Smart Transmission Expansion Planning Based on the System Requirements: A Comparative Study with Unconventional Lines
Abstract
:1. Introduction
- Introduction to the requirements of cost-effective extra-high-voltage AC transmission systems for power system expansion.
- Proposal for an innovative approach in transmission expansion planning based on requirements by finding optimal line parameters as required instead of using available standard conventional line configurations.
- Comparing the operations of each TEP scenario with a conventional line, unconventional HSIL line, and the proposed line for smart TEP to supply the designated load.
- Cost comparison of each TEP scenario using a conventional line, unconventional HSIL line, and the proposed line for the smart TEP throughout the life span of the transmission line.
2. Base Test System
3. Transmission Expansion Planning
3.1. Using an Unconventional Line
3.2. Smart Transmission Expansion Planning
3.2.1. Methodology
- (i)
- Transmission line parameter constraints:
0.8L ≤ Lsmart ≤ 1.2L
0.8C ≤ Csmart ≤ 1.2C
- (ii)
- Power balance constraint:
- (iii)
- Bus voltage constraint:
- (iv)
- Constraint on power flow in transmission line:
- (v)
- Constraint reactive power generation:
3.2.2. TEP Analysis
4. Cost Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Henderson, M.I.; Novosel, D.; Crow, M.L. Electric Power Grid Modernization Trends, Challenges, and Opportunities. Available online: https://www.cmu.edu/epp/irle/readings/henderson-novosel-crow-electric-power-grid-modernization.pdf (accessed on 2 March 2024).
- Heeter, J.S.; Speer, B.K.; Glick, M.B. International Best Practices for Implementing and Designing Renewable Portfolio Standard (RPS) Policies. NREL/TP--6A20-72798, April 2019. Available online: https://www.nrel.gov/docs/fy19osti/72798.pdf (accessed on 2 March 2024).
- U.S. Energy Information Administration (EIA). International Energy Outlook. Available online: https://www.eia.gov/outlooks/ieo/data.php (accessed on 12 December 2023).
- World Energy Transitions Outlook 2023. Available online: https://www.irena.org/Digital-Report/World-Energy-Transitions-Outlook-2023#page-2 (accessed on 15 March 2024).
- Drossman, J.; Williams, R.; Pacala, S.; Socolow, R. Net-Zero America: Potential Pathways, Infrastructure, and Impacts. Available online: https://netzeroamerica.princeton.edu/img/Princeton_NZA_Interim_Report_15_Dec_2020_FINAL.pdf (accessed on 2 March 2024).
- Scribd. Kiessling Overhead Power Lines Planning Design Construction|PDF|Manufactured Goods|Electric Power Distribution. Available online: https://www.scribd.com/doc/216733502/Kiessling-Overhead-Power-Lines-Planning-Design-Construction (accessed on 15 March 2024).
- Commonwealth of Virginia, Joint Legislative Audit and Review Commission. Evaluation of Underground Electric Transmission Lines in Virginia, House Document No. 87, 2006. Available online: https://rga.lis.virginia.gov/Published/2006/HD87 (accessed on 2 March 2024).
- Bak, C.L.; da Silva, F.F. High voltage AC underground cable systems for power transmission—A review of the Danish experience, part 1. Electr. Power Syst. Res. 2016, 140, 984–994. [Google Scholar] [CrossRef]
- Arcia-Garibaldi, G.; Cruz-Romero, P.; Gómez-Expósito, A. Future power transmission: Visions, technologies and challenges. Renew. Sustain. Energy Rev. 2018, 94, 285–301. [Google Scholar] [CrossRef]
- Sapkota, S.; Pokharel, K.; Li, W.; Wang, Y.; Saleem, U. An improved bidirectional T-source circuit breaker for MVDC. Electr. Eng. 2022, 104, 2319–2332. [Google Scholar] [CrossRef]
- Sun, M.; Cremer, J.; Strbac, G. A novel data-driven scenario generation framework for transmission expansion planning with high renewable energy penetration. Appl. Energy 2018, 228, 546–555. [Google Scholar] [CrossRef]
- Yin, S.; Wang, J. Generation and transmission expansion planning towards a 100% renewable future. IEEE Trans. Power Syst. 2022, 37, 3274–3285. [Google Scholar] [CrossRef]
- Ugranli, F.; Karatepe, E. Transmission expansion planning for wind turbine integrated power systems considering contingency. IEEE Trans. Power Syst. 2016, 31, 1476–1485. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, Y.; Gu, W.; Wang, Y.; Chen, C. Contingency-constrained robust transmission expansion planning under uncertainty. Int. J. Electr. Power Energy Syst. 2018, 101, 331–338. [Google Scholar] [CrossRef]
- Roldán, C.; Mínguez, R.; García-Bertrand, R.; Arroyo, J.M. Robust transmission network expansion planning under correlated uncertainty. IEEE Trans. Power Syst. 2019, 34, 2071–2082. [Google Scholar] [CrossRef]
- Buygi, M.O.; Balzer, G.; Shanechi, H.M.; Shahidehpour, M. Market-based transmission expansion planning. IEEE Trans. Power Syst. 2004, 19, 2060–2067. [Google Scholar] [CrossRef]
- Babić, A.B.; Sarić, A.T.; Ranković, A. Transmission expansion planning based on locational marginal prices and ellipsoidal approximation of uncertainties. Int. J. Electr. Power Energy Syst. 2013, 53, 175–183. [Google Scholar] [CrossRef]
- Alexandrov, G.N. Design of Compacted UHV Transmission Line; Energoatomizdat: Moscow, Russia, 1993. (In Russian) [Google Scholar]
- Ghassemi, M. High surge impedance loading (HSIL) lines: A review identifying opportunities, challenges, and future research needs. IEEE Trans. Power Del. 2019, 34, 1909–1924. [Google Scholar] [CrossRef]
- Dhamala, B.; Ghassemi, M. Unconventional high surge impedance loading (HSIL) lines and transmission expansion planning. IEEE N. Am. Power Symp. (NAPS) 2023, 1–6. [Google Scholar] [CrossRef]
- Dhamala, B.; Ghassemi, M. Comparative Study of Transmission Expansion Planning with Conventional and Unconventional High Surge Impedance Loading (HSIL) Lines. In Proceedings of the IEEE PES General Meeting, Seattle, WA, USA, 21–25 July 2024. [Google Scholar]
- Dhamala, B.; Ghassemi, M. A Test System Meeting Requirements under Normal and Contingency Conditions at Multiple Loadings for Transmission Expansion Planning. In Proceedings of the IEEE Dallas Circuits and Systems Conference (DCAS), Dallas, TX, USA, 19–21 April 2024. [Google Scholar]
- Transmission Cost Estimation Guide for MTEP23, Midcontinent Independent System Operator (MISO). May 2023. Available online: https://www.misoenergy.org/planning/transmissionplanning/#t=10&p=0&s=FileName&sd=desc (accessed on 2 March 2024).
- CPV Three Rivers Energy Center, Illinois, US. Power Technology. Available online: https://www.power-technology.com/projects/cpv-three-rivers-energy-center-illinois-us/ (accessed on 2 March 2024).
- Technologies|Electricity|2023|ATB|NREL. Available online: https://atb.nrel.gov/electricity/2023/technologies (accessed on 2 March 2024).
- Natural Gas Futures Contract 1 (Dollars per Million Btu). Available online: https://www.eia.gov/dnav/ng/hist/rngc1M.htm (accessed on 2 March 2024).
Line | Length (km) | Line | Length (km) |
---|---|---|---|
1–2 | 410.33 | 7–12 | 300.05 |
1–4 | 426.78 | 8–11 | 349.10 |
1–7 | 370.92 | 9–10 | 447.28 |
2–3 | 436.90 | 9–15 | 398.20 |
2–5 | 294.56 | 10–14 | 392.74 |
3–6 | 349.56 | 11–13 | 261.30 |
4–8 | 416.14 | 12–14 | 348.37 |
5–6 | 415.00 | 12–16 | 406.46 |
5–7 | 435.50 | 13–16 | 417.27 |
5–10 | 376.35 | 14–15 | 458.18 |
6–9 | 316.35 | 14–17 | 403.64 |
7–11 | 387.10 | 15–17 |
Bus | (p.u) | Bus Type | Pg (MW) | PL (MW) | QL (MW) | Shunt Capacitor |
---|---|---|---|---|---|---|
1 | 1.05 | Slack | ||||
2 | - | PQ | - | 1900.00 | 920.21 | 100 Mvar |
3 | 1.03 | PV | 3600 | 1750.00 | 847.56 | - |
4 | - | PQ | - | 1850.00 | 896.00 | 100 Mvar |
5 | - | PQ | - | 1600.00 | 774.92 | 150 Mvar |
6 | 1.03 | PV | 3600 | 1700.00 | 823.34 | - |
7 | - | PQ | - | 1900.00 | 920.21 | - |
8 | 1.04 | PV | 3600 | 1600.00 | 774.92 | - |
9 | - | PQ | - | 2000.00 | 968.64 | 400 Mvar |
10 | 1.03 | PV | 3600 | 1700.00 | 823.34 | - |
11 | - | PQ | - | 1800.00 | 871.77 | 200 Mvar |
12 | 1.05 | PV | 3600 | 1600.00 | 774.92 | - |
13 | 1.05 | PV | 3600 | 1800.00 | 871.77 | - |
14 | - | PQ | - | 2300.00 | 1113.94 | 50 Mvar |
15 | 1.00 | PV | 3500 | 1700.00 | 823.35 | - |
16 | - | PQ | - | 1750.00 | 847.56 | - |
17 | - | PQ | - | 1150.00 | 556.97 | 150 Mvar |
Specific Result | Line Parameters | ||
---|---|---|---|
Maximum Electric Field, | 20.0 kV/cm | R | 0.0216 |
Surge Impedance loading | 1354.72 MW | L (mH/km) | 0.619 |
Line Width | 11.69 m | C (nF/km) | 18.199 |
Peak Loading Condition | |||||||||||||||||
Bus | 2 | 4 | 5 | 7 | 9 | 11 | 14 | 16 | 17 | 18 | |||||||
Mvar | 150 (Cap.) | 100 (Cap.) | 150 (Cap.) | 200 (Cap.) | 450 (Cap.) | 200 (Cap.) | 100 | 300 | 600 | 500 | |||||||
Dominant Loading Condition | |||||||||||||||||
Bus | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
Mvar | 150 | - | 50 | 200 | - | - | 150 | - | 200 | - | 550 | - | 400 | 200 | 500 | 950 | 450 |
Light Loading Condition | |||||||||||||||||
Bus | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
Mvar | 400 | 200 | 300 | 400 | 450 | 300 | 600 | 50 | 650 | 100 | 900 | 200 | 700 | 650 | 750 | 1100 | 450 |
Peak Loading Condition | |||||||||||||||||
Bus | 2 | 4 | 5 | 7 | 9 | 11 | 14 | 16 | 17 | 18 | |||||||
Mvar | 150 (Cap.) | 100 (Cap.) | 150 (Cap.) | 200 (Cap.) | 450 (Cap.) | 200 (Cap.) | 150 | 200 | 400 | 150 | |||||||
Dominant Loading Condition | |||||||||||||||||
Bus | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
Mvar | 150 | - | 50 | 200 | - | - | 150 | - | 200 | - | 550 | - | 400 | 200 | 300 | 750 | 150 |
Light Loading Condition | |||||||||||||||||
Bus | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
Mvar | 400 | 200 | 300 | 400 | 400 | 300 | 600 | 50 | 650 | 100 | 900 | 200 | 700 | 700 | 550 | 900 | 150 |
RS (p.u.) | XS (p.u.) | GS (p.u.) | BS (p.u.) | |
---|---|---|---|---|
Line 16–18 | 0.0026840 | 0.0266850 | 0.0060571 | 5.0734146 |
Line 17–18 | 0.0028126 | 0.0280374 | 0.0070999 | 5.3506486 |
Peak Loading Condition | |||||||||||||||||
Bus | 2 | 4 | 5 | 7 | 9 | 11 | 14 | 16 | 17 | 18 | |||||||
Mvar | 150 (Cap.) | 100 (Cap.) | 150 (Cap.) | 200 (Cap.) | 450 (Cap.) | 200 (Cap.) | 150 (Cap.) | 250 | 300 | 350 | |||||||
Dominant Loading Condition | |||||||||||||||||
Bus | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
Mvar | 150 | - | 50 | 200 | - | - | 150 | - | 200 | - | 550 | - | 150 | 200 | 400 | 650 | 350 |
Light Loading Condition | |||||||||||||||||
Bus | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
Mvar | 400 | 200 | 300 | 400 | 450 | 300 | 600 | 50 | 650 | 100 | 900 | 200 | 450 | 650 | 650 | 800 | 350 |
TEP Case | Cost of Line, Bay, and Reactor | Additional Losses Due to TEP (MW) | Cost of Power Loss | Total Cost of TEP USD (Million) | ||||
---|---|---|---|---|---|---|---|---|
Line Cost USD (Million) | Bay Cost USD (Million) | Additional Reactor Cost USD (Million) | Capital Investment USD (Million) | Fuel Cost USD (Million) | O&M Cost USD (Million) | |||
Conventional Line | 4639.660 | 77 | 16.537 | 113.9 | 118.456 | 502.558 | 159.981 | 5514.194 |
Unconventional HSIL line | 4639.660 | 77 | 33.075 | 115 | 119.600 | 507.412 | 161.526 | 5538.274 |
Smart TEP | 3561.134 | 63 | 15.356 | 115.5 | 120.120 | 509.618 | 162.228 | 4431.457 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhamala, B.; Ghassemi, M. Smart Transmission Expansion Planning Based on the System Requirements: A Comparative Study with Unconventional Lines. Energies 2024, 17, 1912. https://doi.org/10.3390/en17081912
Dhamala B, Ghassemi M. Smart Transmission Expansion Planning Based on the System Requirements: A Comparative Study with Unconventional Lines. Energies. 2024; 17(8):1912. https://doi.org/10.3390/en17081912
Chicago/Turabian StyleDhamala, Bhuban, and Mona Ghassemi. 2024. "Smart Transmission Expansion Planning Based on the System Requirements: A Comparative Study with Unconventional Lines" Energies 17, no. 8: 1912. https://doi.org/10.3390/en17081912
APA StyleDhamala, B., & Ghassemi, M. (2024). Smart Transmission Expansion Planning Based on the System Requirements: A Comparative Study with Unconventional Lines. Energies, 17(8), 1912. https://doi.org/10.3390/en17081912