Study on Hydrocarbon Fuel Ignition Characterization Based on Optimized BP Neural Network
Abstract
:1. Introduction
2. Methodology
2.1. Acquisition of Data
2.2. Creation of Data Sets
2.3. BP Neural Networks
3. Improvement of the BP Algorithm
3.1. MapReduce-Based Parallel Processing Optimization
3.2. Particle Swarm Optimization (PSO) Algorithm Integration
3.3. BP-MRPSO Neural Network Modeling
4. Prediction and Analysis of Fuel Ignition Delay Characteristics
4.1. Comparison of BP-Based and BP-MRPSO Neural Networks
4.2. Analysis of Experimental and Prediction Results of BP-MRPOS
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviation/Term | Full Name/Explanation |
AI | Artificial intelligence |
BP | Back propagation |
BP-MRPSO | Back propagation-MapReduce particle swarm optimization |
IDT | Ignition delay time |
PSO | Particle swarm optimization |
MapReduce | A programming model for processing and generating large data sets |
CO | Carbon monoxide |
UHC | Unburned hydrocarbons |
ANN | Artificial neural network |
ϕ | Equivalence ratio |
p | Pressure, MPa |
T | Temperature, K |
O2 | Oxygen concentration, % |
N2 | Nitrogen concentration, % |
Ar | Argon concentration, % |
IDT | Ignition delay time, μs |
References
- Xu, X.; Liu, E.; Zhu, N.; Liu, F.; Qian, F. Current Status of Performance Research on Ammonia Mixed Fuel Systems. Chem. Ind. Prog. 2022, 41, 2332–2339. [Google Scholar]
- Liu, J.; Hu, E.; Huang, Z.; Zeng, W. Ignition Delay Characteristics of RP-3 Aviation Kerosene Simulated Alternative Fuel. Propuls. Technol. 2021, 42, 467–473. [Google Scholar]
- Wei, S.; Wu, L.; Yu, Z.; Sun, L.; Zhang, Z. Analysis of Fuel Chemical Reaction Kinetics Characterization for RP-3 Jet Fuel in the Negative Temperature Coefficient Region. Acta Pet. Sin. 2024, 40, 16. [Google Scholar]
- Bui, T.T.; Luu, H.Q.; Hoang, A.T.; Konur, O.; Huu, T.; Pham, M.T. A review on ignition delay times of 2,5-Dimethylfuran. Energy Sources Part A Recover. Util. Environ. Eff. 2022, 44, 7160–7175. [Google Scholar] [CrossRef]
- Zhang, X.; Zeng, W.; Hu, B.; Yin, G.; Zhang, Y.; Ma, H. Experimental Study on Oxidation and Ignition Characteristics of RP-3 Aviation Kerosene/O2. J. Aerosp. Power 2024, 39, 20220381. [Google Scholar]
- Ma, H.; Xie, M.; Zeng, W.; Chen, B. Analysis of Influencing Factors on the Ignition Characteristics of RP-3 Aviation Kerosene. Propuls. Technol. 2015, 36, 306–313. [Google Scholar]
- Wang, M.; Chen, L.; Zeng, W. Analysis of the Mechanism of the Influence of Reactive Particles on the Ignition Characteristics of Aviation Kerosene. Propuls. Technol. 2022, 43, 375–381. [Google Scholar]
- Zhukov, V.P.; Sechenov, V.A.; Starikovskiy, Y.A. Autoignition of kerosene (Jet-A)/air mixtures behind reflected shock waves. Fuel 2014, 126, 169–176. [Google Scholar] [CrossRef]
- Li, B. Deep Network Inversion Analysis and Its Application in Abrasive Waterjet Etching. Master’s Thesis, Dalian University of Technology, Dalian, China, 2022; pp. 1–93. Available online: https://link.cnki.net/doi/10.26991/d.cnki.gdllu.2022.000764 (accessed on 23 April 2024).
- Samanta, B.; Al-Balushi, K.R.; Al-Araimi, S.A. Artificial neural networks and genetic algorithm for bearing fault detection. Soft Comput. 2006, 10, 264–271. [Google Scholar] [CrossRef]
- Wu, G.Q. Fault detection method for ship equipment based on BP neural network. In Proceedings of the 2018 International Conference on Robots & Intelligent System, Changsha, China, 26–27 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 556–559. [Google Scholar]
- Wang, X.M.; Wang, J.; Privault, M. Artificial intelligent fault diagnosis system of complex electronic equipment. J. Intell. Fuzzy Syst. 2018, 35, 4141–4151. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, Q.; Liu, H.; Zheng, Z.; Wang, H.; Yue, Z.; Yao, M. Development of the ignition delay prediction model of n-butane/hydrogen mixtures based on artificial neural network. Energy AI 2020, 2, 100033. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, C.; Wan, K.; Gao, Z.; Vervisch, L.; Domingo, P.; He, Y.; Wang, Z.; Lee, C.H.; Cai, Q.; et al. Prediction of ignition delay times of Jet A-1/hydrogen fuel mixture using machine learning. Aerosp. Sci. Technol. 2022, 127, 107675. [Google Scholar] [CrossRef]
- Bounaceur, R.; Heymes, R.; Glaude, P.A.; Sirjean, B.; Fournet, R.; Montagne, P.; Auvray, A.; Impellizzeri, E.; Biehler, P.; Picard, A.; et al. Development of an Artificial Intelligence Model to Predict Combustion Properties, With a Focus on Auto-Ignition Delay. J. Eng. Gas Turbines Power 2024, 146, 061011. [Google Scholar] [CrossRef]
- Liang, J.; Wang, S.; Hu, H.; Zhang, S.; Fan, B.; Cui, J. Shock tube study of kerosene ignition delay at high pressures. Sci. China Phys. Mech. Astron. 2012, 55, 947–954. [Google Scholar] [CrossRef]
- Tang, H.C.; Zhang, C.H.; Li, P.; Wang, L.D.; Ye, B.; Li, X.Y. Experimental study on the self ignition characteristics of kerosene. Acta Phys. Chim. Sin. 2012, 28, 787–791. [Google Scholar]
- Vasu, S.S.; Davidson, D.F.; Hanson, R.K. Jet fuel ignition delay times: Shock tube experiments over wide conditions and surrogate model predictions. Combust. Flame 2008, 152, 125–143. [Google Scholar] [CrossRef]
- Li, F.; Ooi, B.C.; Özsu, M.T.; Wu, S. Distributed data management using MapReduce. ACM Comput. Surv. (CSUR) 2014, 46, 1–42. [Google Scholar] [CrossRef]
- Zhai, N.G.; Deng, J.S. Overview of Particle Swarm Optimization Algorithms. Technol. Innov. Guide 2015, 12, 216–217. [Google Scholar]
- dos Santos, C.F.G.; Papa, J.P. Avoiding overfitting: A survey on regularization methods for convolutional neural networks. ACM Comput. Surv. (CSUR) 2022, 54, 1–25. [Google Scholar] [CrossRef]
- Karloff, H.; Suri, S.; Vassilvitskii, S. A model of computation for MapReduce. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, Austin, TX, USA, 17–19 January 2010; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2010; pp. 938–948. [Google Scholar]
- Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Commun. ACM 2008, 51, 107–113. [Google Scholar] [CrossRef]
- Houssein, E.H.; Gad, A.G.; Hussain, K.; Suganthan, P.N. Major advances in particle swarm optimization: Theory, analysis, and application. Swarm Evol. Comput. 2021, 63, 100868. [Google Scholar] [CrossRef]
- Wu, Y.T.; Kong, X.D.; Wang, X.H.; Liang, J.H.; Tang, C.L.; Huang, Z.H.; Wang, B.Y.; Zeng, P. Experimental and kinetic studies on self ignition characteristics of aviation kerosene during direct coal liquefaction. Propuls. Technol. 2023, 31, 1–8. [Google Scholar]
- Chaos, M.; Dryer, F.L. Chemical-kinetic modeling of ignition delay: Considerations in interpreting shock tube data. Int. J. Chem. Kinet. 2010, 42, 143–150. [Google Scholar] [CrossRef]
- Pawan, Y.N.; Prakash, K.B.; Chowdhury, S.; Hu, Y.-C. Particle swarm optimization performance improvement using deep learning techniques. Multimed. Tools Appl. 2022, 81, 27949–27968. [Google Scholar] [CrossRef]
Reference | Ma et al. [6] | Tang et al. [17] | Cui et al. [13] | Liang et al. [16] |
Systematic Error | 4% | 0.42% | 1.06% | 10% |
Feature | Range | Division Value |
---|---|---|
Equivalent ratio (-) | 0.5–1.5 | 0.1 |
Pressure (MPa) | 1–18 | 0.01 |
Temperature (K) | 715.0–1671.0 | 0.1 |
Fuel concentration (%) | 0.25–1.25 | 0.001 |
Oxygen concentration (%) | 3.8–23.25 | 0.001 |
Nitrogen concentration (%) | 0–0.1 | 0.001 |
Argon concentration (%) | 76.0–95.875 | 0.001 |
Parameter Type | Parameter Name | Unit |
---|---|---|
Input | ϕ | - |
Input | p | MPa+ |
Input | T | K |
Input | O2 | % |
Input | N2 | % |
Input | Ar | % |
Input | Fuel Chemical Composition | Variable |
Output | IDT | μs |
Model | Total Parameters | Layer Type | Neuron Number | Activation Function | Mean R-Squared |
---|---|---|---|---|---|
Basic BP | 251 | Input | 7 | -- | 83% |
Dense | 12 | ReLu | |||
Dense | 11 | ReLu | |||
Dense (Output) | 1 | ReLu | |||
BP-MRPSO | 161 | Input | 7 | -- | 92% |
Dense | 9 | ReLu | |||
Dense | 8 | ReLu | |||
Dense (Output) | 1 | ReLu |
Serial Number | Experimental Value (μs) | Predicted Value (μs) | Absolute Error (μs) | Relative Error |
---|---|---|---|---|
1 | 51.8 | 53.939 | 2.139 | 4.129 |
2 | 405 | 410.335 | 5.335 | 1.317 |
3 | 45 | 43.391 | 1.608 | 3.575 |
4 | 189 | 183.001 | 5.998 | 3.173 |
5 | 125 | 121.816 | 3.183 | 2.546 |
6 | 237 | 242.848 | 5.848 | 2.467 |
7 | 162 | 156.837 | 5.162 | 3.186 |
8 | 125 | 121.816 | 3.183 | 2.546 |
9 | 175 | 180.410 | 5.410 | 3.091 |
10 | 114 | 118.872 | 4.872 | 4.274 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Wei, L.; Ma, H.; Liu, Y.; Yue, M.; Shi, J. Study on Hydrocarbon Fuel Ignition Characterization Based on Optimized BP Neural Network. Energies 2024, 17, 2072. https://doi.org/10.3390/en17092072
Chen Z, Wei L, Ma H, Liu Y, Yue M, Shi J. Study on Hydrocarbon Fuel Ignition Characterization Based on Optimized BP Neural Network. Energies. 2024; 17(9):2072. https://doi.org/10.3390/en17092072
Chicago/Turabian StyleChen, Zhihan, Lulin Wei, Hongan Ma, Yang Liu, Meng Yue, and Junrui Shi. 2024. "Study on Hydrocarbon Fuel Ignition Characterization Based on Optimized BP Neural Network" Energies 17, no. 9: 2072. https://doi.org/10.3390/en17092072
APA StyleChen, Z., Wei, L., Ma, H., Liu, Y., Yue, M., & Shi, J. (2024). Study on Hydrocarbon Fuel Ignition Characterization Based on Optimized BP Neural Network. Energies, 17(9), 2072. https://doi.org/10.3390/en17092072