Convex Relaxations of Maximal Load Delivery for Multi-Contingency Analysis of Joint Electric Power and Natural Gas Transmission Networks
Abstract
:1. Introduction
- The first formulation of the joint gas–power MLD problem;
- An efficient and accurate MICP relaxation of the MLD problem;
- Proof-of-concept analyses of MLD gas–power tradeoffs.
2. Background for Network Modeling
2.1. Power Transmission Network Modeling
2.1.1. Notations for Sets
2.1.2. Power Network Modeling Requirements
2.2. Natural Gas Transmission Network Modeling
2.2.1. Notations for Sets
2.2.2. Gas Network Modeling Requirements
2.3. Interdependency Modeling
2.4. Challenges
3. Maximal Load Delivery Formulations
3.1. Objectives of the Maximum Load Delivery Problem
3.2. Lexicographic and Weighted MLD Formulations
3.3. Relaxation of Bilinear Products and Nonlinear Equations
3.3.1. Convexification of Power Physics
3.3.2. Convexification of Gas Physics
3.3.3. Convexification of Gas-Fired Generation
3.4. Summary of Formulations
4. Computational Evaluation
4.1. Benchmark Datasets and Experimental Setup
4.2. Multi-Contingency Damage Scenarios
4.3. Computational Performance
4.4. Proof-of-Concept Maximum Load Delivery Analysis
4.5. Proof-of-Concept Pareto Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. DOE Energy Information Administration. International Energy Outlook 2023; Technical Report; U.S. DOE Energy Information Administration: Washington, DC, USA, 2023.
- U.S. DOE Energy Information Administration. U.S. Natural Gas Pipelines. 2018. Available online: https://hifld-geoplatform.opendata.arcgis.com/datasets/geoplatform::natural-gas-pipelines/about (accessed on 23 March 2024).
- ERCOT. Review of February 2021 Extreme Cold Weather Event; ERCOT: Austin, TX, USA, 2021. [Google Scholar]
- PJM Interconnection. Analysis of Operational Events and Market Impacts During the January 2014 Cold Weather Events; Technical Report; PJM Interconnection: Norristown, PA, USA, 2014. [Google Scholar]
- Tasseff, B.; Coffrin, C.; Bent, R.; Sundar, K.; Zlotnik, A. Natural gas maximal load delivery for multi-contingency analysis. Comput. Chem. Eng. 2022, 168, 108032. [Google Scholar] [CrossRef]
- Coffrin, C.; Bent, R.; Tasseff, B.; Sundar, K.; Backhaus, S. Relaxations of AC Maximal Load Delivery for Severe Contingency Analysis. IEEE Trans. Power Syst. 2019, 34, 1450–1458. [Google Scholar] [CrossRef]
- Bent, R.; Tasseff, B.; Coffrin, C. InfrastructureModels: Composable Multi-infrastructure Optimization in Julia. Informs J. Comput. 2023, 36, 305–704. [Google Scholar] [CrossRef]
- Molzahn, D.K.; Hiskens, I.A. A Survey of Relaxations and Approximations of the Power Flow Equations. Found. Trends Electr. Energy Syst. 2019, 4, 1–221. [Google Scholar] [CrossRef]
- Rhodes, N.; Ntaimo, L.; Roald, L. Balancing Wildfire Risk and Power Outages Through Optimized Power Shut-Offs. IEEE Trans. Power Syst. 2021, 36, 3118–3128. [Google Scholar] [CrossRef]
- Rhodes, N.; Fobes, D.M.; Coffrin, C.; Roald, L. PowerModelsRestoration.jl: An open-source framework for exploring power network restoration algorithms. Electr. Power Syst. Res. 2021, 190, 106736. [Google Scholar] [CrossRef]
- Hiller, B.; Koch, T.; Schewe, L.; Schwarz, R.; Schweiger, J. A System to Evaluate Gas Network Capacities: Concepts and Implementation. Eur. J. Oper. Res. 2018, 270, 797–808. [Google Scholar] [CrossRef]
- Schmidt, M.; Steinbach, M.C.; Willert, B.M. High Detail Stationary Optimization Models for Gas Networks: Validation and Results. Optim. Eng. 2016, 17, 437–472. [Google Scholar] [CrossRef]
- Cheli, L.; Guzzo, G.; Adolfo, D.; Carcasci, C. Steady-state analysis of a natural gas distribution network with hydrogen injection to absorb excess renewable electricity. Int. J. Hydrogen Energy 2021, 46, 25562–25577. [Google Scholar] [CrossRef]
- Kazi, S.R.; Sundar, K.; Srinivasan, S.; Zlotnik, A. Modeling and optimization of steady flow of natural gas and hydrogen mixtures in pipeline networks. Int. J. Hydrogen Energy 2024, 54, 14–24. [Google Scholar] [CrossRef]
- Zlotnik, A.; Kazi, S.R.; Sundar, K.; Gyrya, V.; Baker, L.; Sodwatana, M.; Brodskyi, Y. Effects of Hydrogen Blending on Natural Gas Pipeline Transients, Capacity, and Economics. In Proceedings of the PSIG Annual Meeting, San Antonio, TX, USA, 16–19 May 2023. [Google Scholar]
- Tang, D.; Tan, G.L.; Li, G.W.; Liang, J.G.; Ahmad, S.M.; Bahadur, A.; Humayun, M.; Ullah, H.; Khan, A.; Bououdina, M. State-of-the-art hydrogen generation techniques and storage methods: A critical review. J. Energy Storage 2023, 64, 107196. [Google Scholar] [CrossRef]
- Erdener, B.C.; Sergi, B.; Guerra, O.J.; Lazaro Chueca, A.; Pambour, K.; Brancucci, C.; Hodge, B.M. A review of technical and regulatory limits for hydrogen blending in natural gas pipelines. Int. J. Hydrogen Energy 2023, 48, 5595–5617. [Google Scholar] [CrossRef]
- Farrokhifar, M.; Nie, Y.; Pozo, D. Energy systems planning: A survey on models for integrated power and natural gas networks coordination. Appl. Energy 2020, 262, 114567. [Google Scholar] [CrossRef]
- Byeon, G.; Van Hentenryck, P. Unit Commitment With Gas Network Awareness. IEEE Trans. Power Syst. 2020, 35, 1327–1339. [Google Scholar] [CrossRef]
- Mitridati, L.; Kazempour, J.; Pinson, P. Heat and electricity market coordination: A scalable complementarity approach. Eur. J. Oper. Res. 2020, 283, 1107–1123. [Google Scholar] [CrossRef]
- Zlotnik, A.; Roald, L.; Backhaus, S.; Chertkov, M.; Andersson, G. Coordinated Scheduling for Interdependent Electric Power and Natural Gas Infrastructures. IEEE Trans. Power Syst. 2017, 32, 600–610. [Google Scholar] [CrossRef]
- Wang, C.; Wei, W.; Wang, J.; Bai, L.; Liang, Y.; Bi, T. Convex Optimization Based Distributed Optimal Gas-Power Flow Calculation. IEEE Trans. Sustain. Energy 2018, 9, 1145–1156. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, J.; Sun, Y.; Wei, C.; Wang, J.; Liao, S.; Ke, D.; Li, X.; Yang, J.; Peng, X. Coordinated operation of gas-electricity integrated distribution system with multi-CCHP and distributed renewable energy sources. Appl. Energy 2018, 211, 237–248. [Google Scholar] [CrossRef]
- Mirzaei, M.A.; Nazari-Heris, M.; Mohammadi-Ivatloo, B.; Zare, K.; Marzband, M.; Anvari-Moghaddam, A. A Novel Hybrid Framework for Co-Optimization of Power and Natural Gas Networks Integrated With Emerging Technologies. IEEE Syst. J. 2020, 14, 3598–3608. [Google Scholar] [CrossRef]
- Abeliuk, A.; Aziz, H.; Berbeglia, G.; Gaspers, S.; Kalina, P.; Mattei, N.; Peters, D.; Stursberg, P.; Van Hentenryck, P.; Walsh, T. Interdependent Scheduling Games. arXiv 2016, arXiv:1605.09497. [Google Scholar]
- Ríos-Mercado, R.Z.; Borraz-Sánchez, C. Optimization problems in natural gas transportation systems: A state-of-the-art review. Appl. Energy 2015, 147, 536–555. [Google Scholar] [CrossRef]
- Zlotnik, A.; Chertkov, M.; Backhaus, S. Optimal control of transient flow in natural gas networks. In Proceedings of the 2015 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, 15–18 December 2015; pp. 4563–4570. [Google Scholar] [CrossRef]
- Zlotnik, A.; Sundar, K.; Rudkevich, A.M.; Beylin, A.; Li, X. Optimal Control for Scheduling and Pricing Intra-day Natural Gas Transport on Pipeline Networks. In Proceedings of the 2019 IEEE 58th Conference on Decision and Control (CDC), Nice, France, 11–13 December 2019. pp. 4887–4884. [Google Scholar] [CrossRef]
- Grundel, S.; Hornung, N.; Klaassen, B.; Benner, P.; Clees, T. Computing Surrogates for Gas Network Simulation Using Model Order Reduction. In Surrogate-Based Modeling and Optimization: Applications in Engineering; Koziel, S., Leifsson, L., Eds.; Springer: New York, NY, USA, 2013; pp. 189–212. [Google Scholar] [CrossRef]
- Zlotnik, A.; Dyachenko, S.; Backhaus, S.; Chertkov, M. Model Reduction and Optimization of Natural Gas Pipeline Dynamics. In Proceedings of the ASME 2015 Dynamic Systems and Control Conference, Columbus, OH, USA, 28–30 October 2015. [Google Scholar] [CrossRef]
- Roald, L.A.; Sundar, K.; Zlotnik, A.; Misra, S.; Andersson, G. An Uncertainty Management Framework for Integrated Gas-Electric Energy Systems. Proc. IEEE 2020, 108, 1518–1540. [Google Scholar] [CrossRef]
- Bent, R.; Blumsack, S.; Van Hentenryck, P.; Borraz-Sánchez, C.; Shahriari, M. Joint Electricity and Natural Gas Transmission Planning With Endogenous Market Feedbacks. IEEE Trans. Power Syst. 2018, 33, 6397–6409. [Google Scholar] [CrossRef]
- Marler, R.; Arora, J. Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 2004, 26, 369–395. [Google Scholar] [CrossRef]
- Jabr, R. Radial distribution load flow using conic programming. IEEE Trans. Power Syst. 2006, 21, 1458–1459. [Google Scholar] [CrossRef]
- Babaeinejadsarookolaee, S.; Birchfield, A.; Christie, R.D.; Coffrin, C.; DeMarco, C.; Diao, R.; Ferris, M.; Fliscounakis, S.; Greene, S.; Huang, R.; et al. The Power Grid Library for Benchmarking AC Optimal Power Flow Algorithms. arXiv 2021, arXiv:1908.02788. [Google Scholar]
- Schmidt, M.; Aßmann, D.; Burlacu, R.; Humpola, J.; Joormann, I.; Kanelakis, N.; Koch, T.; Oucherif, D.; Pfetsch, M.E.; Schewe, L.; et al. GasLib—A Library of Gas Network Instances. Data 2017, 2, 40. [Google Scholar] [CrossRef]
- De Wolf, D.; Smeers, Y. The Gas Transmission Problem Solved by an Extension of the Simplex Algorithm. Manag. Sci. 2000, 46, 1454–1465. [Google Scholar] [CrossRef]
- Sánchez, C.B.; Bent, R.; Backhaus, S.; Blumsack, S.; Hijazi, H.; van Hentenryck, P. Convex Optimization for Joint Expansion Planning of Natural Gas and Power Systems. In Proceedings of the 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016; pp. 2536–2545. [Google Scholar] [CrossRef]
- Price, J.E.; Goodin, J. Reduced network modeling of WECC as a market design prototype. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Dunning, I.; Huchette, J.; Lubin, M. JuMP: A Modeling Language for Mathematical Optimization. SIAM Rev. 2017, 59, 295–320. [Google Scholar] [CrossRef]
- Carpentier, J. Contribution to the economic dispatch problem. Bull. Soc. Fr. Electr. 1962, 3, 431–447. [Google Scholar]
- Kröger, O.; Coffrin, C.; Hijazi, H.; Nagarajan, H. Juniper: An Open-Source Nonlinear Branch-and-Bound Solver in Julia. In Integration of Constraint Programming, Artificial Intelligence and Operations Research; van Hoeve, W.J., Ed.; Springer: Cham, Switzerland, 2018; pp. 377–386. [Google Scholar]
- Wächter, A.; Biegler, L.T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 2006, 106, 25–57. [Google Scholar] [CrossRef]
- Duff, I.S. MA57—A code for the solution of sparse symmetric definite and indefinite systems. ACM Trans. Math. Softw. 2004, 30, 118–144. [Google Scholar] [CrossRef]
- Tasseff, B.; Coffrin, C.; Bent, R. Convex Relaxations of Maximal Load Delivery for Multi-contingency Analysis of Joint Electric Power and Natural Gas Transmission Networks. arXiv 2021, arXiv:2108.12361. [Google Scholar]
- Tasseff, B. Optimization of Critical Infrastructure with Fluids. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2021. [Google Scholar] [CrossRef]
Network | References | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NG11-EP14 | [35,36] | 11 | 8 | 0 | 0 | 1 | 0 | 2 | 14 | 20 | 5 | 11 | 1 | 1 |
NG25-EP14 | [35,37,38] | 25 | 24 | 0 | 0 | 0 | 0 | 6 | 14 | 20 | 5 | 11 | 1 | 2 |
NG25-EP30 | [35,36] | 25 | 19 | 1 | 1 | 0 | 2 | 3 | 30 | 41 | 6 | 21 | 2 | 1 |
NG40-EP39 | [35,36] | 40 | 39 | 0 | 0 | 0 | 0 | 6 | 39 | 46 | 10 | 21 | 0 | 4 |
NG146-EP36 | [32] | 146 | 93 | 0 | 0 | 0 | 42 | 29 | 36 | 121 | 91 | 35 | 2 | 34 |
NG134-EP162 | [35,36] | 134 | 86 | 45 | 0 | 0 | 1 | 1 | 162 | 284 | 12 | 113 | 34 | 5 |
NG135-EP179 | [35,36] | 135 | 141 | 0 | 0 | 0 | 0 | 29 | 179 | 263 | 29 | 104 | 40 | 12 |
NG247-EP240 | [39] | 247 | 254 | 0 | 0 | 0 | 0 | 12 | 240 | 448 | 143 | 139 | 0 | 6 |
NG603-EP588 | [35,36] | 603 | 278 | 269 | 8 | 26 | 44 | 5 | 588 | 686 | 167 | 379 | 68 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tasseff, B.; Coffrin, C.; Bent, R. Convex Relaxations of Maximal Load Delivery for Multi-Contingency Analysis of Joint Electric Power and Natural Gas Transmission Networks. Energies 2024, 17, 2200. https://doi.org/10.3390/en17092200
Tasseff B, Coffrin C, Bent R. Convex Relaxations of Maximal Load Delivery for Multi-Contingency Analysis of Joint Electric Power and Natural Gas Transmission Networks. Energies. 2024; 17(9):2200. https://doi.org/10.3390/en17092200
Chicago/Turabian StyleTasseff, Byron, Carleton Coffrin, and Russell Bent. 2024. "Convex Relaxations of Maximal Load Delivery for Multi-Contingency Analysis of Joint Electric Power and Natural Gas Transmission Networks" Energies 17, no. 9: 2200. https://doi.org/10.3390/en17092200
APA StyleTasseff, B., Coffrin, C., & Bent, R. (2024). Convex Relaxations of Maximal Load Delivery for Multi-Contingency Analysis of Joint Electric Power and Natural Gas Transmission Networks. Energies, 17(9), 2200. https://doi.org/10.3390/en17092200