Optimization of Discontinuous Polymer Flooding Processes for Offshore Oilfields Using a Novel PSO–ICA Algorithm
Abstract
:1. Introduction
2. Reservoir Simulation Model
- (1)
- The effects of shear rate on polymer viscosity
- (2)
- The adsorption of polymers and gels
- (3)
- The permeability reduction
- (4)
- Inaccessible pore volume
- (5)
- Polymer degradation
- (6)
- Polymer and gel viscosification
3. Methodology
3.1. Objective Function
3.2. PSO–ICA Algorithm
- (1)
- Generation of initial empires
- (2)
- Movement of the colonies toward the imperialist by PSO algorithm
- (3)
- Exchange of the position of a colony and the imperialist
- (4)
- Total power of an empire
- (5)
- Imperialistic competition
- (6)
- Elimination of the powerless empires
- (7)
- Convergence
4. Results
4.1. Validation by Benchmark Functions
4.2. Optimization of Discontinuous Polymer Flooding by the PSO–ICA Algorithm
5. Conclusions
- (1)
- The introduction of PSO into ICA effectively enhances the search capability of the ICA and prevents PSO–ICA from falling into local optimum. Therefore, PSO–ICA has lower iteration numbers, higher optimization accuracy, and faster convergence rate than these of PSO and ICA.
- (2)
- The developed PSO–ICA algorithm provides an effective method for optimizing the operational parameters of discontinuous polymer flooding processes by maximizing the NPV value. More applications are needed to further verify the accuracy of the PSO–ICA algorithm.
- (3)
- Compared to continuous polymer flooding, discontinuous polymer flooding has a higher NPV, a higher oil production rate, a lower water cut, and a lower residual oil saturation. The injection of an anti-dilution gel slug, long-acting gel slug, and polymer slug with a low concentration effectively sealed the higher-permeability zones, improved the sweep efficiency of polymer flooding, and decreased the injection pressure and application cost.
- (4)
- The NPV value of the optimal scheme of discontinuous polymer flooding reached 7.49 × 108 $, which is an increase of 6% over that of the scheme of continuous polymer flooding. Discontinuous polymer flooding is an economical and effective method for enhancing oil recovery for offshore oilfields.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pope, G.A. Recent developments and remaining challenges of enhanced oil recovery. J. Pet. Technol. 2011, 63, 65–68. [Google Scholar] [CrossRef]
- Sheng, J.J.; Leonhardt, B.; Azri, N. Status of polymer-flooding technology. J. Can. Pet. Technol. 2015, 54, 116–126. [Google Scholar] [CrossRef]
- Wang, D.; Cheng, J.; Xia, H.; Li, Q.; Shi, J.P. Viscous-Elastic fluids can mobilize oil remaining after Water-Flood by force parallel to the Oil-Water interface. In Proceedings of the SPE Asia Pacific Improved Oil Recovery Conference, Kuala Lumpur, Malaysia, 8–9 October 2001. [Google Scholar]
- Wei, B.; Romero-Zerón, L.; Rodrigue, D. Oil displacement mechanisms of viscoelastic polymers in enhanced oil recovery (EOR): A review. J. Pet. Explor. Prod. Technol. 2014, 4, 113–121. [Google Scholar] [CrossRef]
- Zhang, K.; Choi, H.J.; Jang, C.H. Turbulent drag reduction characteristics of poly (acrylamide-co-acrylic acid) in a rotating disk apparatus. Colloid. Polym. Sci. 2011, 289, 1821–1827. [Google Scholar] [CrossRef]
- Meter, D.M.; Bird, R.B. Tube flow of non-Newtonian polymer solutions: PART I. Laminar flow and rheological models. AIChE J. 1964, 10, 878–881. [Google Scholar] [CrossRef]
- Dovan, H.T.; Hutchins, R.D.; Terzian, G.A. Dos cuadras offshore polymer flood. In Proceedings of the SPE California Regional Meeting, Ventura, CA, USA, 4–6 April 1990. [Google Scholar]
- Pan, G.M.; Zhang, L.; Huang, J.; Li, H.; Qu, J.F. Twelve years field applications of offshore heavy oil polymer flooding from continuous injection to alternate injection of polymer-water. In Proceedings of the Offshore Technology Conference Asia, Kuala Lumpur, Malaysia, 2–6 November 2020. [Google Scholar]
- Rathinasamy, M.; Chandramouli, S.; Phanindra, K.B.V.N. Estimation of Reservoir Storage Using Artificial Neural Network; Springer: Singapore, 2018; pp. 57–63. [Google Scholar]
- Liu, B.; Bai, B.; Li, Y. Research on preformed gel grains for water shutoff and profile control. Oil Drill. Prod. Technol. 1999, 21, 65–68. (In Chinese) [Google Scholar]
- Bai, B.; Li, Y.; Liu, X. New development of water shutoff and profile control in oilfields in China. Oil Drill. Prod. Technol. 1999, 20, 64–68. (In Chinese) [Google Scholar]
- Bai, B.; Li, L.X.; Liu, Y.Z.; Liu, H.; Wang, Z.G.; You, C.M. Preformed particle gel for conformance control: Factors affecting its properties and applications. SPE Reservoir Eval. Eng. 2007, 10, 415–422. (In Chinese) [Google Scholar] [CrossRef]
- Bai, B.J.; Huang, F.S.; Liu, Y.Z.; Seright, R.S.; Wang, Y.F. Case study on prefromed particle gel for in-depth fluid diversion. In Proceedings of the SPE Symposium on Improved Oil Recovery, Tulsa, OK, USA, 20–23 April 2008. [Google Scholar]
- Tongwa, P.; Nygaard, R.; Bai, B. Evaluation of a nanocomposite hydrogel for water shut-off in enhanced oil recovery applications: Design, synthesis, and characterization. J. Appl. Polym. Sci. 2013, 128, 787–794. [Google Scholar] [CrossRef]
- Tongwa, P.; Nygaard, R.; Bai, B.; Blue, A. Evaluation of potential fracture-sealing materials for remediating CO2 leakage pathways during CO2 sequestration. Int. J. Greenhouse Gas. Control. 2013, 18, 128–138. [Google Scholar] [CrossRef]
- Tongwa, P.; Baojun, B. A more superior preformed particle gel with potential application for conformance control in mature oilfields. J. Pet. Explor. Prod. Technol. 2015, 5, 201–210. [Google Scholar] [CrossRef]
- Claridge, E.L. A method for designing graded viscosity banks. Soc. Pet. Eng. J. 1978, 18, 315–324. [Google Scholar] [CrossRef]
- Zhang, J. Study on discontinuous chemical flooding model of offshore high water cut oilfield. Zhongguo Haishang Youqi 2023, 35, 70–77. (In Chinese) [Google Scholar]
- Standnes, D.C.; Skjevrak, I. Literature review of implemented polymer field projects. J. Pet. Sci. Eng. 2014, 122, 761–775. [Google Scholar] [CrossRef]
- Seright, R.S. How much polymer should be injected during a polymer flood? Review of previous and current practices. SPE J. 2017, 22, 1–18. [Google Scholar] [CrossRef]
- Bagheri, A.; Razeghi, H.R.; Amiri, G.G. Detection and estimation of damage in structures using imperialist competitive algorithm. Noise Control 2012, 19, 405–419. [Google Scholar] [CrossRef]
- Beghi, A.; Cecchinato, L.; Cosi, G.; Rampazzo, M. A PSO-based algorithm for optimal multiple chiller systems operation. Appl. Therm. Eng. 2012, 32, 31–40. [Google Scholar] [CrossRef]
- Shao, W.; Cui, Z.; Cheng, L. Multi-objective optimization of cooling air distributions of grate cooler with different clinker particles diameters and air chambers by genetic algorithm. Appl. Therm. Eng. 2017, 111, 77–86. [Google Scholar] [CrossRef]
- Yang, M.D.; Lin, M.D.; Lin, Y.H.; Tsai, K.T. Multiobjective optimization design of green building envelope material using a non-dominated sorting genetic algorithm. Appl. Therm. Eng. 2017, 111, 1255–1264. [Google Scholar] [CrossRef]
- Sayyafzadeh, M.; Keshavarz, A. Optimisation of gas mixture injection for enhanced coalbed methane recovery using a parallel genetic algorithm. J. Nat. Gas. Sci. Eng. 2016, 33, 942–953. [Google Scholar] [CrossRef]
- Eshraghi, S.E.; Rasaei, M.R.; Zendehboudi, S. Optimization of miscible CO2 EOR and storage using heuristic methods combined with capacitance/resistance and Gentil fractional flow models. Nat. Gas. Sci. Eng. 2016, 32, 304–318. [Google Scholar] [CrossRef]
- Ahmadi, M.A.; Soleimani, R.; Lee, M.; Kashiwao, T.; Bahadori, A. Determination of oil well production performance using artificial neural network (ANN) linked to the particle swarm optimization (PSO) tool. Petroleum 2015, 1, 118–132. [Google Scholar] [CrossRef]
- Dossary, M.A.A.; Nasrabadi, H. Well placement optimization using imperialist competitive algorithm. J. Pet. Sci. Eng. 2016, 147, 237–248. [Google Scholar] [CrossRef]
- Abd-Elazim, S.A.E. Power system stability enhancement via bacteria foraging optimization algorithm. Arabian J. Sci. Eng. 2013, 38, 599–611. [Google Scholar] [CrossRef]
- Abd-Elazim, S.A.E. Imperialist competitive algorithm for optimal statcom design in a multimachine power system. Int. J. Elec. Power. 2016, 76, 136–146. [Google Scholar] [CrossRef]
- Moradifar, A.; Akbari, F.A.; Gorgani, F.K. Comprehensive identification of multiple harmonic sources using fuzzy logic and adjusted probabilistic neural network. Neural Comput. Appl. 2017, 31, 543–556. [Google Scholar] [CrossRef]
- Mortazavi, A.; Khamseh, A.A.; Naderi, B. A novel chaotic imperialist competitive algorithm for production and air transportation scheduling problems. Neural Comput. Appl. 2015, 26, 1709–1723. [Google Scholar] [CrossRef]
- Zandieh, M.; Khatami, A.; Rahmati, S.H.A. Flexible job shop scheduling under condition-based maintenance: Improved version of imperialist competitive algorithm. Appl. Soft Comput. 2017, 58, 449–464. [Google Scholar] [CrossRef]
- Mikaeil, R.; Haghshenas, S.S.; Haghshenas, S.S.; Ataei, M. Performance prediction of circular saw machine using imperialist competitive algorithm and fuzzy clustering technique. Neural Comput. Appl. 2018, 29, 283–292. [Google Scholar] [CrossRef]
- Hosseini, S.; Khaled, A.A.; Vadlamani, S. Hybrid imperialist competitive algorithm, variable neighborhood search, and simulated annealing for dynamic facility layout problem. Neural Comput. Appl. 2014, 25, 1871–1885. [Google Scholar] [CrossRef]
- Bahrami, H.; Faez, K.; Abdechiri, M. Imperialist competitive algorithm using chaos theory for optimization (CICA). In Proceedings of the International Conference on Computer Modelling and Simulation, Cambridge, UK, 24–26 March 2010. [Google Scholar]
- Abdechiri, M.; Faez, K.; Bahrami, H. Neural network learning based on chaotic imperialist competitive algorithm. In Proceedings of the 2010 2nd International Workshop on Intelligent Systems and Applications, Wuhan, China, 7 June 2010. [Google Scholar]
- Abdechiri, M.; Faez, K.; Bahrami, H. Adaptive imperialist competitive algorithm (AICA). In Proceedings of the 9th IEEE International Conference on Cognitive Informatics (ICCI’10), Beijing, China, 7–9 July 2010. [Google Scholar]
- Khaled, A.A.; Hosseini, S. Fuzzy adaptive imperialist competitive algorithm for global optimization. Neural Comput. Appl. 2015, 26, 813–825. [Google Scholar] [CrossRef]
- Gao, S.L.; Chen, Y.; Wang, X.; Li, S.Q.; Yan, S.G.; Hou, B.F. Research on dynamic performance of anti-polymer adsorbent in Henan oilfield. Dangdai Huagong 2021, 50, 2170–2175. (In Chinese) [Google Scholar]
- Zhang, P.; Tan, X.; Yang, R.; Yang, R.F.; Zheng, W.; Zhang, X.L.; Xie, H.J.; Sun, X.F. Numerical Simulations of Nitrogen Foam and Gel-Assisted Steam Flooding for Offshore Heavy Oil Reservoirs. J. Porous Media 2023, 26, 17–32. [Google Scholar] [CrossRef]
- Zandvliet, M.J.; Handels, M.; Van, E.G.M.; Brouwer, D.R.; Jansen, J.D. Adjoint-based well-placement optimization under production constraints. SPE J. 2008, 13, 392–399. [Google Scholar] [CrossRef]
- Askarzadeh, A. Comparison of particle swarm optimization and other metaheuristics on electricity demand estimation: A case study of Iran. Energy 2014, 72, 484–491. [Google Scholar] [CrossRef]
- Ahirwal, M.K.; Kumar, A. Singh G K. Analysis and testing of PSO variants through application in EEG/ERP adaptive filtering approach. Open Biomed. Eng. Lett. 2012, 2, 186–197. [Google Scholar] [CrossRef]
- Atif, E.A.; Ibrahim, M.A.; Shehata, O.M. Performance evaluation of PSO-PID and PSO-FLC for continuum robot’s developed modeling and control. Sci. Rep. 2024, 14, 733. [Google Scholar]
Reservoir Properties | Values |
Average depth (m) | 1731.74 |
Average reservoir porosity (%) | 16.1 |
Average reservoir permeability (mD) | 440.7 |
Reservoir pressure (kPa) | 101 |
Reservoir temperature (°C) | 70 |
Rock compressibility (1/kPa) | 10−4 |
Average oil saturation (%) | 56 |
Fluid properties | Values |
Oil density (kg/m3) | 838 |
Oil viscosity (mPa·s) | 1.9478 |
Residual resistance factor | 1.3 |
Inaccessible pore volume | 0.3 |
ADMAXT of polymer (gmole/m3) | 6.26 |
ADMAXT of anti-dilution gel (gmole/m3) | 8.25 |
ADMAXT of long-acting gel (gmole/m3) | 6.60 |
The half-life of the polymer solution (day) | 1040 |
Results of the polymer adsorption experiment | |
Mole fraction of polymer (%) | Adsorption capacity (gmole/m3) |
0 | 0 |
0.0005 | 5.43 |
0.001 | 5.94 |
0.0015 | 6.18 |
0.002 | 6.25 |
Results of the anti-dilution gel adsorption experiment | |
Mole fraction of Anti-dilution gel (%) | Adsorption capacity (gmole/m3) |
0 | 0 |
0.0005 | 7.43 |
0.001 | 7.94 |
0.0015 | 8.18 |
0.002 | 8.25 |
Results of the long-acting gel adsorption experiment | |
Mole fraction of Long-acting gel (%) | Adsorption capacity (gmole/m3) |
0 | 0 |
0.0005 | 5.94 |
0.001 | 6.35 |
0.0015 | 6.54 |
0.002 | 6.60 |
Parameters | Values |
---|---|
Pagp ($/t) | 2781 |
Pagc ($/t) | 2503 |
Pp ($/t) | 2781 |
Plgp ($/t) | 2781 |
Plgc ($/t) | 2503 |
Poil ($/t) | 443 |
Function Name | Function Equation | Dimensions | Definition Domain | Optimal Solution |
---|---|---|---|---|
F1 | 10 | [−100, 100] | 0 | |
F2 | 10 | [−5.12, 5.12] | 0 | |
F3 | 10 | [−500, 500] | −4190 | |
F4 | 10 | [−100, 100] | 0 |
Algorithm | F1 | F2 | F3 | F4 | ||||
---|---|---|---|---|---|---|---|---|
Solutions | Iteration Numbers | Solutions | Iteration Numbers | Solutions | Iteration Numbers | Solution | Iteration Numbers | |
ICA | 10−1 | 62 | 10−3 | 147 | −2221.74 | 150 | 2.5 × 10−144 | 12 |
PSO | 10−5 | 265 | 17.81 | >300 | −4170.25 | >300 | 0.000742 | 18 |
PSO–ICA | 10−13 | 3 | 10−14 | 20 | −4189.794 | 21 | 2.08 × 10−140 | 10 |
Parameters | Values |
---|---|
Npop | 10 |
Nimp | 5 |
Ncol | 5 |
ƞ | 0.5 |
α1, α2 | 2 |
γ1 | 0.8 |
γ2 | 0.75 |
ω | 0.1 |
Well Name and Operational Parameters | Polymer Concentration of Anti-Dilution Gel Slug (mg/L) | Polymer Concentration of Polymer Slug (mg/L) | Polymer Concentration of Long-Acting Gel Slug (mg/L) | Size of the Anti-Dilution Gel Slug (day) | Size of Polymer Slug (year) | Size of Long-Acting Gel Slug (day) | Injection Timing of Long-Acting Gel Slug (day) | Polymer Concentration of Polymer Slug with Low Concentrations (mg/L) | Size of Polymer Slug with Low Concentrations (day) | Injection Timing of Polymer Slug with Low Concentrations (day) | Polymer Concentration of Anti-Dilution Gel Slug (mg/L) | Polymer Concentration of Polymer Slug (mg/L) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
P07 | 3684 | 1136 | 1939 | 28 | 3 | 45 | 875 | 545 | 49 | 778 | 3684 | 1136 |
P09 | 1505 | 1200 | 1768 | 21 | 5 | 25 | 821 | 550 | 45 | 722 | 1505 | 1200 |
P11 | 3035 | 1407 | 1872 | 40 | 6 | 60 | 1429 | 564 | 55 | 1330 | 3035 | 1407 |
P16 | 2293 | 800 | 1735 | 39 | 3 | 29 | 421 | 588 | 52 | 336 | 2293 | 800 |
P18 | 1864 | 1458 | 1927 | 20 | 4 | 47 | 1183 | 603 | 41 | 1100 | 1864 | 1458 |
P19 | 3921 | 992 | 1888 | 39 | 3 | 59 | 1171 | 618 | 53 | 1079 | 3921 | 992 |
P21 | 3056 | 1337 | 1747 | 41 | 3 | 20 | 900 | 629 | 42 | 807 | 3056 | 1337 |
P23 | 2759 | 864 | 1554 | 32 | 4 | 48 | 1032 | 634 | 58 | 940 | 2759 | 864 |
I14 | 2821 | 1566 | 1500 | 38 | 3 | 52 | 1118 | 662 | 41 | 1022 | 2821 | 1566 |
I26 | 3201 | 1183 | 1735 | 37 | 4 | 35 | 2108 | 677 | 41 | 2022 | 3201 | 1183 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, E.; Zhang, J.; Jin, Y.; Li, L.; Xia, A.; Zhu, B.; Sun, X. Optimization of Discontinuous Polymer Flooding Processes for Offshore Oilfields Using a Novel PSO–ICA Algorithm. Energies 2024, 17, 1971. https://doi.org/10.3390/en17081971
Tang E, Zhang J, Jin Y, Li L, Xia A, Zhu B, Sun X. Optimization of Discontinuous Polymer Flooding Processes for Offshore Oilfields Using a Novel PSO–ICA Algorithm. Energies. 2024; 17(8):1971. https://doi.org/10.3390/en17081971
Chicago/Turabian StyleTang, Engao, Jian Zhang, Yi Jin, Lezhong Li, Anlong Xia, Bo Zhu, and Xiaofei Sun. 2024. "Optimization of Discontinuous Polymer Flooding Processes for Offshore Oilfields Using a Novel PSO–ICA Algorithm" Energies 17, no. 8: 1971. https://doi.org/10.3390/en17081971
APA StyleTang, E., Zhang, J., Jin, Y., Li, L., Xia, A., Zhu, B., & Sun, X. (2024). Optimization of Discontinuous Polymer Flooding Processes for Offshore Oilfields Using a Novel PSO–ICA Algorithm. Energies, 17(8), 1971. https://doi.org/10.3390/en17081971