Variability of Greenhouse Gas Emissions in Relation to Economic and Ecological Indicators from Cattle Farms
Abstract
:1. Introduction
2. Methodology
3. Results
4. Discussion and Conclusions
5. Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
X2 | X3 | X4 | X5 | X6 | Y1 | Y2 | Y3 | Z1 | Z2 | Z3 | |
---|---|---|---|---|---|---|---|---|---|---|---|
X2 | 0.759 | 0.694 | 0.823 | 0.689 | 0.764 | 0.591 | 0.780 | 0.097 | −0.177 | −0.154 | |
X3 | 0.759 | 0.992 | 0.887 | 0.776 | 0.826 | 0.720 | 0.788 | −0.032 | −0.473 | −0.444 | |
X4 | 0.694 | 0.992 | 0.868 | 0.770 | 0.812 | 0.686 | 0.776 | −0.016 | −0.434 | −0.406 | |
X5 | 0.823 | 0.887 | 0.868 | 0.951 | 0.780 | 0.727 | 0.762 | −0.057 | −0.402 | −0.381 | |
X6 | 0.689 | 0.776 | 0.770 | 0.951 | 0.591 | 0.577 | 0.572 | −0.221 | −0.402 | −0.399 | |
Y1 | 0.764 | 0.826 | 0.812 | 0.780 | 0.591 | 0.840 | 0.988 | 0.101 | −0.260 | −0.231 | |
Y2 | 0.591 | 0.720 | 0.686 | 0.727 | 0.577 | 0.840 | 0.783 | −0.194 | −0.602 | −0.583 | |
Y3 | 0.780 | 0.788 | 0.776 | 0.762 | 0.572 | 0.988 | 0.783 | 0.186 | −0.128 | −0.099 | |
Z1 | 0.097 | −0.032 | −0.016 | −0.057 | −0.221 | 0.101 | −0.194 | 0.186 | 0.581 | 0.652 | |
Z2 | −0.177 | −0.473 | −0.434 | −0.402 | −0.402 | −0.260 | −0.602 | −0.128 | 0.581 | 0.996 | |
Z3 | −0.154 | −0.444 | −0.406 | −0.381 | −0.399 | −0.231 | −0.583 | −0.099 | 0.652 | 0.996 |
X2 | X3 | X4 | X5 | X6 | Y1 | Y2 | Y3 | Z1 | Z2 | Z3 | |
---|---|---|---|---|---|---|---|---|---|---|---|
X2 | 0.417 | 0.184 | −0.292 | −0.388 | −0.160 | −0.146 | 0.471 | 0.314 | 0.104 | 0.131 | |
X3 | 0.417 | 0.960 | −0.638 | −0.772 | 0.751 | 0.611 | 0.809 | 0.506 | 0.628 | 0.631 | |
X4 | 0.184 | 0.960 | −0.549 | −0.700 | 0.833 | 0.687 | 0.730 | 0.388 | 0.608 | 0.599 | |
X5 | −0.292 | −0.638 | −0.549 | 0.869 | −0.530 | −0.585 | −0.857 | −0.854 | −0.756 | −0.788 | |
X6 | −0.388 | −0.772 | −0.700 | 0.869 | −0.540 | −0.576 | −0.918 | −0.777 | −0.734 | −0.759 | |
Y1 | −0.160 | 0.751 | 0.833 | −0.530 | −0.540 | 0.880 | 0.550 | 0.402 | 0.672 | 0.659 | |
Y2 | −0.146 | 0.611 | 0.687 | −0.585 | −0.576 | 0.880 | 0.562 | 0.408 | 0.808 | 0.783 | |
Y3 | 0.471 | 0.809 | 0.730 | −0.857 | −0.918 | 0.550 | 0.562 | 0.849 | 0.792 | 0.820 | |
Z1 | 0.314 | 0.506 | 0.388 | −0.854 | −0.777 | 0.402 | 0.408 | 0.849 | 0.741 | 0.791 | |
Z2 | 0.104 | 0.628 | 0.608 | −0.756 | −0.734 | 0.672 | 0.808 | 0.792 | 0.741 | 0.997 | |
Z3 | 0.131 | 0.631 | 0.599 | −0.788 | −0.759 | 0.659 | 0.783 | 0.820 | 0.791 | 0.997 |
References
- Gao, J.; Hou, H.; Zhai, Y.; Woodward, A.; Vardoulakis, S.; Kovats, S.; Wilkinson, P.; Li, L.; Song, X.; Xu, L.; et al. Greenhouse gas emissions reduction in different economic sectors: Mitigation measures, health co-benefits, knowledge gaps and policy implications. Environ. Pollut. 2018, 240, 683–698. [Google Scholar] [CrossRef]
- Solazzo, R.; Donati, M.; Tomasi, L.; Arfini, F. How effective is greening policy in reducing GHG emissions from agriculture? Evidence from Italy. Sci. Total Environ. 2016, 573, 1115–1124. [Google Scholar] [CrossRef]
- EEA Greenhouse Gases—Data Viewer. European Environment Agency. Available online: https://www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-gases-viewer (accessed on 20 January 2024).
- European Commission. Communication from the Commission to the European Parliament, The European Council, The Council, The European Economic and Social Committee and The Committee of the Regions, Farm to Fork Strategy for a Fair, Healthy and Environmentally Friendly Food System; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Sikora, A. European Green Deal—Legal and financial challenges of the climate change. ERA Forum 2020, 21, 681–697. [Google Scholar] [CrossRef]
- Vanham, D.; Leip, A. Sustainable food system policies need to address environmental pressures and impacts: The example of water use and water stress. Sci. Total Environ. 2020, 730, 139151. [Google Scholar] [CrossRef] [PubMed]
- Taning, C.N.T.; Nezzetti, B.; Kleter, G.; Smagghe, G.; Baraldi, E. Does RNAi-Based Technology Fit within EU Sustainability Goals? Trends Biotechnol. 2021, 39, 644–647. [Google Scholar] [CrossRef] [PubMed]
- Riccaboni, A.; Neri, E.; Trovarelli, F.; Pulselli, R.M. Sustainability-oriented research and innovation in “farm to fork” value chains. Curr. Opin. Food Sci. 2021, 42, 102–112. [Google Scholar] [CrossRef]
- Emmerling, C.; Krein, A.; Junk, J. Meta-Analysis of Strategies to Reduce NH3 Emissions from Slurries in European Agriculture and Consequences from Greenhouse Gas Emissions. Agronomy 2020, 10, 1633. [Google Scholar] [CrossRef]
- Nowakowicz-Dębek, B.; Wlazło, Ł.; Szymula, A.; Ossowski, M.; Kasela, M.; Chmielowiec-Korzeniowska, A.; Bis-Wencel, H. Estimating Methane Emissions from a Dairy Farm Using a Computer Program. Atmosphere 2020, 11, 803. [Google Scholar] [CrossRef]
- Tongwane, M.I.; Moeletsi, M.E. A review of greenhouse gas emissions from the agriculture sector in Africa. Agric. Syst. 2018, 166, 124–134. [Google Scholar] [CrossRef]
- Mittenzwei, K. Greenhouse Gas Emissions in Norvegian Agriculture: The Regional and Structural Dimension. Sustainability 2020, 12, 2506. [Google Scholar] [CrossRef]
- Testa, S.; Nielsen, K.R.; Vallentin, S.; Ciccullo, F. Sustainability-oriented innovation in the agri-food system: Current issues and the road ahead. Technol. Forecast. Soc. Change 2022, 179, 121653. [Google Scholar] [CrossRef]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Yadav, B.; Singh, G.; Wankar, A.; Dutta, N.; Chaturvedi, V.; Verma, M.R. Effect of simulated heat stress on dugestibility, methane emission and metabolic adaptability in crossbred cattle. Asian-Australas. J. Anim. Sci. 2016, 29, 1585. [Google Scholar] [CrossRef] [PubMed]
- FAO—Food and Agriculture Organization of the United Nations. Greenhouse Gas Emissions from the Dairy Sector. 2010. Available online: https://www.fao.org/docrep/012/k7930e/k7930e00.pdf (accessed on 20 January 2024).
- Caro, D.; Davis, S.J.; Bastianoni, S.; Caldeira, K. Global and Regional Trends in Greenhouse Gas Emissions from Livestock. Clim. Change 2014, 126, 203–216. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Abdalla, A.L.; Ivarez, C.; Anuga, S.W.; Arango, J.; Beauchemin, K.A.; Becquet, P.; Berndt, A.; Burns, R.; De Camillis, C.; et al. Quantification of methane emitted by ruminants: A review of methods. J. Anim. Sci. 2022, 100, skac197. [Google Scholar] [CrossRef]
- Climate Change. Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 2014, IPCC Geneva, 151. Available online: https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf (accessed on 20 January 2024).
- Annual European Union Greenhouse Gas Inventory 1990–2020 and Inventory Report 2022. Submission to the UNFCCC Secretariat. European Environment Agency, 27 May 2022. Available online: https://www.eea.europa.eu/publications/annual-european-union-greenhouse-gas-1 (accessed on 6 April 2024).
- Tomasula, P.M.; Nutter, D.W. Mitigation of greenhouse gas emissions in the production of fluid milk. Adv. Food Nutr. Res. 2011, 62, 41–88. [Google Scholar] [CrossRef] [PubMed]
- EPA Sustainable Research Strategy. Office of Research and Development, US Environmental Protection Agency, Washington, DC. 2009. Available online: http://www.epa.gov/Sustainability/pdfs/EPA-12057_SRS_R4-1.pdf (accessed on 20 January 2024).
- Sieczko, L.; Koloszko-Chomentowska, Z. Relationship between economic and ecological indicators and greenhouse gas emissions: The perspective of farms in Poland at the regional level. Econ. Environ. 2023, 3, 382–395. [Google Scholar] [CrossRef]
- Goopy, J.P.; Chang, C.; Tomkins, N. A Comparison of Methodologies for Measuring Methane Emissions from Ruminants; Springer eBooks: Berlin/Heidelberg, Germany, 2016; pp. 97–117. Available online: https://samples.ccafs.cgiar.org/wp-content/uploads/2015/06/Chapter-52.pdf (accessed on 20 January 2024).
- Van Groenigen, J.W.; Schils, R.L.M.; Velthof, G.L.; Kuikman, P.J.; Oudendag, D.A.; Oenema, O. Mitigation strategies for greenhouse gas emissions from Animals production systems: Synergy between measuring and modelling at different scales. Aust. J. Exp. Agric. 2008, 48, 46–53. [Google Scholar] [CrossRef]
- Ellis, J.l.; Bannink, A.; France, J.; Kebreab, E.; Gijkstra, J. Evaluation of enteric methane prediction equations for dairy cows used in whole farms models. Glob. Change Biol. 2010, 16, 3246–3256. [Google Scholar] [CrossRef]
- Krajowy Raport Inwentaryzacyjny 2023. In Inwentaryzacja Emisji i Pochłaniania Gazów Cieplarnianych w Polsce dla lat 1988–2021; KOBiZE: Warszawa, Poland, 2023.
- Wiśniewski, P. Ocena wielkości emisji gazów cieplarnianych ze źródeł rolniczych na poziomie lokalnym w Polsce. Rocznik Ochrona Środowiska 2018, 20, 1811–1829. [Google Scholar]
- D’Aurea, A.P.; da Silva Cardoso, A.; Guimaraes, Y.S.R.; Fernandes, L.B.; Ferrieira, L.E.; Reis, R.A. Mitigating greenhouse gas emissions from beef cattle production in Brazil through animal management. Sustainability 2021, 13, 7207. [Google Scholar] [CrossRef]
- Garnett, T. Livestock- related greenhouse gas emissions: Impacts and options for policy makers. Environ. Sci. Policy 2009, 12, 491–503. [Google Scholar] [CrossRef]
- EPA. Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990–2030. Final report 2011; p. 182. Available online: http://www.epa.gov/climatechange/EPAactivities/economics/nonco2projections.html (accessed on 20 January 2024).
- Statistical Yearbook of the Republic of Poland; GUS: Warsaw, Poland, 2022.
- U.S. Environmental Protection Agency (EPA). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2019; EPA: Washington, DC, USA, 2021.
- Rebolledo-Leiva, R.; Angulo-Meza, L.; Iriarte, A.; Gonzalez-Araya, M.C. Joint carbo footprint assessment and data envelopment analysis for the reduction of greenhouse gas emissions in agriculture production. Sci. Total Environ. 2017, 593–594, 346. [Google Scholar] [CrossRef]
- Khan, M.T.; Ali, Q.; Ashfag, M. The nexus between greenhouse gas emission, electricity production, renewable energy and agriculture in Pakistan. Renew. Energy 2018, 118, 437–451. [Google Scholar] [CrossRef]
- Zafeiriou, E.; Mallidis, I.; Galanopoulas, K.; Arabatzis, G. Greenhouse Gas Emissions and Economic Performance in EU Agriculture; An Empirical Study in a Non-Linear Framework. Sustainability 2018, 10, 3837. [Google Scholar] [CrossRef]
- Koloszko-Chomentowska, Z.; Sieczko, L.; Trochimczuk, R. Production profile of farms and methane and nitrous oxside emissions. Energies 2021, 14, 4904. [Google Scholar] [CrossRef]
- Polski FADN. Available online: https://fadn.pl/wp-content/uploads/2012/12/RICC-882-rev9.2-Definitions-of-Variables.pdf (accessed on 20 January 2024).
- Piekut, K.; Machnacki, M. Ocena ekologiczno-ekonomiczna gospodarstw rolnych na podstawie danych FADN. Woda Sr. Obsz. 2011, 11, 203–219. [Google Scholar]
- Syp, A.; Osuch, D. Szacowanie emisji gazów cieplarnianych na podstawie danych FADN. Studia i Raporty IUNG-PIB 2017, 52, 69–82. Available online: http://www.iung.pl/sir/zeszyt52_6.pdf (accessed on 15 December 2023).
- Harasim, A. Metoda oceny zrównoważonego rozwoju rolnictwa na poziomie gospodarstwa rolnego. Studia i Raporty IUNG-PIB 2013, 32, 25–75. Available online: https://iung.pl/wp-content/uploads/2009/10/zesz32.pdf (accessed on 20 January 2024).
- Sobczyński, T. Zmiany poziomu zrównoważonego gospodarstw rolnych UE w latach 1989–2005. Rocz. Nauk Rol. Ser. G. 2008, 94, 106–114. [Google Scholar] [CrossRef]
- Castoldi, N.; Bechini, L. Intergated sustainability assesment of cropping systems with agro-ecological and economic indicators in northern Italy. Eur. J. Agron. 2010, 32, 59–72. [Google Scholar] [CrossRef]
- Belanger, V.; Vanasse, A.; Parent, D.; Allard, G.; Pellerin, D. Delta: An integrated indicato—Based self-assessment tool for the evaluation of dairy farms sustainability in Quebec Canada. Agroecol. Sustain. Food Syst. 2015, 39, 1022–1046. [Google Scholar] [CrossRef]
- Escribano, A.J.; Gaspar, J.P.; Mesias, F.J.D.; Moreno, A.F.P.; Escribano, M. A sustainability assesment of organic and conventional beef cattle farms in agroforestry system: The case of the „dehesa” rangelands. ITEA—Informacion Tecnica Economica Agraria 2014, 110, 343–367. Available online: http://bazy.pb.edu.pl:2101/full_record.do?product=UA&search_mode=GeneralSearch&qid=11&SID=W2Wfvl6B (accessed on 20 January 2024).
- Paracchini, M.L.; Bulgheroni, C.; Borreani, G.; Tabacco, E.; Banterle, A.; Bertoni, D.; Rossi, G.; Parolo, G.; Origgi, R.; De Paola, C. A diagnostics system to assess sustainability at a farm level: The SOSTARE model. Agric. Syst. 2015, 133, 35–53. [Google Scholar] [CrossRef]
- Prus, P. Sustainable farming production and its impact on the natural environment—Case study based on a selected group of farms. In Proceedings of the 8th International Scientific Conference on Rural Development—Bioeconomy Challenges, Kaunas, Lithuania, 23–24 November 2017; pp. 1280–1285. [Google Scholar] [CrossRef]
- Ji, E.S.; Park, K.-H. Methane and Nitrous Oxide Emissions from Livestock Agriculture in 16 Local Administrative Districts of Korea. Asian-Australas J. Anim. Sci. 2012, 25, 1768–1774. [Google Scholar] [CrossRef]
- Yue, Q.; Xu, X.; Hiller, J.; Cheng, K.; Pan, G. Mitigating greenhouse gas emissions in agriculture: From farm productin to food consumption. J. Clean. Prod. 2017, 149, 1011–1019. [Google Scholar] [CrossRef]
- IPCC. Guidelines for National Greenhouse Gas Inventories; The Institute for Global Environmental Strategies (IGES) for the IPCC: Geneva, Switzerland, 2006; Available online: https://www.ipcc.ch/report/2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (accessed on 20 January 2024).
- Dick, J.; Smith, R.; Lilly, A.; Moxey, A.; Booth, J.; Campbell, C.; Coulter, D. Calculating Farm Scale Greenhouse Gas Emissions; January 2008. Available online: https://www.researchgate.net/publication/267383297 (accessed on 20 January 2024).
- Seber, W.G.A. Multivariate Observations; Wiley & Sons: Hoboken, NJ, USA, 1984. [Google Scholar]
- Morrison, D. Wielowymiarowa Analiza Statystyczna; PWN: Warszawa, Poland, 1990. [Google Scholar]
- Duer, I.; Fotyma, M.; Madej, A. Kodeks Dobrej Praktyki Rolniczej; MRiRW-MŚ-FAPA: Warszawa, Poland, 2002. [Google Scholar]
- Beukes, P.C.; Gregorini, P.; Romera, A.J.; Levy, G.; Waghorn, G.C. Improving production efficiency as a strategy to mitigate greenhouse gas emissions on pastoral dairy farms in New Zealand. Agric. Ecosyst. Environ. 2010, 136, 358–365. [Google Scholar] [CrossRef]
- O’Hara, J.K. State-level trends in the greenhouse gas emission intensity of US milk production. J. Dairy Sci. 2023, 106, 5474–5484. [Google Scholar] [CrossRef]
- Lapple, D.; Carter, C.A.; Buckley, C. EU milk quota abolition dairy expansion and greenhouse gas emissions. Agric. Econ. 2021, 53, 125–142. [Google Scholar] [CrossRef]
- Wolf, P.; Groen, E.A.; Berg, W.; Prochnow, A.; Bakkers, E.A.M.; Heijungs, R.; de Boer, I.J.M. Assessing greenhouse gas emissions of milk production: Which parameters are essential? Int. J. Life Cycle Assess. 2017, 22, 441–455. [Google Scholar] [CrossRef]
- Zehetmeier, M.; Baudracco, J.; Hoffmann, H.; Heissenhuber, A. Does increasing milk yield per cow reduce greenhouse gas emissions? A system approach. Animal 2012, 6, 154–166. [Google Scholar] [CrossRef]
- Common Agricultural Policy and Climate. In Half of EU Climate Spending but Farm Emissions are not Decreasin; Special Report; European Court of Auditors: Luxembourg, 2021; Available online: www.eca.europa.eu/lists/ecadocuments/sr21_16/sr_cap-and-climate_en.pdf (accessed on 20 January 2024).
- Brade, V.W.; Daemmgen, U.; Lebzien, P.; Flachowsky, G. Milk production and emissions of greenhouse gases. Berichte Uber Landwirtsch. 2008, 86, 445–460. [Google Scholar]
- Mei, K.; Wang, Z.; Huang, H.; Zhang, C.; Shang, X.; Dahlgren, R.A.; Zhang, M.; Xia, F. Stimulation of N2O emission by conservation tillage management in agricultural lands: A meta-analysis. Soil Tillage Res. 2018, 182, 86–93. [Google Scholar] [CrossRef]
- Kärkkäinen, L.; Lehtonen, H.; Helin, J.; Lintunen, J.; Peltonen-Sainio, P.; Regina, K.; Uusivuori, J.; Packalen, T. Evaluation of policy instruments for supporting greenhouse gas mitigation efforts in agricultural and urban land use. Land Use Policy 2000, 99, 104991. [Google Scholar] [CrossRef]
- Shakoor, A.; Shakoor, S.; Rehman, A.; Ashraf, F.; Abdullah, M.; Shahzad, S.M.; Farooq, T.H.; Ashraf, M.; Manzoor, M.A.; Altaf, M.M.; et al. Effect of animal manure, crop type, climate zone and soil attributes on greenhouse gas emissions from agricultural soil—A global meta-analysis. J. Clean. Prod. 2021, 278, 124019. [Google Scholar] [CrossRef]
- Allen, B.; Marechal, A. Agriculture GHG Emissions Determining the Potential Contribution to the Effort Sharing Regulation; Report Prepared for Transport and Environment; Institute for European Environmental Policy: London, UK, 2017; Available online: www.transportenvironment.org/wp-content/uploads/2021/07/2017_IEEP_Agriculture_mitigation_potential_in_ESR_final.pdf (accessed on 20 January 2024).
- Kuś, J. Glebowa materia organiczna—Znaczenie zawartość i bilansowanie. Studia i Raporty IUNG-PIB 2015, 45, 27–53. [Google Scholar] [CrossRef]
- Ren, C.; Liu, S.; van Grinsven, H.; Reis, S.; Jin, S.; Liu, H.; Gu, B. The impact of farm size on agricultural sustainability. J. Clean. Prod. 2019, 220, 357–367. [Google Scholar] [CrossRef]
- Blandford, D.; Gaasland, I.; Vardal, E. Extensification versus Intensification in Reducing Greenhouse Gas Emissions in Agriculture: Insights from Norway. Eurochoices 2013, 12, 4–9. [Google Scholar] [CrossRef]
- Ariva, J.; Viira, A.H.; Poldaru, R.; Roots, J. Medium-run projections for greenhouse gas emissions: Arising from agriculture: The case of milk production in Estonia. Agric. Food Sci. 2015, 24, 300–312. [Google Scholar] [CrossRef]
- Wąs, A.; Kobus, P.; Witajeski-Baltvilks, J.; Krupin, V.; Pyrka, M.; Jeszke, R.; Cygler, M. Polska Net-Zero 2050. Wybrane Instrumenty Wdrażania Polityki Klimatycznej w Sektorze Rolnictwa w Perspektywie Roku 2025; KOBiZE: Warszawa, Poland, 2022; Available online: https://climatecake.ios.edu.pl/wp-content/uploads/2022/06/CAKE_instrumenty-redukcji-w-rolnictwie-PL_27 (accessed on 20 January 2024).
Specification | Milk | Other Grazing Livestock | ||||
---|---|---|---|---|---|---|
Mean | SD | SEM | Mean | SD | SEM | |
Economic indicators | ||||||
X1: Number of farms | 2537.900 | 213.683 | 67.573 | 690.200 | 177.635 | 56.173 |
X2: Utilized agricultural area (ha) | 21.670 | 0.825 | 0.261 | 17.390 | 0.563 | 0.178 |
X3: Farm net value added (PLN·AWU−1) | 77,850.6 | 19,927.1 | 6301.5 | 27,834.1 | 5555.4 | 1756.8 |
X4: Family farm income (PLN·ha−1) | 3353.90 | 790.27 | 249.90 | 1457.90 | 302.34 | 95.61 |
X5: Financial surplus I (PLN) | 51,888.2 | 16,895.7 | 5342.9 | 736.8 | 4007.3 | 1267.2 |
X6: Financial surplus II (PLN) | 18,304.3 | 13,578.0 | 4293.7 | −26,657.9 | 8250.4 | 2609.0 |
Ecological indicators | ||||||
Y1: Stocking density (LU·ha−1) | 1.818 | 0.075 | 0.024 | 1.117 | 0.068 | 0.022 |
Y2: Fertilizers and crop protection (PLN·ha−1) | 596.546 | 44.823 | 14.174 | 326.141 | 38.700 | 12.238 |
Y3: Soil organic matter balance (t·ha−1) | 12.779 | 2.104 | 0.665 | 5.877 | 0.906 | 0.287 |
Sources of GHG | ||||||
Z1: CH4 emissions (kg·ha−1) | 137.090 | 18.650 | 5.898 | 56.736 | 7.590 | 2.400 |
Z2: N2O emissions (kg·ha−1) | 94.049 | 13.220 | 4.180 | 52.174 | 4.998 | 1.581 |
Z3: Total CH4 and N2O emissions converted into CO2 (kg·ha−1) | 31,453.85 | 4227.59 | 1336.88 | 16,966.25 | 1635.01 | 517.04 |
Specification | Milk | Other Grazing Livestock | |||
---|---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | PC3 | |
Economic indicators | |||||
X2: Utilized agricultural area (ha) | 0.871 | 0.051 | 0.170 | −0.013 | 0.921 |
X3: Farm net value added (PLN·AWU−1) | 0.922 | −0.232 | 0.344 | 0.832 | 0.417 |
X4: Family farm income (PLN·ha−1) | 0.905 | −0.205 | 0.255 | 0.927 | 0.218 |
X5: Financial surplus I (PLN) | 0.925 | −0.204 | −0.850 | −0.311 | −0.209 |
X6: Financial surplus II (PLN) | 0.780 | −0.301 | −0.730 | −0.458 | −0.364 |
Ecological indicators | |||||
Y1: Stocking density (LU·ha−1) | 0.938 | 0.001 | 0.339 | 0.878 | −0.233 |
Y2: Fertilizers and crop protection (PLN·ha−1) | 0.776 | −0.401 | 0.505 | 0.728 | −0.334 |
Y3: Soil organic matter balance (t·ha−1) | 0.936 | 0.130 | 0.762 | 0.457 | 0.412 |
Sources of GHG | |||||
Z1: CH4 emissions (kg·ha−1) | 0.134 | 0.829 | 0.920 | 0.099 | 0.219 |
Z2: N2O emissions (kg·ha−1) | −0.267 | 0.919 | 0.832 | 0.457 | −0.103 |
Z3: Total CH4 and N2O emissions converted into CO2 (kg·ha−1) | −0.234 | 0.948 | 0.865 | 0.428 | −0.068 |
Total | 6.393 | 2.840 | 4.706 | 3.771 | 1.645 |
% of Variance | 58.120 | 25.816 | 42.779 | 34.280 | 14.957 |
Cumulative % | 58.120 | 83.935 | 42.779 | 77.059 | 92.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sieczko, L.; Koloszko-Chomentowska, Z.; Sieczko, A. Variability of Greenhouse Gas Emissions in Relation to Economic and Ecological Indicators from Cattle Farms. Energies 2024, 17, 1831. https://doi.org/10.3390/en17081831
Sieczko L, Koloszko-Chomentowska Z, Sieczko A. Variability of Greenhouse Gas Emissions in Relation to Economic and Ecological Indicators from Cattle Farms. Energies. 2024; 17(8):1831. https://doi.org/10.3390/en17081831
Chicago/Turabian StyleSieczko, Leszek, Zofia Koloszko-Chomentowska, and Anna Sieczko. 2024. "Variability of Greenhouse Gas Emissions in Relation to Economic and Ecological Indicators from Cattle Farms" Energies 17, no. 8: 1831. https://doi.org/10.3390/en17081831
APA StyleSieczko, L., Koloszko-Chomentowska, Z., & Sieczko, A. (2024). Variability of Greenhouse Gas Emissions in Relation to Economic and Ecological Indicators from Cattle Farms. Energies, 17(8), 1831. https://doi.org/10.3390/en17081831