Hybrid Transformer–Convolutional Neural Network Approach for Non-Intrusive Load Analysis in Industrial Processes
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. NILM Method
3.2. Multi-Device Hybrid Load Disaggregation Model Architecture
3.3. Improved Loss Function
4. Case Study
4.1. The Cement Plant’S Power Data
4.2. Model Parameter Configuration and Hyperparameter Selection
- (1)
- Regularization Coefficients:
- (2)
- Network Architecture Parameters:
- (3)
- Training Parameters:
- (4)
- Parameter Sensitivity Analysis:
4.3. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, X.; Ma, X.; Chen, B.; Shang, Y.; Song, M. Challenges toward carbon neutrality in China: Strategies and countermeasures. Resour. Conserv. Recycl. 2022, 176, 105959. [Google Scholar] [CrossRef]
- Devlin, M.; Hayes, B.P. Non-Intrusive Load Monitoring using Electricity Smart Meter Data: A Deep Learning Approach. In Proceedings of the 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 4–8 August 2019. [Google Scholar] [CrossRef]
- Shayan, M.E.; Petrollese, M.; Rouhani, S.H.; Mobayen, S.; Zhilenkov, A.; Su, C.L. An innovative two-stage machine learning-based adaptive robust unit commitment strategy for addressing uncertainty in renewable energy systems. Int. J. Electr. Power Energy Syst. 2024, 160, 110087. [Google Scholar] [CrossRef]
- Liu, Q.; Kamoto, K.M.; Liu, X.; Sun, M.; Linge, N. Low-Complexity Non-Intrusive Load Monitoring Using Unsupervised Learning and Generalized Appliance Models. IEEE Trans. Consum. Electron. 2019, 65, 28–37. [Google Scholar] [CrossRef]
- Lindahl, P.A.; Green, D.H.; Bredariol, G.; Aboulian, A.; Donnal, J.S.; Leeb, S.B. Shipboard Fault Detection Through Nonintrusive Load Monitoring: A Case Study. IEEE Sens. J. 2018, 18, 8986–8995. [Google Scholar] [CrossRef]
- Lin, Y.H.; Tsai, M.S. An Advanced Home Energy Management System Facilitated by Nonintrusive Load Monitoring with Automated Multiobjective Power Scheduling. IEEE Trans. Smart Grid 2015, 6, 1839–1851. [Google Scholar] [CrossRef]
- Rehman, A.U.; Lie, T.T.; Vallès, B.; Rahman, T.S. Non-invasive load-shed authentication model for demand response applications assisted by event-based non-intrusive load monitoring. Energy AI 2021, 3, 100055. [Google Scholar] [CrossRef]
- Schirmer, P.A.; Mporas, I. Non-Intrusive Load Monitoring: A Review. IEEE Trans. Smart Grid 2023, 14, 769–784. [Google Scholar] [CrossRef]
- Varanasi, L.N.S.; Karri, S.P.K. STNILM: Switch Transformer based Non-Intrusive Load Monitoring for short and long duration appliances. Sustain. Energy Grids Netw. 2024, 37, 101246. [Google Scholar] [CrossRef]
- Zhou, X.; Feng, J.; Li, Y. Non-intrusive load decomposition based on CNN–LSTM hybrid deep learning model. Energy Rep. 2021, 7, 5762–5771. [Google Scholar] [CrossRef]
- Hwang, H.; Kang, S. Nonintrusive Load Monitoring Using an LSTM With Feedback Structure. IEEE Trans. Instrum. Meas. 2022, 71, 1–11. [Google Scholar] [CrossRef]
- Xia, M.; Liu, W.A.; Wang, K.; Song, W.; Chen, C.; Li, Y. Non-intrusive load disaggregation based on composite deep long short-term memory network. Expert Syst. Appl. 2020, 160, 113669. [Google Scholar] [CrossRef]
- Dash, S.; Sahoo, N.C. Electric energy disaggregation via non-intrusive load monitoring: A state-of-the-art systematic review. Electr. Power Syst. Res. 2022, 213, 108673. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. Advances in Neural Information Processing Systems. arXiv 2017, arXiv:1706.03762. [Google Scholar] [CrossRef]
- Xiong, J.; Hong, T.; Zhao, D.; Zhang, Y. MATNilm: Multi-Appliance-Task Non-Intrusive Load Monitoring with Limited Labeled Data. IEEE Trans. Ind. Inform. 2024, 20, 3177–3187. [Google Scholar] [CrossRef]
- Wang, Y.; Huo, C.; Xu, F.; Zheng, L.; Hao, L. Ultra-short-term distributed photovoltaic power probabilistic forecasting method based on federated learning and joint probability distribution modeling. Energies 2025, 18, 197. [Google Scholar] [CrossRef]
- Iqbal, H.K.; Malik, F.H.; Muhammad, A.; Qureshi, M.A.; Abbasi, M.N.; Chishti, A.R. A critical review of state-of-the-art non-intrusive load monitoring datasets. Electr. Power Syst. Res. 2021, 192, 106921. [Google Scholar] [CrossRef]
- Ruano, A.; Hernandez, A.; Ureña, J.; Ruano, M.; Garcia, J. NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review. Energies 2019, 12, 2203. [Google Scholar] [CrossRef]
- Angelos, G.F.; Timplalexis, C.; Krinidis, S.; Ioannidis, D.; Tzovaras, D. NILM applications: Literature review of learning approaches, recent developments and challenges. Energy Build. 2022, 261, 111951. [Google Scholar] [CrossRef]
- Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. TransUNet: Transformers make strong encoders for medical image segmentation. arXiv 2021, arXiv:2102.04306. [Google Scholar]
- Chen, J.; Mei, J.; Li, X.; Lu, Y.; Yu, Q.; Wei, Q.; Luo, X.; Xie, Y.; Adeli, E.; Wang, Y.; et al. TransUNet: Rethinking the U-Net architecture design for medical image segmentation through the lens of transformers. Med. Image Anal. 2024, 97, 103280. [Google Scholar] [CrossRef]
- Xiao, Y.; Shao, H.; Wang, J.; Yan, S.; Liu, B. Bayesian variational transformer: A generalizable model for rotating machinery fault diagnosis. Mech. Syst. Signal Process. 2024, 207, 110936. [Google Scholar] [CrossRef]
- Arbel, Y.; Beck, Y. Advances in non-intrusive load monitoring for the industrial domain: Challenges, insights, and path forward. Renewable and Sustainable Energy. Reviews 2025, 210, 115136. [Google Scholar]
- Wang, S.; Xiang, X.; Zhang, J.; Liang, Z.; Li, S.; Zhong, P.; Zeng, J.; Wang, C. A multi-task spatiotemporal graph neural network for transient stability and state prediction in power systems. Energies 2025, 18, 1531. [Google Scholar] [CrossRef]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv 2014, arXiv:1406.1078. [Google Scholar] [CrossRef]
- Rafiq, H.; Zhang, H.X.; Li, H.M.; Ochani, M. Regularized LSTM Based Deep Learning Model: First Step towards Real-Time Non-Intrusive Load Monitoring. In Proceedings of the 6th IEEE International Conference on Smart Energy Grid Engineering, Uoit, Oshawa, ON, Canada, 12–15 August 2018. [Google Scholar] [CrossRef]
- Zhang, C.; Zhong, M.; Wang, Z.; Goddard, N.; Goddard, N. Sequence-to-point learning with neural networks for nonintrusive load monitoring. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [Google Scholar] [CrossRef]
- Qian, Y.; Yang, Q.; Li, D.; An, D.; Zhou, S. An Improved Temporal Convolutional Network for Non-intrusive Load Monitoring. In Proceeding of the 33rd Chinese Control and Decision Conference (CCDC), Kunming, China, 22–24 May 2021; pp. 2557–2562. [Google Scholar] [CrossRef]
Device | Name | Device | Name |
---|---|---|---|
1 | Cement mill cycle fan 1 | 7 | High-temperature fan |
2 | Cement mill cycle fan 2 | 8 | Kiln tail exhaust fan |
3 | Cement mill main motor 1 | 9 | Raw material cycle fan |
4 | Cement mill main motor 2 | 10 | Moving roller Motor |
5 | Kiln head exhaust fan | 11 | Fixed roller motor |
6 | Coal mill main motor | 12 | Limestone crusher main motor |
Device | Model | Precision | Recall | F1-Score | Device | Model | Precision | Recall | F1-Score |
---|---|---|---|---|---|---|---|---|---|
1 | GRU+ | 88.57% | 97.69% | 92.91% | 7 | GRU+ | 88.73% | 92.15% | 90.41% |
LSTM+ | 82.24% | 87.80% | 84.93% | LSTM+ | 92.44% | 93.58% | 93.01% | ||
CNN | 76.44% | 89.44% | 82.43% | CNN | 87.62% | 88.98% | 88.29% | ||
TCN+ | 88.57% | 97.69% | 92.91% | TCN+ | 88.75% | 92.15% | 90.42% | ||
Ours | 93.93% | 99.38% | 96.58% | Ours | 99.98% | 95.92% | 97.92% | ||
2 | GRU+ | 98.49% | 91.02% | 94.61% | 8 | GRU+ | 90.25% | 88.68% | 89.46% |
LSTM+ | 85.77% | 92.79% | 89.14% | LSTM+ | 97.44% | 97.87% | 97.66% | ||
CNN | 96.69% | 94.32% | 95.49% | CNN | 98.55% | 98.19% | 98.37% | ||
TCN+ | 92.24% | 97.80% | 94.93% | TCN+ | 94.86% | 92.07% | 93.44% | ||
Ours | 99.19% | 97.71% | 98.44% | Ours | 99.97% | 96.93% | 98.44% | ||
3 | GRU+ | 98.08% | 86.67% | 92.03% | 9 | GRU+ | 97.16% | 97.25% | 97.20% |
LSTM+ | 94.84% | 89.11% | 91.88% | LSTM+ | 94.73% | 94.33% | 94.53% | ||
CNN | 98.86% | 82.69% | 90.06% | CNN | 97.66% | 97.60% | 97.63% | ||
TCN+ | 96.69% | 94.32% | 95.49% | TCN+ | 95.58% | 98.37% | 96.95% | ||
Ours | 99.26% | 97.86% | 98.55% | Ours | 99.75% | 99.19% | 99.47% | ||
4 | GRU+ | 98.99% | 90.52% | 94.57% | 10 | GRU+ | 95.38% | 96.14% | 95.76% |
LSTM+ | 88.08% | 93.73% | 90.82% | LSTM+ | 95.19% | 93.06% | 94.11% | ||
CNN | 99.54% | 88.81% | 93.87% | CNN | 97.62% | 97.09% | 97.36% | ||
TCN+ | 93.58% | 88.68% | 91.07% | TCN+ | 91.10% | 99.07% | 94.91% | ||
Ours | 93.07% | 99.21% | 96.04% | Ours | 99.99% | 94.00% | 96.90% | ||
5 | GRU+ | 94.18% | 92.32% | 93.24% | 11 | GRU+ | 90.36% | 92.19% | 91.27% |
LSTM+ | 91.05% | 92.91% | 91.97% | LSTM+ | 96.16% | 95.69% | 95.92% | ||
CNN | 91.01% | 90.64% | 90.82% | CNN | 95.59% | 95.23% | 95.41% | ||
TCN+ | 94.84% | 89.11% | 91.88% | TCN+ | 99.99% | 84.20% | 91.42% | ||
Ours | 90.79% | 96.95% | 93.77% | Ours | 99.96% | 94.05% | 96.91% | ||
6 | GRU+ | 82.97% | 86.62% | 84.76% | 12 | GRU+ | 86.75% | 85.51% | 86.13% |
LSTM+ | 86.75% | 85.51% | 86.13% | LSTM+ | 88.82% | 83.34% | 86.00% | ||
CNN | 88.82% | 83.34% | 86.00% | CNN | 79.40% | 92.54% | 85.47% | ||
TCN+ | 88.86% | 82.69% | 85.06% | TCN+ | 82.65% | 90.70% | 86.11% | ||
Ours | 89.00% | 88.69% | 88.84% | Ours | 99.64% | 85.08% | 91.78% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, G.; Huang, Y.; Zhang, Y.; Zhu, Y.; Leng, Y.; Shang, N.; Zeng, J.; Pu, Z. Hybrid Transformer–Convolutional Neural Network Approach for Non-Intrusive Load Analysis in Industrial Processes. Energies 2025, 18, 2464. https://doi.org/10.3390/en18102464
He G, Huang Y, Zhang Y, Zhu Y, Leng Y, Shang N, Zeng J, Pu Z. Hybrid Transformer–Convolutional Neural Network Approach for Non-Intrusive Load Analysis in Industrial Processes. Energies. 2025; 18(10):2464. https://doi.org/10.3390/en18102464
Chicago/Turabian StyleHe, Gengsheng, Yu Huang, Ying Zhang, Yuanzhe Zhu, Yuan Leng, Nan Shang, Jincan Zeng, and Zengxin Pu. 2025. "Hybrid Transformer–Convolutional Neural Network Approach for Non-Intrusive Load Analysis in Industrial Processes" Energies 18, no. 10: 2464. https://doi.org/10.3390/en18102464
APA StyleHe, G., Huang, Y., Zhang, Y., Zhu, Y., Leng, Y., Shang, N., Zeng, J., & Pu, Z. (2025). Hybrid Transformer–Convolutional Neural Network Approach for Non-Intrusive Load Analysis in Industrial Processes. Energies, 18(10), 2464. https://doi.org/10.3390/en18102464