Design and Analysis of a Controllable Reactor Solid-State Circuit Breaker for Enhanced Fault Current Interruption in AC/DC Microgrids
Abstract
:1. Introduction
- The ability of the proposed CR-SSCB to operate in both DC and AC systems;
- The proper protection of power electronic equipment in the AC/DC microgrid;
- Limiting the rate of the increasing fault current in the R-L circuit;
- Fast operation;
- Two-stage operation to limit the voltage stress of the circuit breaker during its operation.
2. CR-SSCB Placement and Topology
2.1. Normal Operation Mode
2.2. Pre-Fault Breaking Mode (Stage 1)
2.3. Fault-Breaking Mode (Stage 2)
3. Analytical Study of CR-SSCB
3.1. CR-SSCB Operation Analysis in the DC System
3.1.1. Normal Operation Mode
3.1.2. Pre-Fault Breaking Mode
3.1.3. Fault-Breaking Mode
3.2. CR-SSCB Operation Analysis in AC System
3.2.1. Normal Operation Mode
3.2.2. Pre-Fault Breaking Mode
3.2.3. Fault-Breaking Mode
4. Simulation of CR-SSCB in AC/DC Microgrid
4.1. DC System Fault Simulation
4.2. AC System Fault Simulation
4.3. CR-SSCB Performance in AC and DC Systems
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Description |
CR-SSCB | coupled reactor-based solid-state circuit breaker |
DVR | dynamic voltage restorer |
FCL | fault current limiter |
IGBT | integrated gate bipolar transistor |
LCS | load commutation switch |
MB | main breaker |
PV | photovoltaic |
UFCL | unidirectional fault current limiter |
UFD | ultrafast disconnector |
References
- Sinha, R.R.; Kanwar, N. Chapter Four—Hybrid microgrids: Architecture, modeling, limitations, and solutions. In Modelling and Control Dynamics in Microgrid Systems with Renewable Energy Resources; Academic Press: Cambridge, MA, USA, 2024. [Google Scholar]
- Min, J.; Ordonez, M. Bidirectional Resonant CLLC Charger for Wide Battery Voltage Range: Asymmetric Parameters Methodology. IEEE Trans. Power Electron. 2021, 36, 6662–6673. [Google Scholar] [CrossRef]
- Min, J.; Ordonez, M. Cascaded Half-Bridge-Based Bidirectional Multilevel Bridgeless PFC With Multioutput Ports. IEEE Trans. Power Electron. 2023, 38, 16034–16047. [Google Scholar] [CrossRef]
- Shafaghatian, N.; Heidary, A.; Radmanesh, H.; Rouzbehi, K. Microgrids interconnection to upstream AC grid using a dual-function fault current limiter and power flow controller: Principle and test results. IET Energy Syst. Integr. 2019, 1, 269–275. [Google Scholar] [CrossRef]
- Heidary, A.; Rouzbehi, K.; Radmanesh, H.; Pou, J. Voltage Transformer Ferroresonance: An Inhibitor Device. IEEE Trans. Power Deliv. 2020, 35, 2731–2733. [Google Scholar] [CrossRef]
- Heidary, A.; Radmanesh, H.; Bakhshi, A.; Samandarpour, S.; Rouzbehi, K.; Shariati, N. Compound ferroresonance overvoltage and fault current limiter for power system protection. IET Energy Syst. Integr. 2020, 2, 325–330. [Google Scholar] [CrossRef]
- Kang, X.; Nuworklo, C.E.K.; Tekpeti, B.S.; Kheshti, M. Protection of micro-grid systems: A comprehensive survey. J. Eng. 2017, 2017, 1515–1518. [Google Scholar] [CrossRef]
- Lin, P.; Jin, C.; Xiao, J.; Li, X.; Shi, D.; Tang, Y.; Wang, P. A distributed control architecture for global system economic operation in autonomous hybrid AC/DC microgrids. IEEE Trans. Smart Grid 2019, 10, 2603–2617. [Google Scholar] [CrossRef]
- Behdani, B.; Moghim, A.; Mousavi, S.; Soltanfar, M.; Hojabri, M. Multifaceted Functionalities of Bridge-Type DC Reactor Fault Current Limiters: An Experimentally Validated Investigation. Energies 2024, 17, 4. [Google Scholar] [CrossRef]
- Heidary, A.; Rouzbehi, K.; Mehrizi-Sani, A.; Sood, V.K. A Self-Activated Fault Current Limiter for Distribution Network Protection. IEEE J. Emerg. Sel. Top Power Electron. 2022, 10, 4626–4633. [Google Scholar] [CrossRef]
- Zheng, F.; Deng, C.; Chen, L.; Li, S.; Liu, Y.; Liao, Y. Transient performance improvement of microgrid by a resistive superconducting fault current limiter. IEEE Trans. Appl. Supercond. 2015, 25, 3. [Google Scholar] [CrossRef]
- Chen, L.; Chen, H.; Yang, J.; Zhu, L.; Tang, Y.; Koh, L.H.; Xu, Y.; Zhang, C.; Liao, Y.; Ren, L. Comparison of Superconducting Fault Current Limiter and Dynamic Voltage Restorer for LVRT Improvement of High Penetration Microgrid. IEEE Trans. Appl. Supercond. 2017, 27, 4. [Google Scholar] [CrossRef]
- Heidary, A.; Radmanesh, H.; Naghibi, S.H.; Samandarpour, S.; Rouzbehi, K.; Shariati, N. Distribution system protection by coordinated fault current limiters. IET Energy Syst. Integr. 2020, 2, 59–65. [Google Scholar] [CrossRef]
- Mousa, M.; Babaei, M.; Abdelwahed, S. A novel sensitivity analysis for optimal design of superconductive fault current limiter in microgrids. Electr. Eng. 2021, 103, 479–491. [Google Scholar] [CrossRef]
- Kong, L.; Nian, H. Collaborative control strategy of power electronic transformer and fault current limiter in DC microgrid. J. Eng. 2017, 2017, 1788–1792. [Google Scholar] [CrossRef]
- Abdolkarimzadeh, M.; Nazari-Heris, M.; Abapour, M.; Sabahi, M. A bridge-type fault current limiter for energy management of AC/DC microgrids. IEEE Trans. Power Electron. 2017, 32, 9043–9050. [Google Scholar] [CrossRef]
- Radmanesh, H.; Fathi, S.H.; Gharehpetian, G.B.; Heidary, A. Bridge-Type Solid-State Fault Current Limiter Based on AC/DC Reactor. IEEE Trans. Power Deliv. 2016, 31, 200–209. [Google Scholar] [CrossRef]
- Abdel-Salam, M.; Abdallah, A.; Kamel, R.; Hashem, M. Improvement of Protection Coordination for a Distribution System Connected to a Microgrid using Unidirectional Fault Current Limiter. Ain Shams Eng. J. 2017, 8, 405–414. [Google Scholar] [CrossRef]
- Radmanesh, H.; Fathi, S.H.; Gharehpetian, G.B.; Heidary, A. A Novel Solid-State Fault Current-Limiting Circuit Breaker for Medium-Voltage Network Applications. IEEE Trans. Power Deliv. 2016, 31, 236–244. [Google Scholar] [CrossRef]
- Bakhshi, A.; Bigdeli, M.; Moradlou, M.; Behdani, B.; Hojabri, M. Innovative Solid-State Ferroresonance-Suppressing Circuit for Voltage Transformer Protection in Wind Generation Systems. Energies 2023, 16, 23. [Google Scholar] [CrossRef]
- Wang, Y.; Li, W.; Wu, X.; Wu, X. A novel bidirectional solid-state circuit breaker for DC microgrid. IEEE Trans. Ind. Electron. 2019, 66, 5707–5714. [Google Scholar] [CrossRef]
- Heidary, A.; Radmanesh, H.; Moghim, A.; Ghorbanyan, K.; Rouzbehi, K.; Rodrigues, E.M.G.; Pouresmaeil, E. A multi-inductor h bridge fault current limiter. Electronics 2019, 8, 7. [Google Scholar] [CrossRef]
- Zhang, S.; Zou, G.; Wei, X.; Zhou, C.; Zhou, K. Improved Integrated Hybrid DC Circuit Breaker for MTDC Grid Protection. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 4999–5003. [Google Scholar] [CrossRef]
- Ghanbari, T.; Farjah, E. Unidirectional fault current limiter: An efficient interface between the microgrid and main network. IEEE Trans. Power Syst. 2013, 28, 1591–1598. [Google Scholar] [CrossRef]
Parameter | Symbol | Value |
---|---|---|
DC source voltage | VDC | 20 kV |
AC source impedance | VAC | 20 kV |
DC fault resistance | Rfd | 0.01 Ω |
AC fault resistance | Rfa | 0.01 Ω |
DC line impedance | Zline1 | 0.1 Ω + 5 mH |
DC line impedance | Zline2 | 0.1+ j 0.5 Ω |
series coils inductance | L1, L2 | 100 mH |
series coils inductance | L3 | 10 mH |
series coils resistance | Rl1, Rl2 | 50 mΩ |
breaker limiter resistance | R1, R2 | 20 Ω |
mutual inductances (main coils) | 98 mH | |
mutual inductances (control coils) | , | 30 mH |
System Operation | Operational Time (ms) | LRV (kV) | TRV (kV) | Rate of Increase | Energy Loss (kJ) | Protection Device | ||
---|---|---|---|---|---|---|---|---|
Voltage (kV/ms) | Current (A/ms) | Current Limiter | Switch | |||||
AC | 3 | 20 | 37 | 750 | 250 | 150 | 4 | 3 |
DC | 3 | 18 | 39 | 750 | 1500 | 900 | 4 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakhshi, A.; Moghim, A.; Hojabri, M. Design and Analysis of a Controllable Reactor Solid-State Circuit Breaker for Enhanced Fault Current Interruption in AC/DC Microgrids. Energies 2024, 17, 2101. https://doi.org/10.3390/en17092101
Bakhshi A, Moghim A, Hojabri M. Design and Analysis of a Controllable Reactor Solid-State Circuit Breaker for Enhanced Fault Current Interruption in AC/DC Microgrids. Energies. 2024; 17(9):2101. https://doi.org/10.3390/en17092101
Chicago/Turabian StyleBakhshi, Ali, Ali Moghim, and Mojgan Hojabri. 2024. "Design and Analysis of a Controllable Reactor Solid-State Circuit Breaker for Enhanced Fault Current Interruption in AC/DC Microgrids" Energies 17, no. 9: 2101. https://doi.org/10.3390/en17092101
APA StyleBakhshi, A., Moghim, A., & Hojabri, M. (2024). Design and Analysis of a Controllable Reactor Solid-State Circuit Breaker for Enhanced Fault Current Interruption in AC/DC Microgrids. Energies, 17(9), 2101. https://doi.org/10.3390/en17092101