A Metaheuristic Framework for Cost-Effective Renewable Energy Planning: Integrating Green Bonds and Fiscal Incentives
Abstract
:1. Introduction
1.1. Motivation
1.2. Theoretical Background and Literature Review
1.3. Contributions and Content
2. Methodology
2.1. Problem Formulation
- : Investment component (USD/kWh)
- : Variable O&M cost component (USD/kWh)
- : Fixed O&M cost component (USD/kWh)
- : Fuel cost component (USD/kWh)
- : Externality component (USD/kWh)
- : Initial investment cost (USD)
- : Annual operating costs (USD)
- : Energy produced in one year (kWh)
- i: Discount rate (annual effective)
- n: Operational lifetime (years)
- t: Useful life of the project (years).
2.2. Objective Function and Constraints
- Explanation of Terms in the Objective Function:
- : Portion of the total investment I financed with equity capital, where is the equity share.
- : Represents the cost of debt financing, where is the debt share, g is the debt interest rate, k is the grace period, L is the loan term, is the annual debt payment, and E and i respectively represent the inflation and discount rates.
- : Present value of operational costs , including fixed and variable O&M, administrative expenses, fuel costs, reliability charges, and income from externalities. Adjusted by the fiscal benefit factor .
- : Reflects the benefits of accelerated depreciation, where is the depreciation rate, d is the number of depreciation years, and represents tax reductions due to depreciation.
- : Cost and benefit associated with the issuance of green bond, where is the green bond share, is the bond yield defined in Equation (5), and r is the maturity period.
- : Present value of externalities , which may be positive (e.g., social or environmental benefits) or negative (e.g., emissions), adjusted by .
- Subject to the following constraints:
- : Annual Investment Tax Credit rate; p: ITC application period; : maximum rate of the ITC; : validity period of the ITC.
- : Maturity period of the green bond
- : Number of years before asset depreciation initiation
- : Number of years before asset depreciation completion
- : Maximum depreciation rate per year.
2.3. Roadmap and Implementation in Other Markets
2.4. Metaheuristics Applied to LCOE Calculation
2.4.1. Teaching–Learning
2.4.2. Harmony Search
2.4.3. Shuffled Frog Leaping Algorithm
3. Testing and Results
3.1. Description of the Test Case
- A 50% reduction in the value of the investment over a 5-year period (Investment Tax Credit, ITC).
- A value-added tax (VAT) exemption on equipment and services related to NCRE projects.
- Exemption from import duties.
- Accelerated depreciation of assets (up to 20% annually).
- Battery energy storage systems (BESS)
- Utility-scale solar (USW)
- Small-scale photovoltaics (SP)
- Wind power (WP).
- a: The year in which the costs were originally reported
- b: The update year (2021).
- Calculation of CG using the LCOE method without applying any fiscal incentives
- Calculation of CG using the LCOE method considering fiscal incentives, with and years.
3.2. Results
3.3. Sensitivity Analysis
- Bank interest rate (%): [12.52, 14.31, 16.1, 17.89, 19.68, 21.47, 23.3].
- Green bond yield rate (%): [9.26, 10.58, 11.9, 13.23, 14.55, 15.87, 17.19].
3.4. Discussion and Analysis of Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BEES | Battery Energy Storage Systems |
CG | Cost of Generation |
DCF | Discounted Cash Flow |
HS | Harmony Search |
ITC | Investment Tax Credit |
LCOE | Levelized Cost of Energy |
NCRES | Non-Conventional Renewable Energy Sources |
O&M | Operations and Maintenance |
RO | Real Options |
SDG | Sustainable Development Goal |
SFLA | Shuffled Frog Leaping Algorithm |
SP | Small-scale Photovoltaic |
TL | Teaching–Learning |
USW | Utility-Scale solar |
VAT | Value-Added Tax |
WP | Wind Power |
References
- Fernández, D.G.; Fajardo-Moreno, W.; Moreno-Monsalve, N. Analysis of Non-Conventional Renewable Energy Sources Projects in Colombia. In Proceedings of the 2023 IEEE Colombian Conference on Communications and Computing (COLCOM), Bogota, Colombia, 26–28 July 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Cergibozan, R. Renewable energy sources as a solution for energy security risk: Empirical evidence from OECD countries. Renew. Energy 2022, 183, 617–626. [Google Scholar] [CrossRef]
- Khatib, H.; Barnes, A.; Chalabi, I.; Steeg, H.; Yokobori, K. Energy Security. In World Energy Assessment: Energy and the Challenge of Sustainability; United Nations Development Programme: New York, NY, USA, 2000; Chapter 4; pp. 112–139. [Google Scholar]
- Zamuda, C.D.; Arent, D.J.; Baldwin, S.F.; Cohen, B.; Macalady, D.L.; Moss, R.H.; Pratt, R.G.; Scott, M.J.; Dell, J. Chapter 4: Energy Supply, Delivery, and Demand. In Impacts, Risks, and Adaptation in the United States: The Fourth National Climate Assessment, Volume II; U.S. Global Change Research Program: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Perez-Sindin, X.S.; Lee, J.; Nielsen, T. Exploring the spatial characteristics of energy injustice: A comparison of the power generation landscapes in Spain, Denmark, and South Korea. Energy Res. Soc. Sci. 2022, 91, 102682. [Google Scholar] [CrossRef]
- Sánchez, M.; Lozano, C.A.; Manotas, D. Modelo de valoración de riesgo financiero en la gestión de contratos de suministro de energía eléctrica. Tecnura 2014, 18, 110–127. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, J.; Ji, S.; Song, Z. Renewable energy investment risk assessment for nations along China’s Belt & Road Initiative: An ANP-cloud model method. Energy 2020, 190, 116381. [Google Scholar] [CrossRef]
- Castillo-Ramírez, A.; Mejía-Giraldo, D.; Giraldo-Ocampo, J.D. Geospatial levelized cost of energy in Colombia: GeoLCOE. In Proceedings of the 2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM), Montevideo, Uruguay, 5–7 October 2015; pp. 298–303. [Google Scholar] [CrossRef]
- Saldarriaga-Loaiza, J.D.; López-Lezama, J.M.; Villada-Duque, F. Metodologías para la estructuración de inversiones en proyectos de energía renovable. Inf. Tecnol. 2022, 33, 189–202. [Google Scholar] [CrossRef]
- Yang, X.; He, L.; Zhong, Z.; Wang, D. How does China’s green institutional environment affect renewable energy investments? The nonlinear perspective. Sci. Total. Environ. 2020, 727, 138689. [Google Scholar] [CrossRef]
- Cartelle Barros, J.J.; Lara Coira, M.; de la Cruz López, M.P.; del Caño Gochi, A. Probabilistic life-cycle cost analysis for renewable and non-renewable power plants. Energy 2016, 112, 774–787. [Google Scholar] [CrossRef]
- Montiel-Bohórquez, N.D.; Saldarriaga-Loaiza, J.D.; Pérez, J.F. A Techno-Economic Assessment of Syngas Production by Plasma Gasification of Municipal Solid Waste as a Substitute Gaseous Fuel. J. Energy Resour. Technol. 2021, 143, 090901. [Google Scholar] [CrossRef]
- Saldarriaga-Loaiza, J.D.; Saldarriaga-Zuluaga, S.D.; López-Lezama, J.M.; Villada-Duque, F.; Muñoz-Galeano, N. Optimal Structuring of Investments in Electricity Generation Projects in Colombia with Non-Conventional Energy Sources. Sustainability 2022, 14, 15123. [Google Scholar] [CrossRef]
- Eras, J.J.C.; Morejón, M.B.; Gutiérrez, A.S.; García, A.P.; Ulloa, M.C.; Martínez, F.J.R.; Rueda-Bayona, J.G. A look to the Electricity Generation from Non-Conventional Renewable Energy Sources in Colombia. Int. J. Energy Econ. Policy 2019, 9, 15–25. [Google Scholar]
- Urzúa, I.A.; Olmedo, J.C.; Sauma, E.E. Impact of intermittent non-conventional renewable generation in the costs of the Chilean main power system. Renew. Sustain. Energy Rev. 2016, 60, 810–821. [Google Scholar] [CrossRef]
- Furlan, C.; Mortarino, C. Forecasting the impact of renewable energies in competition with non-renewable sources. Renew. Sustain. Energy Rev. 2018, 81, 1879–1886. [Google Scholar] [CrossRef]
- Filimonova, I.V.; Kozhevin, V.D.; Provornaya, I.V.; Komarova, A.V.; Nemov, V.Y. Green energy through the LCOE indicator. Energy Rep. 2022, 8, 887–893. [Google Scholar] [CrossRef]
- Jamel, M.S.; Abd Rahman, A.; Shamsuddin, A.H. Advances in the integration of solar thermal energy with conventional and non-conventional power plants. Renew. Sustain. Energy Rev. 2013, 20, 71–81. [Google Scholar] [CrossRef]
- Tran, T.T.D.; Smith, A.D. Incorporating performance-based global sensitivity and uncertainty analysis into LCOE calculations for emerging renewable energy technologies. Appl. Energy 2018, 216, 157–171. [Google Scholar] [CrossRef]
- Timilsina, G.R. Are renewable energy technologies cost competitive for electricity generation? Renew. Energy 2021, 180, 658–672. [Google Scholar] [CrossRef]
- Matsuo, Y. Re-Defining System LCOE: Costs and Values of Power Sources. Energies 2022, 15, 6845. [Google Scholar] [CrossRef]
- Mughal, L.; Mohagheghi, S. Electrification of Rural Areas: Energy Justice, Challenges, and Possible Solutions. In Proceedings of the 2023 IEEE Green Technologies Conference (GreenTech), Denver, CO, USA, 19–21 April 2023; pp. 239–243. [Google Scholar] [CrossRef]
- Heffron, R.J. Applying energy justice into the energy transition. Renew. Sustain. Energy Rev. 2022, 156, 111936. [Google Scholar] [CrossRef]
- Apergi, M.; Eicke, L.; Goldthau, A.; Hashem, M.; Huneeus, S.; Lima de Oliveira, R.; Otieno, M.; Schuch, E.; Veit, K. An energy justice index for the energy transition in the global South. Renew. Sustain. Energy Rev. 2024, 192, 114238. [Google Scholar] [CrossRef]
- Fuso Nerini, F.; Tomei, J.; To, L.S.; Bisaga, I.; Parikh, P.; Black, M.; Borrion, A.; Spataru, C.; Castán Broto, V.; Anandarajah, G.; et al. Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nat. Energy 2018, 3, 10–15. [Google Scholar] [CrossRef]
- Munro, P.; van der Horst, G.; Healy, S. Energy justice for all? Rethinking Sustainable Development Goal 7 through struggles over traditional energy practices in Sierra Leone. Energy Policy 2017, 105, 635–641. [Google Scholar] [CrossRef]
- Villavicencio Calzadilla, P.; Mauger, R. The UN’s new sustainable development agenda and renewable energy: The challenge to reach SDG7 while achieving energy justice. J. Energy Nat. Resour. Law 2018, 36, 233–254. [Google Scholar] [CrossRef]
- Shukla, R.; Swarnakar, P. Energy justice in post-Paris India: Unpacking consensus and conflict through storylines and discourse coalitions. Energy Res. Soc. Sci. 2022, 91, 102687. [Google Scholar] [CrossRef]
- Villada-Duque, F.; Lopez-Lezama, J.M.; Muñoz-Galeano, N. Effects of incentives for renewable energy in Colombia. Ing. Univ. 2017, 21, 257–272. [Google Scholar] [CrossRef]
- Gómez, L.M.J.; Prins, N.M.A.; López, M.D.R. Valoración de opción real en proyectos de generación de energía eólica en Colombia. Rev. Espac. 2016, 37, 26. [Google Scholar]
- Liu, L.; Zhang, M.; Zhao, Z. The Application of Real Option to Renewable Energy Investment: A Review. Energy Procedia 2019, 158, 3494–3499. [Google Scholar] [CrossRef]
- Loth, E.; Qin, C.; Simpson, J.G.; Dykes, K. Why we must move beyond LCOE for renewable energy design. Adv. Appl. Energy 2022, 8, 100112. [Google Scholar] [CrossRef]
- Su, T.; Lin, B. Modeling Investor Responses to Green Bond Issuance: Multidimensional Perspectives and Evidence from China. IEEE Trans. Eng. Manag. 2025, 72, 651–663. [Google Scholar] [CrossRef]
- Sreenu, N. The Impact of Green Finance on Renewable Energy Development in India’s Tourism Industry. IEEE Trans. Eng. Manag. 2024, 71, 8132–8139. [Google Scholar] [CrossRef]
- World Bank. Climate Explainer: Green Bonds. 2021. Available online: https://www.worldbank.org/en/news/feature/2021/12/08/what-you-need-to-know-about-ifc-s-green-bonds (accessed on 4 April 2025).
- International Capital Market Association (ICMA). Green Bond Principles. Available online: https://www.icmagroup.org/sustainable-finance/the-principles-guidelines-and-handbooks/green-bond-principles-gbp/ (accessed on 4 April 2025).
- McInerney, C.; Bunn, D.W. Expansion of the Investor Base for the Energy Transition. Energy Policy 2019, 129, 1240–1244. [Google Scholar] [CrossRef]
- Reboredo, J.C.; Ugolini, A. Price Connectedness between Green Bond and Financial Markets. Econ. Model. 2020, 88, 25–38. [Google Scholar] [CrossRef]
- McCarl, B.A.; Peacocke, C.; Chrisman, R.; Kung, C.C.; Sands, R.D. Economics of Biochar Production, Utilization and Greenhouse Gas Offsets. In Biochar for Environmental Management; Routledge: Oxfordshire, UK, 2009. [Google Scholar]
- Ng, T.H.; Tao, J.Y. Bond Financing for Renewable Energy in Asia. Energy Policy 2016, 95, 509–517. [Google Scholar] [CrossRef]
- Steckel, J.C.; Jakob, M. The Role of Financing Cost and De-Risking Strategies for Clean Energy Investment. Int. Econ. 2018, 155, 19–28. [Google Scholar] [CrossRef]
- O’Halloran, T.L.; Bright, R.M. More Diverse Benefits from Timber versus Dedicated Bioenergy Plantations for Terrestrial Carbon Dioxide Removal. Environ. Res. Lett. 2017, 12, 021001. [Google Scholar] [CrossRef]
- Kung, C.C.; Lan, X.; Yang, Y.; Kung, S.S.; Chang, M.S. Effects of Green Bonds on Taiwan’s Bioenergy Development. Energy 2022, 238, 121567. [Google Scholar] [CrossRef]
- Borge-Diez, D.; Colmenar-Santos, A.; Perez-Molina, C.; Lopez-Rey, A. Geothermal Source Heat Pumps under Energy Services Companies Finance Scheme to Increase Energy Efficiency and Production in Stockbreeding Facilities. Energy 2015, 88, 821–836. [Google Scholar] [CrossRef]
- Mejía-Escobar, J.C.; González-Ruiz, J.D.; Franco-Sepúlveda, G. Current State and Development of Green Bonds Market in the Latin America and the Caribbean. Sustainability 2021, 13, 10872. [Google Scholar] [CrossRef]
- Aloui, C.; Mejri, S.; Ben Hamida, H.; Yildirim, R. Green Bonds and Clean Energy Stocks: Safe Havens against Global Uncertainties? A Wavelet Quantile-Based Examination. N. Am. J. Econ. Financ. 2025, 76, 102310. [Google Scholar] [CrossRef]
- Damodaran, A.; van den Heuvel, O. India’s Low Carbon Value Chain, Green Debt, and Global Climate Finance Architecture. IIMB Manag. Rev. 2023, 35, 97–107. [Google Scholar] [CrossRef]
- Ramos-Figueroa, O.; Quiroz-Castellanos, M.; Mezura-Montes, E.; Schütze, O. Metaheuristics to solve grouping problems: A review and a case study. Swarm Evol. Comput. 2020, 53, 100643. [Google Scholar] [CrossRef]
- Saldarriaga-Zuluaga, S.D.; López-Lezama, J.M.; Muñoz-Galeano, N. Hybrid Harmony Search Algorithm Applied to the Optimal Coordination of Overcurrent Relays in Distribution Networks with Distributed Generation. Appl. Sci. 2021, 11, 9207. [Google Scholar] [CrossRef]
- Schweickardt, G.; Álvarez, J.M.G.; Casanova, C. Metaheuristics approaches to solve combinatorial optimization problems in distribution power systems. An application to Phase Balancing in low voltage three-phase networks. Int. J. Electr. Power Energy Syst. 2016, 76, 1–10. [Google Scholar] [CrossRef]
- Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching–Learning-Based Optimization: A Novel Method for Constrained Mechanical Design Optimization Problems. Comput.-Aided Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
- Rao, R.V. Review of Applications of TLBO Algorithm and a Tutorial for Beginners to Solve the Unconstrained and Constrained Optimization Problems. Decision Science Letters 2016, 5, 1–30. [Google Scholar] [CrossRef]
- Geem, Z.W.; Yoon, Y. Harmony search optimization of renewable energy charging with energy storage system. Int. J. Electr. Power Energy Syst. 2017, 86, 120–126. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, T.; Wang, P.; Chen, X. An improved harmony search algorithm for solving day-ahead dispatch optimization problems of integrated energy systems considering time-series constraints. Energy Build. 2020, 224, 110238. [Google Scholar] [CrossRef]
- Fernandez, G.S.; Krishnasamy, V.; Kuppusamy, S.; Ali, J.S.; Ali, Z.M.; El-Shahat, A.; Aleem, S.H.E.A. Optimal Dynamic Scheduling of Electric Vehicles in a Parking Lot Using Particle Swarm Optimization and Shuffled Frog Leaping Algorithm. Energies 2020, 13, 6384. [Google Scholar] [CrossRef]
- Banco de la República. Tasas de Interés y Sector Financiero. 2023. Available online: https://www.banrep.gov.co/es/servicios-temas/2100 (accessed on 3 April 2025).
- Banco de la República. Inflación Total al Consumidor. 2023. Available online: https://www.banrep.gov.co/es/glosario/inflacion-consumidor (accessed on 3 April 2025).
- Montiel-Bohórquez, N.D.; Saldarriaga-Loaiza, J.D.; Pérez, J.F. Analysis of investment incentives for power generation based on an integrated plasma gasification combined cycle power plant using municipal solid waste. Case Stud. Therm. Eng. 2022, 30, 101748. [Google Scholar] [CrossRef]
- International Renewable Energy Agency (IRENA). Renewable Power Generation Costs in 2021. 2022. Available online: https://www.irena.org/Publications/2024/Sep/Renewable-Power-Generation-Costs-in-2023 (accessed on 10 April 2025).
- Aliabadi, Y.; Hajinezhad, A.; Fattahi, R.; Moosavian, S.F. Analysis of Energy Generation from MSW with Auxiliary Feed in the North of Iran. Results Eng. 2023, 18, 101185. [Google Scholar] [CrossRef]
Technology | Capacity | Annual Electricity | O&M Cost | Fuel Cost | Externality Income | Initial Investment | Lifetime |
---|---|---|---|---|---|---|---|
(MW) | (GWh) | (¢ USD/kWh) | (¢ USD/kWh) | (¢ USD/kWh) | (MUSD) | (Years) | |
BESS | 10 | 21.9 | 0.33 | 0 | 0.00 | 23.55 | 16 |
USW | 56 | 441.5 | 6.10 | 0 | 0.77 | 371.9 | 20 |
SP | 10 | 21.17 | 1.03 | 0 | 0.00 | 10.80 | 20 |
WP | 10 | 26.3 | 1.70 | 0 | 0.00 | 21.10 | 20 |
Technology | Without Incentives | With Incentives | Reduction | TL (CG) | Reduction (TL) | HS (CG) | Reduction (HS) | SFLA (CG) | Reduction (SFLA) |
---|---|---|---|---|---|---|---|---|---|
BESS | 16.6 | 14.4 | 13.25% | 7.1 | 57.23% | 7.2 | 56.63% | 7.1 | 57.23% |
USW | 16.8 | 15.5 | 7.74% | 10.8 | 35.71% | 10.3 | 38.69% | 10.3 | 38.69% |
SP | 8.0 | 7.2 | 10.00% | 4.0 | 50.00% | 3.7 | 53.75% | 4.0 | 50.00% |
WP | 12.7 | 11.4 | 10.24% | 6.4 | 49.61% | 6.1 | 51.97% | 6.4 | 49.61% |
Technology | TL (LCOE) | TL (CS) | HS (LCOE) | HS (CS) | SFLA (LCOE) | SFLA (CS) |
---|---|---|---|---|---|---|
BESS | 7.1 | [1,1,8,9,10,10,10] | 7.2 | [1,4,5,9,10,10,10] | 7.1 | [1,1,8,9,10,10,10] |
USW | 10.8 | [1,6,3,9,10,10,10] | 10.3 | [1,1,8,9,10,10,10] | 10.3 | [1,1,8,9,10,10,10] |
SP | 4.0 | [1,1,8,9,10,10,10] | 4.2 | [1,4,5,9,10,10,10] | 4.0 | [1,1,8,9,10,10,10] |
WP | 6.4 | [1,1,8,9,10,10,10] | 6.7 | [1,4,5,9,10,10,10] | 6.4 | [1,1,8,9,10,10,10] |
Technology | Teaching L | Structure (Teaching L) | Harmony S | Structure (Harmony S) | SFLA | Structure (SFLA) |
---|---|---|---|---|---|---|
BESS | 5.4 | [1,8,1,9,10,10,10] | 5.5 | [1,8,1,8,10,10,9] | 5.7 | [1,8,1,6,10,10,7] |
USW | 9.6 | [1,8,1,7,9,10,9] | 9.8 | [1,7,2,9,10,10,9] | 9.8 | [1,7,2,7,10,9,10] |
SP | 3.9 | [1,6,3,9,10,10,10] | 4.1 | [1,5,4,9,10,10,10] | 3.7 | [1,8,1,7,9,9,6] |
WP | 5.5 | [1,8,1,9,10,10,10] | 5.9 | [1,7,2,9,10,10,10] | 5.5 | [1,8,1,9,10,10,10] |
Technology | Without Incentives (¢USD/kWh) | With Incentives (¢USD/kWh) | Reduction | TL (CG) | Reduction (TL) | HS (CG) | Reduction (HS) | SFLA (CG) | Reduction (SFLA) |
---|---|---|---|---|---|---|---|---|---|
BESS | 16.6 | 14.4 | 13.25% | 5.4 | 67.47% | 5.5 | 66.87% | 5.7 | 65.66% |
USW | 16.8 | 15.5 | 7.74% | 9.6 | 42.86% | 9.8 | 41.67% | 9.8 | 41.67% |
SP | 8.0 | 7.2 | 10.00% | 3.9 | 51.25% | 4.1 | 48.75% | 3.7 | 53.75% |
WP | 12.7 | 11.4 | 10.24% | 5.5 | 56.69% | 5.9 | 53.54% | 5.5 | 56.69% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saldarriaga-Loaiza, J.D.; Rodríguez-Serna, J.M.; López-Lezama, J.M.; Muñoz-Galeano, N.; Saldarriaga-Zuluaga, S.D. A Metaheuristic Framework for Cost-Effective Renewable Energy Planning: Integrating Green Bonds and Fiscal Incentives. Energies 2025, 18, 2483. https://doi.org/10.3390/en18102483
Saldarriaga-Loaiza JD, Rodríguez-Serna JM, López-Lezama JM, Muñoz-Galeano N, Saldarriaga-Zuluaga SD. A Metaheuristic Framework for Cost-Effective Renewable Energy Planning: Integrating Green Bonds and Fiscal Incentives. Energies. 2025; 18(10):2483. https://doi.org/10.3390/en18102483
Chicago/Turabian StyleSaldarriaga-Loaiza, Juan D., Johnatan M. Rodríguez-Serna, Jesús M. López-Lezama, Nicolás Muñoz-Galeano, and Sergio D. Saldarriaga-Zuluaga. 2025. "A Metaheuristic Framework for Cost-Effective Renewable Energy Planning: Integrating Green Bonds and Fiscal Incentives" Energies 18, no. 10: 2483. https://doi.org/10.3390/en18102483
APA StyleSaldarriaga-Loaiza, J. D., Rodríguez-Serna, J. M., López-Lezama, J. M., Muñoz-Galeano, N., & Saldarriaga-Zuluaga, S. D. (2025). A Metaheuristic Framework for Cost-Effective Renewable Energy Planning: Integrating Green Bonds and Fiscal Incentives. Energies, 18(10), 2483. https://doi.org/10.3390/en18102483