximal observability gain | High parameter and model complexity; large Jacobian and convergence risk | Pilot implementations or research testbeds with complete RES data |
Surrogate modeling (fitted functions and NNs) | Reduced modeling effort; automatic differentiation for Jacobian | Requires extensive historical data; site-specific training/tuning | Utilities with rich RES measurement archives seeking mid-complexity models |
Alternative optimization/interval formulations | Flexible constraint handling; inherent robustness and convergence guarantees | Heavy computational burden; metaheuristic parameter tuning | Networks demanding rigorous physical constraints and robust estimation |
Approach | Main Strengths | Main Weaknesses | Ideal Application Context |
---|---|---|---|
KF-based methods (EKF, UKF, EnKF, REnKF, AEKF, etc.) | Strong theoretical foundation; robustness to uncertainties | High computational demand; sensitive to model/parameter errors | Well-instrumented networks with reliable measurements and forecasts |
NN-based methods (ANN, ELM, WaveNet-LSTM, etc.) | Excellent forecasting accuracy; fast online inference once trained | Low interpretability; require large, high-quality datasets | Systems with rich historical data; medium-to-high RES penetration |
Other approaches (Discrete-time linear models, etc.) | Simple structure; minimal data requirements | Limited ability to capture complex dynamics; moderate accuracy | Environments with scarce data or preliminary analysis needs |
Category | Collective Strengths | Collective Weaknesses | Ideal Application Context |
---|---|---|---|
Standard ANNs | Fast inference; simple training pipelines | Black-box nature; no built-in uncertainty quantification | Real-time applications requiring sub-second estimates with moderate accuracy |
Bayesian NNs | Principled uncertainty estimates; handles non-Gaussian noise | Higher computational/training cost; complex hyperparameter tuning | Critical systems demanding reliability and probabilistic outputs |
Physics-informed NNs (PINNs/GNNs) | Embeds physical laws; improved generalization and consistency | Implementation complexity; potential scalability challenges | Networks where adherence to power-flow constraints is mandatory |
Other hybrid architectures (e.g., prox-linear, USENN) | Tailored to low-observability or specific robustness requirements | Limited generalizability; often problem-specific design | Research scenarios with specialized DSSE challenges |
Category | Targeted Component/ Issue | Model/NN/Algorithm Introduced | PSSE Algorithm | Test Systems |
---|---|---|---|---|
Direct integrating generation models | WTG | RX model [20] | WLS | IEEE 14-bus system |
Simplified RX model [21] | IEEE 14-bus system | |||
Simplified RX model and automatic differentiation | IEEE 14-bus system | |||
WTG and PV | Simplified RX and 5-parameter [24] | 40-bus distribution system [77,78] | ||
DG | Simplified model [25] | IEEE 13-bus, 322-bus system [78] | ||
WTG types | Simplified WTGs models [79] | IEEE 118-bus system | ||
Integrating fitted functions and NNs | PVs | Fitted 5-parameter model [26] | WLS | IEEE 33-bus system |
WTG | Fitted functions and NNs [23] | WLS | Sotavento wind park [80] | |
Alternative forms | RES | PSO and NM [27] | PSO-NM | IEEE 70-bus feeder |
Modified firefly algorithm [28] | Modified firefly | IEEE 34-bus test system system | ||
DLM-PSO [29] | DLM-PSO | Six-basin network and IEEE 34-bus system | ||
DG | ISE [30] | MKO | IEEE 13-bus and 123-bus system [81] | |
FASE based on Kalman filter | Ill-conditioning and PV | PV-IEKF [35] | PV-IEKF | IEEE 37, rural 85-bus [81,82] |
Coupling and forecasting | UKF [36] | UKF | IEEE 13-bus, 34-bus and 123-bus systems, China network | |
Past awareness | EnKF [37] | EnKF | 33-bus feeder [83] | |
Robustness | REnKF [38] | REnKF | Real MV, IEEE 123-bus system | |
Robustness and uncertainties | Adaptive EKF [40] | EKF | IEEE 14-bus, 30-bus, 57-bus and 118-bus systems | |
Smart meter data | AEKF [41] | AEKF | IEEE 37-bus system | |
FASE based on NN | Overfitting | GA-ELM [47] | WLS | Modified IEEE 33-bus system |
Pseudo-measurement | ANN [45,46] | WLS | UKGDS 95-bus, IEEE 37-bus system | |
DER and MV Demand | WaveNet-LSTM [48] | WLS | IEEE 123-bus system | |
Other | DREL | Discrete-time linear model | Optimization | IEEE 123-bus system |
NN-performed PSSE | ANN-based PSSE | ANN [51] | ANN | 33-bus system |
Robustness | Robust KNN [52] | KNN | IEEE 300-bus system | |
Observability | USENN [54] | USENN | IEEE 118-bus system, Jiangsu system | |
Physical constraints | PINN [60,61] | PINN | IEEE 4-bus and 14-bus | |
Non-Gaussian | BNN [56] | BNN | 20-kV MV network | |
Low observability | BNN [57] | BNN | 3120-bus mesh network |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qing, H.; Singh, A.K.; Batzelis, E. Review on Distribution System State Estimation Considering Renewable Energy Sources. Energies 2025, 18, 2524. https://doi.org/10.3390/en18102524
Qing H, Singh AK, Batzelis E. Review on Distribution System State Estimation Considering Renewable Energy Sources. Energies. 2025; 18(10):2524. https://doi.org/10.3390/en18102524
Chicago/Turabian StyleQing, Hanshan, Abhinav Kumar Singh, and Efstratios Batzelis. 2025. "Review on Distribution System State Estimation Considering Renewable Energy Sources" Energies 18, no. 10: 2524. https://doi.org/10.3390/en18102524
APA StyleQing, H., Singh, A. K., & Batzelis, E. (2025). Review on Distribution System State Estimation Considering Renewable Energy Sources. Energies, 18(10), 2524. https://doi.org/10.3390/en18102524