Geochemical Characteristics of the Paleozoic Marine Source Rocks and Ultra-Deep Hydrocarbon Accumulation Mode of the Awati Sag
Abstract
:1. Introduction
2. Geologic Background
2.1. Tectonic Background
2.2. Stratigraphic Development
3. Sampling and Methodologies
3.1. Field Outcrop Profiles
3.2. Geochemical Analysis and Mineral Composition Analysis
3.3. 1D and 2D Hydrocarbon Accumulation Simulations
4. Comparison of Geochemical Characteristics of Potential Source Rocks
4.1. Organic Matter Abundance and Hydrocarbon Potential
4.1.1. TOC Statistics Obtained from Lab Analysis
4.1.2. Logging Interpretation on TOC
4.1.3. Hydrocarbon Generation Potential
4.2. The Types and Maturity of Organic Matter
5. Mineral Compositions and Microscopic Characterization of the Primary Source Rocks
5.1. Mineral Compositions
5.2. Microscopic Observation under FE-SEM
6. Simulation of Hydrocarbon Generation
6.1. One-Dimensional Hydrocarbon Accumulation Simulation
6.2. Two-Dimensional Hydrocarbon Accumulation Simulation
7. Hydrocarbon Accumulation Modes in the Awati Sag and Surrounding Areas
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Q.; Liu, J.; Wang, S.; Guo, Y.; Han, X.; Li, Q.; Cheng, Y.; Dong, Z.; Li, X.; Zhang, X. Numerical insights into factors affecting collapse behavior of horizontal wellbore in clayey silt hydrate-bearing sediments and the accompanying control strategy. Ocean Eng. 2024, 297, 117029. [Google Scholar] [CrossRef]
- Li, Q.; Wang, F.; Wang, Y.; Bai, B.; Zhang, J.; Lili, C.; Sun, Q.; Wang, Y.; Forson, K. Adsorption behavior and mechanism analysis of siloxane thickener for CO2 fracturing fluid on shallow shale soil. J. Mol. Liq. 2023, 376, 121394. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, Z.; Huang, F.; Zhao, Z.; Jiang, H.; Xu, Y. Hydrocarbon accumulation conditions and exploration position of ultra-deep reservoirs in onshore superimposed basins of China. Acta Pet. Sin. 2023, 44, 2020. [Google Scholar]
- Song, Z.; Ding, X.; Zhang, B.; Ge, B.; Tian, X.; Chen, X.; Ma, K.; Peng, H.; Wang, Y.; Yang, D. Dynamic reconstruction of the hydrocarbon generation, accumulation, and evolution history in ultra-deeply-buried strata. Front. Earth Sci. 2022, 10, 927903. [Google Scholar] [CrossRef]
- Song, Z.; Lv, M.; Zhao, L.; Liu, C.; He, Y.; Zhang, Y.; Lobusev, M.A. A novel bound water occurrence model for tight sandstone. Fuel 2024, 357, 130030. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Gao, Y. Silurian hydrocarbon exploration breakthrough and its implications in the Shajingzi structural belt of Tarim Basin, NW China. Pet. Explor. Dev. 2022, 49, 233–246. [Google Scholar] [CrossRef]
- Xi, Q.; Yu, H.; Gu, Q.; Qian, L.; Li, X.; Li, Y. Main hydrocarbon source rocks and contrasts for aeati sag in tarim basin. Pet. Geol. Oilfield Dev. Daqing 2016, 35, 12–18. [Google Scholar]
- Gao, Z.; Shi, J.; Lv, J.; Chang, Z. High-frequency sequences, geochemical characteristics, formations, and distribution predictions of the lower Cambrian Yuertusi Formation in the Tarim Basin. Mar. Pet. Geol. 2022, 146, 105966. [Google Scholar] [CrossRef]
- Huang, S.; Ren, H.; Yiqian, Q. Recognition of Cambrian Pre-salt Source Rock in the Central and Western Part of Tarim Basin. Offshore Oil 2017, 37, 14–20. [Google Scholar]
- Yang, Z.Y.; Luo, P.; Liu, B.; Liu, C.; Ma, J.; Chen, F.R. The difference and sedimentation of two black rock series from Yurtus Formation during the earliest Cambrian in the Aksu area of Tarim Basin, Northwest China. Acta Petrol. Sin. 2017, 33, 1893–1918. [Google Scholar]
- Wu, J.; He, X.; Ni, X.; Huang, L.; Xiong, R. Characteristics of the Lower Cambrian Yuertus Formation Source Rocks in the Tarim Basin, NW China; IOP Conference Series: Earth and Environmental Science, 2019; IOP Publishing: Bristol, UK, 2019; p. 012043. [Google Scholar]
- Zhu, G.; Chen, F.; Chen, Z.; Zhang, Y.; Xing, X.; Tao, X.; Ma, D. Discovery and basic characteristics of the high-quality source rocks of the Cambrian Yuertusi Formation in Tarim Basin. Nat. Gas Geosci. 2016, 27, 8–21. [Google Scholar] [CrossRef]
- Lu, X.; Li, J.; Zhao, F. Re-cognition on petroleum exploration prospect of marine carbonates in western Tarim Basin. Mar. Orig. Pet. Geol. 2007, 12, 10–14. [Google Scholar]
- Zheng, J.; Li, B.; Liu, Y.; Xiao, P.C.; Li, Q.Q. Study on thermal evolution modeling of Lower Cambrian Yuertusi source rock, Tarim Basin. Reserv. Eval. Dev. 2018, 8, 7–12. [Google Scholar]
- Wang, F.Y.; Du, Z.L.; Zhang, B.M.; Zhao, M.J. Geochemistry of Salgan black shales of Middle-Upper Ordovician in keping outcrop, Tarim Basin. Xinjiang Pet. Geol. 2008, 29, 687. [Google Scholar]
- Wang, F.; Zhang, S.; Zhang, B.; Xiao, Z.; Liu, C. Maturity and its history of Cambrian marine source rocks in the Tarim Basin. Geochimica 2003, 32, 461–468. [Google Scholar]
- Liang, Z.L.; Gang, W.Z.; Ye, Z.X. Hydrocarbon expulsion history of Middle-Upper Ordovician source rocks in Tarim Basin. Xinjiang Pet. Geol. 2008, 29, 53. [Google Scholar]
- Zhang, S.; Gao, Z.; Li, J.; Zhang, B.; Gu, Q.; Lu, Y. Identification and distribution of marine hydrocarbon source rocks in the Ordovician and Cambrian of the Tarim Basin. Pet. Explor. Dev. 2012, 39, 305–314. [Google Scholar] [CrossRef]
- Chen, Q.; Chu, C.; Yang, X.; Hu, G.; Shi, Z.; Jiang, H.; Shen, B.; Liu, W. Sedimentary model and development of the Cambrian source rocks in the Tarim Basin, NW China. Pet. Geol. Exp. 2015, 37, 689–695. [Google Scholar]
- Zhang, C.; Guan, S.; Wu, L.; Ren, R. Hydrothermal activity and depositional model of the Yurtus Formation in the Early Cambrian, NW Tarim, China. Earth Sci. Front. 2019, 26, 202. [Google Scholar]
- Du, J.; Pan, W. Accumulation conditions and play targets of oil and gas in the Cambrian subsalt dolomite, Tarim Basin, NW China. Pet. Explor. Dev. 2016, 43, 360–374. [Google Scholar] [CrossRef]
- Hong, H.; Peng, S.P.; Shao, L.Y.; Gao, Y.F.; Shi, Z.B. Sedimentology and palaeogeography of the Cambrian-Ordovician in Bachu uplift and Awati depression, the Tarim Basin. Coal Geol. Explor. 2002, 30, 1–4. [Google Scholar]
- Gao, Y.; Ren, C.; Fang, Q.; Wu, H.; Shi, M.; Zhang, S.; Yang, T.; Li, H. Cycle stratigraphy of Ordovician Sargan Formation in Tarim Basin. Acta Sedimentol. Sin. 2022, 15, 1–15. [Google Scholar]
- Ma, A.; Li, H.; Li, J.; Gao, X.; Wang, F.; Yao, Y.; Feng, F. Geochemical characteristics of Middle-Upper Ordovician source rocks in the Kalpin outcrop profiles and marine oil-source correlation, Tarim Basin, NW China. J. Nat. Gas Geosci. 2020, 5, 143–155. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, S.; Li, J.; Zhang, B.; Gu, Q.; Lu, Y. Distribution and sedimentary environments of Salgan and Yingan shales of the Middle-Upper Ordovician in western Tarim Basin. J. Palaeogeogr. 2010, 12, 599–608. [Google Scholar]
- Song, Z.; Abula, A.; Lyu, M.; Zhang, Y. Quantitative analysis of nitrogen adsorption hysteresis loop and its indicative significance to pore structure characterization: A case study on the Upper Triassic Chang 7 Member, Ordos Basin. Oil Gas Geol. 2023, 44, 495–509. [Google Scholar]
- SY/T5163-2010; Analysis Method for Clay Minerals and Ordinary Non-Clay Minerals in Sedimentary Rocks by the X-ray Diffraction. National Energy Administration: Beijing, China, 2010.
- Burnham, A.K. A Simple Kinetic Model of Petroleum Formation and Cracking; Lawrence Livermore National Lab: Livermore, CA, USA, 1989. [Google Scholar]
- Waples, D.W.; Suizu, M.; Kamata, H. The art of maturity modeling. Part 2: Alternative models and sensitivity analysis. AAPG Bull. 1992, 76, 47–66. [Google Scholar]
- di Primio, R.; Horsfield, B. From petroleum-type organofacies to hydrocarbon phase prediction. AAPG Bull. 2006, 90, 1031–1058. [Google Scholar]
- Jin, Z.; Tan, X.; Tang, H.; Shen, A.; Qiao, Z.; Zhang, J.; Li, F.; Zhang, S.; Chen, L.; Zhou, C. Sedimentary environment and petrological features of organic-rich fine sediments in shallow water overlapping deposits: A case study of Cambrian Yuertus Formation in northwestern Tarim Basin, NW China. Pet. Explor. Dev. 2020, 47, 513–526. [Google Scholar] [CrossRef]
- Zhang, J.; Li, B.; Wu, H.; Yuan, Q.; Liu, Y.; Xiao, P. Study on the thermal history of the source rock and its relationship with hydrocarbon accumulation based on the basin modeling technology: A case of the Yuertusi Formation of Tarim Basin. Editor. Dep. Pet. Geol. Recovery Effic. 2018, 25, 39–49. [Google Scholar]
- Liu, S.; Lei, X.; Feng, C.; Li, X. Heat Flow, Deep Formation Temperature and Thermal Structure of the Tarim Basin, Northwest China; EGU General Assembly Conference Abstracts; China Peace Audio Video Electronic Publishing House: Beijing, China, 2018; p. 1. [Google Scholar]
- Li, M.; Wang, T.; Chen, J.; He, F.; Yun, L.; Akbar, S.; Zhang, W. Paleo-heat flow evolution of the Tabei Uplift in Tarim Basin, northwest China. J. Asian Earth Sci. 2010, 37, 52–66. [Google Scholar] [CrossRef]
- Rao, D.; Zhang, P.; Qiu, Y. Discussion on lower limit of content of organic matter for effective source rocks. Pet. Geol. Exp. 2003, 25, 578–581. [Google Scholar]
- Liu, X.-B.; Liu, G.-D.; Jiang, W.-Y.; Song, Z.-Z.; Wang, N. Organic geochemistry and petrology of source rocks from the Banqiao Sag, Bohai Bay Basin, China: Implications for petroleum exploration. Pet. Sci. 2022, 19, 1505–1515. [Google Scholar] [CrossRef]
- Passey, Q.; Creaney, S.; Kulla, J.; Moretti, F.; Stroud, J. A practical model for organic richness from porosity and resistivity logs. AAPG Bull. 1990, 74, 1777–1794. [Google Scholar]
- Chen, J.; Liang, D.; Zhang, S.; Deng, C.; Zhao, Z.; Zhang, D. Evaluation criterion and methods of the hydrocarbon generation potential for China’s Paleozoic marine source rocks. Acta Geol. Sin. 2012, 86, 1132–1142. [Google Scholar]
- Li, H.; Shao, Z.; He, Z. Hydrocarbon generation characteristics and potential of bitumen in the tarim basin. Pet. Geol. Exp. 2009, 31, 373–378. [Google Scholar]
- Zhang, Q.; Huang, T.Z.; Li, H.L.; Li, Y.J.; Jiang, H.S.; Ma, Q.Y.; Cai, X.Y.; Wen, L. The Cenozoic faults in western Tarim Basin, NW China. Acta Petrol. Sin. 2016, 32, 833–846. [Google Scholar]
- Zhang, P.H.; Chen, Z.Y.; Xue, L.; Bao, Y.J.; Fang, Y. The differential diagenetic evolution and its influencing factors of Lower Cambrian black rock series in the northwestern margin of Tarim Basin. Acta Petrol. Sin. 2020, 36, 3463–3476. [Google Scholar]
- Yang, F.; Yun, L.; Wang, T.; Ding, Y.; Li, M. Geochemical characteristics of the Cambrian source rocks in the Tarim Basin and oil-source correlation with typical marine crude oil. Oil Gas Geol. 2017, 38, 851–861. [Google Scholar]
- Tao, G.; Shen, B.; Tenger, B.; Yang, Y.; Xu, E.; Pan, A. Weathering effects on high-maturity organic matter in a black rock series: A case study of the Yuertusi Formation in Kalpin area, Tarim Basin. Pet. Geol. Exp. 2016, 38, 375–381. [Google Scholar]
- Zhang, S.; Zhang, B.; Wang, F.; Liang, D.; He, Z.; Zhao, M.; Bian, L. Two sets of marine effective hydrocarbon source beds in the Tarim Basin Ⅰ. Organic matter properties, development environment and control factors. Prog. Nat. Sci. 2001, 3, 39–46. [Google Scholar]
- Liu, L.; Gao, Y.; Zhu, G.; Yang, Y.; Yin, C.; Sun, X.; Li, Q. Genesis of siliceous rock in the black rock series of Ediacaran-Cambria transition and its environmental significance in northwestern Tarim bas. Acta Geol. Sin. 2024, 98, 511–529. [Google Scholar]
- Liu, J.; Peng, J.; Shi, Y.; Bao, Z.; Sun, Y.; Liu, X.; Zhang, X. The genesis of quartz dissolution in tight sand reservoirs and its impact on pore development: A case study of Xujiahe Formation in the transitional zone of Central-Southern Sichuan Basin. Acta Pet. Sin. 2015, 36, 1090. [Google Scholar]
- Wang, Y.; Chen, H.; Guo, H.; Zhu, Z.; Wang, Q.; Yu, P.; Qi, L.; Yun, L. Hydrocarbon charging history of the ultra-deep reservoir in Shun 1 strike-slip fault zone, Tarim Basin. Oil Gas Geol. 2019, 40, 972–989. [Google Scholar]
- Wang, Q.; Xu, Z.; Zhang, R.; Yang, H.; Yang, X. New fields, new types of hydrocarbon explorations and their resource potentials in Tarim Basin. Acta Pet. Sin. 2024, 45, 15. [Google Scholar]
- Zhang, S. Geochemical Characteristics and Genetic Mechanism of Marine Oil and Gas in Awati Sag. Master’s Thesis, China University of Petroleum, Beijing, China, 2023. [Google Scholar]
- Zhang, J.; Yang, Y.; Gao, Y.; Li, S.; Yu, B.; Gong, X.; Bai, Z.; Miao, M.; Zhang, Y.; Sun, Z.; et al. Geochemistry and source of crude oils in the Wensu uplift, Tarim Basin, NW China. J. Pet. Sci. Eng. 2022, 208, 109448. [Google Scholar] [CrossRef]
Type | Formation | Num. | Min % | Max % | Average % | Median % | St. Dev | |
---|---|---|---|---|---|---|---|---|
outcrop samples | Sinian | Є1y | 28 | 0.03 | 7.83 | 2.13 | 1.70 | 1.77 |
Ordovician | O2-3s | 10 | 0.1 | 2.89 | 2.01 | 2.09 | 0.83 | |
core samples | Sinian | Є1y | 9 | 1.08 | 18.98 | 5.82 | 4.36 | 5.39 |
Є1x | 7 | 0.06 | 1.30 | 0.53 | 0.59 | 0.42 | ||
Ordovician | O2-3s | 4 | 1.26 | 6.37 | 3.99 | 4.17 | 2.66 | |
O3y | 6 | 0.11 | 0.58 | 0.36 | 0.39 | 0.21 |
Type | Formation | Num. | Min mg/g | Max mg/g | Average mg/g | Median mg/g | St. Dev | |
---|---|---|---|---|---|---|---|---|
outcrop samples | Sinian | Є1y | 28 | 0.01 | 0.62 | 0.22 | 0.18 | 0.16 |
core samples | Sinian | Є1y | 9 | 0.29 | 13.12 | 3.42 | 1.40 | 4.72 |
Є1x | 7 | 0.03 | 1.62 | 0.57 | 0.51 | 0.59 | ||
Ordovician | O2–3s | 4 | 0.68 | 19.50 | 9.40 | 8.72 | 9.91 | |
O3y | 6 | 0.06 | 0.26 | 0.17 | 0.20 | 0.08 |
No. | Formation | Tmax °C | S1 mg/g | S2 mg/g | S1+ S2 mg/g | PI mg/g·TOC | HI mg/g·TOC | PC mg/g·TOC | PC/TOC % | HC mg/g·TOC |
---|---|---|---|---|---|---|---|---|---|---|
XKD1-1 | Є1y | 464 | 0.18 | 0.18 | 0.36 | 0.5 | 3.27 | 0.03 | 0.54 | 3.27 |
XKD1-2 | Є1y | 445 | 7.8 | 5.32 | 13.12 | 0.59 | 78.47 | 1.09 | 16.06 | 115.04 |
XKD1-5 | Є1y | 493 | 0.09 | 0.2 | 0.29 | 0.31 | 18.52 | 0.02 | 2.23 | 8.33 |
XKD1-6 | Є1y | 464 | 0.33 | 1.26 | 1.59 | 0.21 | 28.9 | 0.13 | 3.03 | 7.57 |
XKD1-7 | Є1y | 476 | 0.99 | 9.05 | 10.04 | 0.1 | 47.68 | 0.83 | 4.39 | 5.22 |
XKD1-8 | Є1y | 458 | 0.14 | 1.03 | 1.17 | 0.12 | 38.72 | 0.1 | 3.65 | 5.26 |
XKD1-9 | Є1y | 460 | 0.18 | 1.16 | 1.34 | 0.13 | 64.09 | 0.11 | 6.14 | 9.94 |
XKD1-10 | Є1y | 457 | 0.2 | 1.23 | 1.43 | 0.14 | 33.42 | 0.12 | 3.23 | 5.43 |
XKD1-11 | Є1y | 462 | 0.21 | 1.19 | 1.4 | 0.15 | 15.89 | 0.12 | 1.55 | 2.8 |
KP1-1 | O2-3s | 465 | 0.41 | 0.71 | 1.12 | 0.37 | 32.87 | 0.09 | 4.3 | 18.98 |
XSD1-1 | O2-3s | 450 | 1.06 | 18.44 | 19.5 | 0.05 | 289.48 | 1.62 | 25.41 | 16.64 |
XSD1-2 | O3y | 445 | 0.03 | 0.06 | 0.09 | 0.33 | 50 | 0.01 | 6.23 | 25 |
XSD1-3 | O3y | 457 | 0.02 | 0.04 | 0.06 | 0.33 | 36.36 | 0 | 4.53 | 18.18 |
KP1-2 | O3y | 454 | 0.11 | 0.13 | 0.24 | 0.46 | 23.21 | 0.02 | 3.56 | 19.64 |
KP1-3 | O3y | 462 | 0.07 | 0.11 | 0.18 | 0.39 | 27.5 | 0.01 | 3.74 | 17.5 |
XSD1-2 | O3y | 445 | 0.03 | 0.06 | 0.09 | 0.33 | 50 | 0.01 | 6.23 | 25 |
XSD1-3 | O3y | 457 | 0.02 | 0.04 | 0.06 | 0.33 | 36.36 | 0 | 4.53 | 18.18 |
KP1-2 | O3y | 454 | 0.11 | 0.13 | 0.24 | 0.46 | 23.21 | 0.02 | 3.56 | 19.64 |
KP1-3 | O3y | 462 | 0.07 | 0.11 | 0.18 | 0.39 | 27.5 | 0.01 | 3.74 | 17.5 |
KP1-4 | O3y | 454 | 0.12 | 0.14 | 0.26 | 0.46 | 24.14 | 0.02 | 3.72 | 20.69 |
KP1-5 | O3y | 462 | 0.09 | 0.12 | 0.21 | 0.43 | 31.58 | 0.02 | 4.59 | 23.68 |
XKD1-3 | Є1x | 492 | 0.01 | 0.04 | 0.05 | 0.2 | 66.67 | 0 | 6.92 | 16.67 |
XKD1-4 | Є1x | 349 | 0.01 | 0.02 | 0.03 | 0.33 | 16.67 | 0 | 2.08 | 8.33 |
XKD1-3 | Є1x | 492 | 0.01 | 0.04 | 0.05 | 0.2 | 66.67 | 0 | 6.92 | 16.67 |
XKD1-4 | Є1x | 349 | 0.01 | 0.02 | 0.03 | 0.33 | 16.67 | 0 | 2.08 | 8.33 |
XSC1-1 | Є1x | 597 | 0.8 | 0.82 | 1.62 | 0.49 | 138.98 | 0.13 | 22.79 | 135.59 |
XSC1-2 | Є1x | 600 | 0.16 | 0.41 | 0.57 | 0.28 | 110.81 | 0.05 | 12.79 | 43.24 |
XSC1-3 | Є1x | 339 | 0.22 | 0.29 | 0.51 | 0.43 | 40.85 | 0.04 | 5.96 | 30.99 |
XSC1-4 | Є1x | 383 | 0.13 | 0.04 | 0.17 | 0.76 | 6.78 | 0.01 | 2.39 | 22.03 |
XSC1-5 | Є1x | 510 | 0.23 | 0.83 | 1.06 | 0.22 | 63.85 | 0.09 | 6.77 | 17.69 |
No. | Mineral Content (%) | Lithology | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Quartz | Potash Feldspar | Plagioclase | Calcite | Dolomite | Apatite | Barite | Gypsum | Clay | ||
Y-02-1 | 3.2 | 0.7 | 0.5 | - | 94.6 | - | - | - | 1 | Dolomite |
Y-04-2 | 25.3 | - | - | - | 50.2 | - | - | 23.5 | 1 | |
Y-15-1 | 26.2 | 1.9 | - | 9 | 55.1 | 6.8 | - | - | 1 | |
Y-06-1 | 7.7 | 0.6 | - | 85.5 | 5.2 | - | - | - | 1 | Limestone |
Y-01-2 | 97.8 | - | - | - | - | - | - | - | 2.2 | Siliceous shale |
Y-03-1 | 79.5 | 2.9 | 1 | - | 7 | - | - | 4.4 | 5.2 | |
Y-08-1 | 74 | - | - | - | 19.6 | - | 3.1 | 2.3 | 1 | |
Y-10-1 | 53 | 0.7 | - | 32.4 | 7.6 | 3.5 | - | 0.8 | 2 | |
Y-11-2 | 77.4 | - | - | - | - | - | 20.6 | 1 | 1 | |
Y-14-2 | 58.1 | 4.1 | 0.5 | - | 30.5 | 4.9 | - | 0.9 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.; Zhang, Z.; Ding, X.; Zhang, Y.; Bai, Z.; Liu, L.; Gao, Y. Geochemical Characteristics of the Paleozoic Marine Source Rocks and Ultra-Deep Hydrocarbon Accumulation Mode of the Awati Sag. Energies 2024, 17, 2124. https://doi.org/10.3390/en17092124
Song Z, Zhang Z, Ding X, Zhang Y, Bai Z, Liu L, Gao Y. Geochemical Characteristics of the Paleozoic Marine Source Rocks and Ultra-Deep Hydrocarbon Accumulation Mode of the Awati Sag. Energies. 2024; 17(9):2124. https://doi.org/10.3390/en17092124
Chicago/Turabian StyleSong, Zezhang, Ziyu Zhang, Xiaoheng Ding, Yuanyin Zhang, Zhongkai Bai, Lihong Liu, and Yongjin Gao. 2024. "Geochemical Characteristics of the Paleozoic Marine Source Rocks and Ultra-Deep Hydrocarbon Accumulation Mode of the Awati Sag" Energies 17, no. 9: 2124. https://doi.org/10.3390/en17092124
APA StyleSong, Z., Zhang, Z., Ding, X., Zhang, Y., Bai, Z., Liu, L., & Gao, Y. (2024). Geochemical Characteristics of the Paleozoic Marine Source Rocks and Ultra-Deep Hydrocarbon Accumulation Mode of the Awati Sag. Energies, 17(9), 2124. https://doi.org/10.3390/en17092124