Enhanced Photoelectrochromic Performance of WO3 Through MoS2 and GO–MoS2 Quantum Dot Doping for Self-Powered Smart Window Application
Abstract
:1. Introduction
2. Experimental Method
2.1. Reagents
2.2. Synthesis of MoS2 and GO–MoS2 Quantum Dots
2.3. Deposition of WO3 and TiO2 Layers
2.4. Electrolyte Preparation
2.5. PECD Assemblage
2.6. Sample Characterization
3. Results and Discussion
3.1. XRD Analysis
3.2. Morphology Analysis
3.3. TEM Analysis
3.4. XPS Analysis
3.5. Optical Performance Analysis
3.6. Working Mechanism of PECD
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bechinger, C.; Ferrere, S.; Zaban, A.; Sprague, J.; Gregg, B.A. Photoelectrochromic windows and displays. Nature 1996, 383, 608–610. [Google Scholar] [CrossRef]
- Chang, C.C.; Chang, L.Y.; Cheng, Y.S.; Chang, Y.H.; Lai, T.H.; Septiani, N.L.W.; Yuliarto, B.; Yeh, M.H. A near-infrared photoelectrochromic device with indoor thermal management for self-powered smart windows. J. Mater. Chem. C 2023, 11, 13290–13299. [Google Scholar] [CrossRef]
- Chang, L.Y.; Chang, C.C.; Rinawati, M.; Chang, Y.H.; Cheng, Y.S.; Ho, K.C.; Chen, C.C.; Lin, C.H.; Wang, C.H.; Yeh, M.H. Near-infrared photoelectrochromic device with graphene quantum dot modified WO3 thin film toward fast-response thermal management for self-powered Agrivoltaics. Appl. Energy 2024, 361, 122930. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Kim, J.; Lee, K.K. Rational design of the electrolyte systems for the photochromic device. Electrochim. Acta 2021, 374, 137964. [Google Scholar] [CrossRef]
- Oh, S.; Nam, S.; Kim, S.; Yoon, T.; Kim, W.S. Self-Regulation of Infrared Using a Liquid Crystal Mixture Doped with Push—Pull Azobenzene for Energy-Saving Smart Windows. ACS Appl. Mater. Interfaces 2021, 3, 5028–5033. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.Y.; Sun, Q.; Cui, J.; Yu, X.; Li, S.; Zhang, L.; Jiang, S.; Ma, W.; Ma, R. Review on recent progress in WO3-based electrochromic films: Preparation methods and performance enhancement strategies. Nanoscale 2022, 15, 63–79. [Google Scholar] [CrossRef]
- Kadhim, F.J.; Hashim, N.A.H.; Abdulsattar, Z.S. Synthesis and study of photoelectrochromic and photocatalytic behavior of double-layer N-doped TiO2/Co3O4 configuration via DC reactive magnetron sputtering. Opt. Quantum Electron. 2024, 56, 270. [Google Scholar] [CrossRef]
- Luo, G.; Shen, K.; Wu, X.; Zheng, J.; Xu, C. High contrast photoelectrochromic device with CdS quantum dot sensitized photoanode. New J. Chem. 2017, 41, 579–587. [Google Scholar] [CrossRef]
- Bechinger, C.; Gregg, B.A. Development of a new self-powered electrochromic device for light modulation without external power supply. Sol. Energy Mater. Sol. Cells 1998, 54, 405–410. [Google Scholar] [CrossRef]
- Gregg, B.A. Photoelectrochromic cells and their applications. Endeavour 1997, 21, 52–55. [Google Scholar] [CrossRef]
- Hauch, A.; Georg, A.; Baumgärtner, S.; Opara Krašovec, U.; Orel, B. New photoelectrochromic device. Electrochim. Acta 2001, 46, 2131–2136. [Google Scholar] [CrossRef]
- Dao, T.T.; Park, S.; Sarwar, S.; Tran, H.V.; Lee, S.I.; Park, H.S.; Song, S.H.; Nguyen, H.D.; Lee, K.K.; Han, C.H.; et al. Novel flexible photochromic device with unprecedented fast-bleaching kinetic via platinum decoration on WO3 layer. Sol. Energy Mater. Sol. Cells 2021, 231, 111316. [Google Scholar] [CrossRef]
- Sarwar, S.; Park, S.; Dao, T.T.; Lee, M.S.; Ullah, A.; Hong, S.; Han, C.H. Scalable photoelectrochromic glass of high performance powered by ligand attached TiO2 photoactive layer. Sol. Energy Mater. Sol. Cells 2020, 210, 110498. [Google Scholar] [CrossRef]
- Yong, W.; Chen, N.; Xiong, T.; Fu, G. Development of high-performance Mo doped WO3 photo-electrochromic devices. Mater. Today Chem. 2024, 38, 102095. [Google Scholar] [CrossRef]
- Lee, S.I.; Okwako, J.A.; Han Song, S.; Park, S.; Dao, T.T.; Van Tran, H.; Aduda, B.O.; Waita, S.; Hong, Y.-S.; Kwak, K.; et al. Performance Comparison of Different Methyl Group Positioning on Salicylic acid Sensitizers for Photoelectrochromic Device. In Proceedings of the 2023 IEEE 23rd International Conference on Nanotechnology (NANO), Jeju City, Republic of Korea, 2–5 July 2023; pp. 255–260. [Google Scholar] [CrossRef]
- Okwako, J.A.; Song, S.H.; Park, S.; Tran, H.V.; Aduda, B.O.; Waita, S.; Hong, Y.-S.; Hong, S.; Han, C.-H. Synergistic effects of co-doping WO3 with Al and Pt on photoelectrochromic performance. Electrochem. Commun. 2024, 165, 107762. [Google Scholar] [CrossRef]
- Sarwar, S.; Park, S.; Dao, T.T.; Hong, S.; Han, C.H. Rapid bleaching of photoelectrochromic device by the simple addition of Pt catalyst in WO3 layer. Sol. Energy Mater. Sol. Cells 2021, 224, 110990. [Google Scholar] [CrossRef]
- Chang, X.; Dong, X.; Liu, X.; Tong, Y.; Li, K.; Li, Z.; Lu, Y. Constructing a hexagonal/orthorhombic WO3 phase junction for enhanced photochromism. Opt. Mater. 2023, 142, 114131. [Google Scholar] [CrossRef]
- Morankar, P.J.; Amate, R.U.; Teli, A.M.; Beknalkar, S.A.; Chavan, G.T.; Ahir, N.A.; Jeon, C.W. Nanogranular advancements in molybdenum-doped tungsten oxide for superior electrochromic energy storage. J. Energy Storage 2024, 84, 110978. [Google Scholar] [CrossRef]
- Park, H.S.; Park, S.; Song, S.H.; Dao, T.T.; Tran, H.V.; Lee, S.I.; Han, C.H.; Cho, C.H.; Hong, S. Effects of Ti-doping amount and annealing temperature on electrochromic performance of sol-gel derived WO3. RSC Adv. 2022, 12, 17401–17409. [Google Scholar] [CrossRef]
- Hung, C.-L.; Chen, M.; Wen-Cheun Au, B.; Chan, K.-Y.; Soon How Thien, G.; Yeoh, M.-E.; Zainizan Sahdan, M.; Chowdappa Ananda Murthy, H. The Effect of Transparent Conducting Oxide Films on WO3-Based Electrochromic Devices with Conducting Polymer Electrolytes. Polymers 2023, 15, 238. [Google Scholar] [CrossRef]
- Khan, A.; Gaikwad, M.A.; Kim, J.H.; Kadam, A. An overview and experimental analysis of WO3/TiO2 composite with enhanced electrochromic properties for smart windows application. Tungsten 2024, 6, 732–747. [Google Scholar] [CrossRef]
- Badour, Y.; Danto, S.; Albakour, S.; Mornet, S.; Penin, N.; Hirsch, L.; Gaudon, M. Low-cost WO3 nanoparticles / PVA smart photochromic glass windows for sustainable building energy savings. Sol. Energy Mater. Sol. Cells 2023, 255, 112291. [Google Scholar] [CrossRef]
- Yamazaki, S.; Isoyama, K. Kinetic Studies of WO3-Based Photochromism in Polyvinyl Alcohol Film. Langmuir 2023, 39, 10240–10248. [Google Scholar] [CrossRef]
- Khan, A.; Nilam, B.; Rukhsar, C.; Sayali, G.; Mandlekar, B.; Kadam, A. A review article based on composite graphene @tungsten oxide thin films for various applications. Tungsten 2023, 5, 391–418. [Google Scholar] [CrossRef]
- Syrrokostas, G.; Antonelou, A.; Leftheriotis, G.; Yannopoulos, S.N. Electrochemical properties and long-term stability of molybdenum disulfide and platinum counter electrodes for solar cells: A comparative study. Electrochim. Acta 2018, 267, 110–121. [Google Scholar] [CrossRef]
- Ahmad, K.; Shinde, M.A.; Song, G.; Kim, H. Design and fabrication of MoSe2/WO3 thin films for the construction of electrochromic devices on indium tin oxide based glass and flexible substrates. Ceram. Int. 2021, 47, 34297–34306. [Google Scholar] [CrossRef]
- Ahmad, K.; Shinde, M.A.; Song, G.; Kim, H. Preparation of CoS2/WO3 thin films for the construction of electrochromic devices. Ceram. Int. 2023, 49, 10119–10128. [Google Scholar] [CrossRef]
- Rakibuddin, M.; Shinde, M.A.; Kim, H. Electrochimica Acta Facile sole gel fabrication of MoS2 bulk, flake and quantum dot for electrochromic device and their enhanced performance with WO3. Electrochim. Acta 2020, 349, 136403. [Google Scholar] [CrossRef]
- Rakibuddin, M.; Kim, H. Fabrication of MoS2/WO3 nanocomposite films for enhanced electro-chromic performance. New J. Chem. 2017, 41, 15327–15333. [Google Scholar] [CrossRef]
- Sharma, R.; Nihal; Sharma, M.; Goswamy, J.K. Synthesis and characterization of MoS2/WO3 nanocomposite for electrochromic device application. Int. J. Energy Res. 2022, 46, 22176–22187. [Google Scholar] [CrossRef]
- Xiao, Y.H.; Zhang, W.D. MoS2 quantum dots interspersed WO3 nanoplatelet arrays with enhanced photoelectrochemical activity. Electrochim. Acta 2017, 252, 416–423. [Google Scholar] [CrossRef]
- Li, G.; Hou, J.; Zhang, W.; Li, P.; Liu, G.; Wang, Y.; Wang, K. Graphene-bridged WO3/MoS2 Z-scheme photocatalyst for enhanced photodegradation under visible light irradiation. Mater. Chem. Phys. 2020, 246, 122827. [Google Scholar] [CrossRef]
- Xu, G.; Yang, L.; Wei, X.; Ding, J.; Zhong, J.; Chu, P.K. MoS2-Quantum-Dot-Interspersed Li4Ti5O12 Nanosheets with Enhanced Performance for Li- and Na-Ion Batteries. Adv. Funct. Mater. 2016, 26, 3349–3358. [Google Scholar] [CrossRef]
- Chun, S.Y.; Park, S.; Lee, S.I.; Nguyen, H.D.; Lee, K.K.; Hong, S.; Han, C.H.; Cho, M.; Choi, H.K.; Kwak, K. Operando Raman and UV-Vis spectroscopic investigation of the coloring and bleaching mechanism of self-powered photochromic devices for smart windows. Nano Energy 2021, 82, 105721. [Google Scholar] [CrossRef]
- Sai Iswarya Bakavaty, T.; Gurunathan, K. Graphene-wrapped WO3/Mo derivatives for the simultaneous electrochemical detection of dopamine and uric acid. Mater. Sci. Eng. B 2024, 299, 116967. [Google Scholar] [CrossRef]
- Arifuzzaman, M.; Saha, T.; Podder, J.; Al-Bin, F.; Das, H.N. Effect of silver doping on the band gap tuning of tungsten oxide thin films for optoelectronic applications. Heliyon 2024, 10, e27761. [Google Scholar] [CrossRef]
- Eldjilali, C.Z.; Chan, K.-Y.; Tan, M.-Y.; Abdelhamed, A.H.E.; Thien, G.S.H.; Low, P.-L.; Sin, Y.-K.; Lee, C.-L.; Pang, W.-L. Pre-heating Temperature Effect on Electrochromic Properties of TiO2 Thin Films. Int. J. Integr. Eng. 2024, 16, 55–66. [Google Scholar] [CrossRef]
- Joel, C.; Ivan Jebakumar, D.S.; Biju Bennie, R.; Jerold Antony, A. Temperature and frequency dependent electrical conductivity of Al-Mo co-doped WO3 nanoparticles. Inorg. Chem. Commun. 2023, 155, 111070. [Google Scholar] [CrossRef]
- Yadav, J.; Phutela, A.; Khan, J.A.; Bhattacharya, S.; Singh, J.P. Boosting visible-light photoelectrochemical water splitting response of WO3–MoS2 nanocomposites by transition metal doping: Experimental and first-principles studies. Int. J. Hydrogen Energy 2024, 79, 826–838. [Google Scholar] [CrossRef]
- Tikoo, A.; Lohia, N.; Charan Kondeti, S.S.; Meduri, P. Mechanistic insights into enhanced photocatalytic H2O2 production induced by a Z-scheme heterojunction of copper bismuth oxide and molybdenum sulfide. J. Mater. Chem. A 2023, 11, 14887–14899. [Google Scholar] [CrossRef]
- Kim, M.S.; Lee, H.K.; Yoon, J.H.; Kim, H.M.; Kim, Y.S.; Kim, J.P. Improving dispersibility of tungsten oxide particles with organic ligands for photochromic films. Colloids Surf. A Physicochem. Eng. Asp. 2024, 694, 134083. [Google Scholar] [CrossRef]
- Wei, H.; Ding, Y.; Li, H.; Zhang, Q.; Hu, N.; Wei, L.; Yang, Z. MoS2 quantum dots decorated reduced graphene oxide as a sulfur host for advanced lithium-sulfur batteries. Electrochim. Acta 2019, 327, 134994. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, J.; Li, X.; Yang, L.; Yang, L.; Lin, J.; Huang, J.; Xu, G. High-performance MoS2 quantum dots/graphene functionalized separator and its failure analysis under high sulfur loading. Chem. Eng. J. 2023, 456, 140972. [Google Scholar] [CrossRef]
- Lin, D.; Su, Z.; Wei, G. Three-dimensional porous reduced graphene oxide decorated with MoS2 quantum dots for electrochemical determination of hydrogen peroxide. Mater. Today Chem. 2018, 7, 76–83. [Google Scholar] [CrossRef]
- Linto Sibi, S.P.; Rajkumar, M.; Manoharan, M.; Mobika, J.; Nithya Priya, V.; Rajendra Kumar, R.T. Humidity activated ultra-selective room temperature gas sensor based on W doped MoS2/RGO composites for trace level ammonia detection. Anal. Chim. Acta 2024, 1287, 342075. [Google Scholar] [CrossRef]
- dos Santos, C.E.L.; Fonsaca, J.E.S.; Vello, T.P.; Oliveira, M.M.; Domingues, S.H. Tackling two different energy issues with one unique WS2–WO3/rGO ternary nanocomposite: Energy storage and electrochemical hydrogen generation. Synth. Met. 2025, 311, 117843. [Google Scholar] [CrossRef]
- Chowdhury, F.A.; Hossain, M.A.; Uchida, K.; Tamura, T.; Sugawa, K.; Mochida, T.; Otsuki, J.; Mohiuddin, T.; Boby, M.A.; Alam, M.S. Graphene oxide/carbon nanoparticle thin film based IR detector: Surface properties and device characterization. AIP Adv. 2015, 5, 107228. [Google Scholar] [CrossRef]
- Gu, H.; Tan, M.; Wang, T.; Sun, J.; Du, J.; Ma, R.; Wang, W.; Hu, D. Boosting the electrochromic performance of P-doped WO3 films via electrodeposition for smart window applications. RSC Adv. 2024, 14, 10298–10303. [Google Scholar] [CrossRef]
- Li, A.; Tan, Y.; Wang, Y.; Cheng, C. Three-Dimensional Ordered Macroporous Amorphous WO3 Arrays for Zinc-Based Electrochromic Device with Large Light Modulation and Fast Switching. Adv. Mater. Technol. 2024, 9, 2301886. [Google Scholar] [CrossRef]
- Usha, K.S.; Lee, S.Y. Rapid thermal annealing treatment on WO3 thin films for energy efficient smart windows. Ceram. Int. 2024, 50, 23244–23255. [Google Scholar] [CrossRef]
- Miyazaki, H.; Ishigaki, T.; Suzuki, H.; Ota, T. Effect of Film Thickness and Air Atmosphere on Photochromic Properties of WO3-Based Composite Films. Bull. Chem. Soc. Jpn. 2016, 89, 20–23. [Google Scholar] [CrossRef]
- Badour, Y.; Danto, S.; Gonidec, M.; Labrugère, C.; Suchomel, M.R.; Philippot, G.; Gaudon, M. Fine-tuned photochromic WO3-x thin films: A detailed study from structural analysis to UV photo-sensing application. Opt. Mater. 2023, 145, 114432. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, K.; Xie, H.; Xue, B.; Zheng, J.; Xu, C. Robust non-complementary electrochromic device based on WO3 film and CoS catalytic counter electrode with TMTU/TMFDS2+ redox couple. Chem. Eng. J. 2021, 426, 131314. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okwako, J.A.; Song, S.-H.; Park, S.; Waita, S.; Aduda, B.; Hong, Y.-S.; Han, C.-H. Enhanced Photoelectrochromic Performance of WO3 Through MoS2 and GO–MoS2 Quantum Dot Doping for Self-Powered Smart Window Application. Energies 2025, 18, 2411. https://doi.org/10.3390/en18102411
Okwako JA, Song S-H, Park S, Waita S, Aduda B, Hong Y-S, Han C-H. Enhanced Photoelectrochromic Performance of WO3 Through MoS2 and GO–MoS2 Quantum Dot Doping for Self-Powered Smart Window Application. Energies. 2025; 18(10):2411. https://doi.org/10.3390/en18102411
Chicago/Turabian StyleOkwako, Jacinta Akoth, Seung-Han Song, Sunghyoek Park, Sebastian Waita, Bernard Aduda, Young-Sik Hong, and Chi-Hwan Han. 2025. "Enhanced Photoelectrochromic Performance of WO3 Through MoS2 and GO–MoS2 Quantum Dot Doping for Self-Powered Smart Window Application" Energies 18, no. 10: 2411. https://doi.org/10.3390/en18102411
APA StyleOkwako, J. A., Song, S.-H., Park, S., Waita, S., Aduda, B., Hong, Y.-S., & Han, C.-H. (2025). Enhanced Photoelectrochromic Performance of WO3 Through MoS2 and GO–MoS2 Quantum Dot Doping for Self-Powered Smart Window Application. Energies, 18(10), 2411. https://doi.org/10.3390/en18102411