Future Distribution Networks: A Review
Abstract
:1. Introduction
2. Bibliometric Analysis
3. Motivations to Reconsider DC
3.1. DC Loads
3.2. Renewable Energy Sources (RES) and Distributed Generators (DGs)
3.3. Energy Storage Systems (ESSs)
4. Feasibility Studies and Potential Applications
5. Load Flow Studies for DC Distribution Networks
5.1. LF Methods for DC Distribution Networks
5.2. LF Methods for Hybrid AC/DC Distribution Networks
6. Stability, Protection, Safety, Grounding, Power Quality, and Other Challenges
6.1. Stability
6.2. Protection
6.3. Safety
6.4. Grounding Schemes in DC
6.4.1. Direct Grounding Schemes
6.4.2. Mid-Point Grounding Scheme with High Resistance
6.4.3. One-End Grounding Scheme with High Resistance
6.4.4. Floating System
6.5. Power Quality
6.6. Other Challenges
7. DC Voltage Levels
7.1. The ≤48 V Band
7.2. The 60–230 V Band
7.3. The 350–450 V Band
7.4. The 600–900 V Band
7.5. The ≥1000 V Band
8. DC Distribution Network Configurations
8.1. Distribution Network Configurations without SST
- -
- Bidirectional power flow (MVDC to MVDC);
- -
- Unidirectional power flow (HVDC to MVDC);
- -
- Unidirectional power flow (LVDC to MVDC).
8.2. Distribution Network Configurations with SST
8.3. Integration of DC into Existing AC System
9. Summary of Research Gaps
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McNichol, T. AC/DC: The Savage Tale of the First Standards War; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Fairley, P. DC versus AC: The second war of currents has already begun [in my view]. IEEE Power Energy Mag. 2012, 10, 103–104. [Google Scholar] [CrossRef]
- Elsayed, A.T.; Mohamed, A.A.; Mohammed, O.A. DC microgrids and distribution systems: An overview. Electr. Power Syst. Res. 2015, 119, 407–417. [Google Scholar] [CrossRef]
- Van Hertem, D.; Gomis-Bellmunt, O.; Liang, J. HVDC Grids: For Offshore and Supergrid of the Future; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Rudervall, R.; Charpentier, J.; Sharma, R. High voltage direct current (HVDC) transmission systems technology review paper. In Proceedings of the Energy Week 2000, Washington, DC, USA, 7–8 March 2000; pp. 1–19. [Google Scholar]
- Nandini, K.; Jayalakshmi, N.; Jadoun, V.K. An overview of DC Microgrid with DC distribution system for DC loads. Mater. Today Proc. 2022, 51, 635–639. [Google Scholar] [CrossRef]
- Sabry, A.H.; Shallal, A.H.; Hameed, H.S.; Ker, P.J. Compatibility of household appliances with DC microgrid for PV systems. Heliyon 2020, 6, e05699. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, S.; Sathik, M.J.; Manoj, P.; Sundararajan, G. An assessment on performance of DC–DC converters for renewable energy applications. Renew. Sustain. Energy Rev. 2016, 58, 1475–1485. [Google Scholar] [CrossRef]
- Boicea, V.A. Energy storage technologies: The past and the present. Proc. IEEE 2014, 102, 1777–1794. [Google Scholar] [CrossRef]
- Rodriguez-Diaz, E.; Vasquez, J.C.; Guerrero, J.M. Intelligent DC homes in future sustainable energy systems: When efficiency and intelligence work together. IEEE Consum. Electron. Mag. 2015, 5, 74–80. [Google Scholar] [CrossRef]
- El-Bahloul, A.A.M.; Ali, A.H.H.; Ookawara, S. Performance and sizing of solar driven dc motor vapor compression refrigerator with thermal storage in hot arid remote areas. Energy Procedia 2015, 70, 634–643. [Google Scholar] [CrossRef]
- Aanesen, K.; Heck, S.; Pinner, D. Solar power: Darkest before dawn. In McKinsey on Sustainability & Resource Productivity; McKinsey & Company: Chicago, IL, USA, 2012; Volume 14. [Google Scholar]
- Mahmoud, M.M. Economic Applications for LED Lights in Industrial Sectors. In Light-Emitting Diodes and Photodetectors-Advances and Future Directions; IntechOpen: London, UK, 2021. [Google Scholar]
- Kamat, A.S.; Khosla, R.; Narayanamurti, V. Illuminating homes with LEDs in India: Rapid market creation towards low-carbon technology transition in a developing country. Energy Res. Soc. Sci. 2020, 66, 101488. [Google Scholar] [CrossRef]
- Normark, B.; Shivakumar, A.; Welsch, M. DC Power Production and Consumption in Households. Eur. Energy Transit. 2017, 237–248. [Google Scholar] [CrossRef]
- IEC. LVDC: Electricity for the 21st Century, Technical Report 2018. Available online: https://www.iec.ch/basecamp/lvdc-electricity-21stcentury (accessed on 6 February 2023).
- Curry, C. Lithium-ion battery costs and market. Bloom. New Energy Financ. 2017, 5, 43. [Google Scholar]
- Van Eck, N.J.; Waltman, L. VOSviewer Manual: Manual for VOSviewer Version 1.6. 15; Centre for Science and Technology Studies (CWTS) of Leiden University: Leiden, The Netherlands, 2020. [Google Scholar]
- Pei, W.; Deng, W.; Zhang, X.; Qu, H.; Sheng, K. Potential of using multiterminal LVDC to improve plug-in electric vehicle integration in an existing distribution network. IEEE Trans. Ind. Electron. 2014, 62, 3101–3111. [Google Scholar] [CrossRef]
- Hamilton, C.; Gamboa, G.; Elmes, J.; Kerley, R.; Arias, A.; Pepper, M.; Shen, J.; Batarseh, I. System architecture of a modular direct-DC PV charging station for plug-in electric vehicles. In Proceedings of the IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, USA, 7–10 November 2010; pp. 2516–2520. [Google Scholar]
- Taylor, D. Plugging in: Power sockets, standards and the valencies of national habitus. J. Mater. Cult. 2015, 20, 59–75. [Google Scholar] [CrossRef]
- Starke, M.; Li, F.; Tolbert, L.M.; Ozpineci, B. AC vs. DC distribution: Maximum transfer capability. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–6. [Google Scholar]
- Starke, M.; Tolbert, L.M.; Ozpineci, B. AC vs. DC distribution: A loss comparison. In Proceedings of the 2008 IEEE/PES Transmission and Distribution Conference and Exposition, Chicago, IL, USA, 21–24 April 2008; pp. 1–7. [Google Scholar]
- Hammerstrom, D.J. AC versus DC distribution systemsdid we get it right? In Proceedings of the 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 24–28 June 2007; pp. 1–5. [Google Scholar]
- Becker, D.J.; Sonnenberg, B. DC microgrids in buildings and data centers. In Proceedings of the 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC), Amsterdam, The Netherlands, 9–13 October 2011; pp. 1–7. [Google Scholar]
- Dastgeer, F.; Gelani, H.E. A Comparative analysis of system efficiency for AC and DC residential power distribution paradigms. Energy Build. 2017, 138, 648–654. [Google Scholar] [CrossRef]
- Brenguier, J.; Vallet, M.; VAILLANT, F. Efficiency gap between AC and DC electrical power distribution system. In Proceedings of the 2016 IEEE/IAS 52nd Industrial and Commercial Power Systems Technical Conference (I&CPS), Detroit, MI, USA, 1–5 May 2016; pp. 1–6. [Google Scholar]
- Xu, C.; Cheng, K.W.E. A survey of distributed power system—AC versus DC distributed power system. In Proceedings of the 2011 4th International Conference on Power Electronics Systems and Applications, Hong Kong, China, 8–10 June 2011; pp. 1–12. [Google Scholar]
- AlLee, G.; Tschudi, W. Edison redux: 380 Vdc brings reliability and efficiency to sustainable data centers. IEEE Power Energy Mag. 2012, 10, 50–59. [Google Scholar] [CrossRef]
- Rasmussen, N.; Spitaels, J. A quantitative comparison of high efficiency ac vs. dc power distribution for data centers. White Paper 2007, 127, 21. [Google Scholar]
- Mandell, D. Three (3) “Whys” of DC Lighting. Available online: https://energycentral.com/c/em/three-3-%E2%80%9Cwhys%E2%80%9D-dc-lighting (accessed on 5 October 2022).
- Borioli, E.; Brenna, M.; Faranda, R.; Simioli, G. Comparison between the electrical capabilities of the cables used in LV AC and DC power lines. In Proceedings of the 2004 11th International Conference on Harmonics and Quality of Power (IEEE Cat. No. 04EX951), Lake Placid, NY, USA, 12–15 September 2004; pp. 408–413. [Google Scholar]
- Vossos, E.; Gaillet-Tournier, M.; Gerber, D.; Nordman, B.; Brown, R.; Bernal, W.; Ghatpande, O.; Saha, A.; Deru, M.; Frank, S. Direct-DC Power in Buildings: Identifying the Best Applications Today for Tomorrow’s Building Sector; Lawrence Berkeley National Lab.(LBNL): Berkeley, CA, USA, 2021. [Google Scholar]
- Boeke, U.; Wendt, M. DC power grids for buildings. In Proceedings of the 2015 IEEE First International Conference on DC Microgrids (ICDCM), Atlanta, GA, USA, 7–10 June 2015; pp. 210–214. [Google Scholar]
- Gerber, D.L.; Vossos, V.; Feng, W.; Marnay, C.; Nordman, B.; Brown, R. A simulation-based efficiency comparison of AC and DC power distribution networks in commercial buildings. Appl. Energy 2018, 210, 1167–1187. [Google Scholar] [CrossRef]
- Dastgeer, F.; Gelani, H.E.; Anees, H.M.; Paracha, Z.J.; Kalam, A. Analyses of efficiency/energy-savings of DC power distribution systems/microgrids: Past, present and future. Int. J. Electr. Power Energy Syst. 2019, 104, 89–100. [Google Scholar] [CrossRef]
- Amin, M.; Arafat, Y.; Lundberg, S.; Mangold, S. Low voltage DC distribution system compared with 230 V AC. In Proceedings of the 2011 IEEE Electrical Power and Energy Conference, Winnipeg, MB, Canada, 3–5 October 2011; pp. 340–345. [Google Scholar]
- Techakittiroj, K.; Wongpaibool, V. Co-existance between AC-distribution and DC-distribution: In the view of appliances. In Proceedings of the 2009 Second International Conference on Computer and Electrical Engineering, Dubai, United Arab Emirates, 28–30 December 2009; Volume 1, pp. 421–425. [Google Scholar]
- Yu, W.; Lai, J.-S.; Ma, H.; Zheng, C. High-efficiency DC–DC converter with twin bus for dimmable LED lighting. IEEE Trans. Power Electron. 2011, 26, 2095–2100. [Google Scholar] [CrossRef]
- Thomas, B.A. Edison revisited: Impact of DC distribution on the cost of LED lighting and distributed generation. In Proceedings of the 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Palm Springs, CA, USA, 21–25 February 2010; pp. 588–593. [Google Scholar]
- Lazaroiu, G.; Zaninelli, D. A control system for dc arc furnaces for power quality improvements. Electr. Power Syst. Res. 2010, 80, 1498–1505. [Google Scholar] [CrossRef]
- Heitz, E. DC electrochemical methods. Corros. Technol. 2006, 22, 435. [Google Scholar]
- Maniscalco, P.S.; Scaini, V.; Veerkamp, W.E. Specifying DC chopper systems for electrochemical applications. IEEE Trans. Ind. Appl. 2001, 37, 941–948. [Google Scholar] [CrossRef]
- Rodriguez-Diaz, E.; Savaghebi, M.; Vasquez, J.C.; Guerrero, J.M. An overview of low voltage DC distribution systems for residential applications. In Proceedings of the 2015 IEEE 5th International Conference on Consumer Electronics-Berlin (ICCE-Berlin), Berlin, Germany, 6–9 September 2015; pp. 318–322. [Google Scholar]
- Reed, G.F.; Grainger, B.M.; Sparacino, A.R.; Mao, Z.-H. Ship to grid: Medium-voltage DC concepts in theory and practice. IEEE Power Energy Mag. 2012, 10, 70–79. [Google Scholar] [CrossRef]
- Siraj, K.; Khan, H.A. DC distribution for residential power networks—A framework to analyze the impact of voltage levels on energy efficiency. Energy Rep. 2020, 6, 944–951. [Google Scholar] [CrossRef]
- Patterson, B.T. Dc, come home: Dc microgrids and the birth of the “enernet”. IEEE Power Energy Mag. 2012, 10, 60–69. [Google Scholar] [CrossRef]
- Wang, P.; Goel, L.; Liu, X.; Choo, F.H. Harmonizing AC and DC: A hybrid AC/DC future grid solution. IEEE Power Energy Mag. 2013, 11, 76–83. [Google Scholar] [CrossRef]
- Liu, C.; Chau, K.; Wu, D.; Gao, S. Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies. Proc. IEEE 2013, 101, 2409–2427. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, Z.; Chunhua, L. Vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid energy systems. In Energy Systems for Electric and Hybrid Vehicles; IET: Stevenage, UK, 2016; pp. 431–460. [Google Scholar]
- Ota, Y.; Taniguchi, H.; Baba, J.; Yokoyama, A. Implementation of autonomous distributed V2G to electric vehicle and DC charging system. Electr. Power Syst. Res. 2015, 120, 177–183. [Google Scholar] [CrossRef]
- Tabari, M.; Yazdani, A. A DC distribution system for power system integration of plug-in hybrid electric vehicles. In Proceedings of the 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 1–5. [Google Scholar]
- Noriega, B.E.; Pinto, R.T.; Bauer, P. Sustainable DC-microgrid control system for electric-vehicle charging stations. In Proceedings of the 2013 15th European Conference on Power Electronics and Applications (EPE), Lille, France, 2–6 September 2013; pp. 1–10. [Google Scholar]
- Vaidya, M.; Stefanakos, E.; Krakow, B.; Lamb, H.; Arbogast, T.; Smith, T. Direct DC-DC electric vehicle charging with a grid connected photovoltaic system. In Proceedings of the Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference-1996, Washington, DC, USA, 13–17 May 1996; pp. 1505–1508. [Google Scholar]
- Aggeler, D.; Canales, F.; Zelaya-De La Parra, H.; Coccia, A.; Butcher, N.; Apeldoorn, O. Ultra-fast DC-charge infrastructures for EV-mobility and future smart grids. In Proceedings of the 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), Gothenburg, Sweden, 11–13 October 2010; pp. 1–8. [Google Scholar]
- Dragicevic, T.; Vasquez, J.C.; Guerrero, J.M.; Skrlec, D. Advanced LVDC electrical power architectures and microgrids: A step toward a new generation of power distribution networks. IEEE Electrif. Mag. 2014, 2, 54–65. [Google Scholar] [CrossRef]
- Feng, W.; Brown, R.; Nordman, B. Direct Current (DC) Buildings & Smart Grid. Available online: https://www.energy.gov/sites/default/files/2018/06/f52/94150c_Brown_050118-1100.pdf (accessed on 3 October 2022).
- Salomonsson, D.; Sannino, A. Load modelling for steady-state and transient analysis of low-voltage DC systems. IET Electr. Power Appl. 2007, 1, 690–696. [Google Scholar] [CrossRef]
- Wang, J.; Li, K.-J.; Liang, Y.; Javid, Z. Optimization of multi-energy microgrid operation in the presence of PV, heterogeneous energy storage and integrated demand response. Appl. Sci. 2021, 11, 1005. [Google Scholar] [CrossRef]
- Wang, J.; Li, K.-J.; Javid, Z.; Sun, Y. Distributed optimal coordinated operation for distribution system with the integration of residential microgrids. Appl. Sci. 2019, 9, 2136. [Google Scholar] [CrossRef]
- Blaabjerg, F.; Chen, Z.; Kjaer, S.B. Power electronics as efficient interface in dispersed power generation systems. IEEE Trans. Power Electron. 2004, 19, 1184–1194. [Google Scholar] [CrossRef]
- Sun, K.; Li, K.-J.; Lee, W.-J.; Wang, Z.-D.; Liu, Z.; Wang, M.; Javid, Z. Operation and control for multi-voltage-level dc network to improve the utilization rate of renewable energies. In Proceedings of the 2017 IEEE Industry Applications Society Annual Meeting, Cincinnati, OH, USA, 1–5 October 2017; pp. 1–8. [Google Scholar]
- Toklu, E. Overview of potential and utilization of renewable energy sources in Turkey. Renew. Energy 2013, 50, 456–463. [Google Scholar] [CrossRef]
- Colmenar-Santos, A.; Reino-Rio, C.; Borge-Diez, D.; Collado-Fernández, E. Distributed generation: A review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks. Renew. Sustain. Energy Rev. 2016, 59, 1130–1148. [Google Scholar] [CrossRef]
- Ackermann, T.; Andersson, G.; Söder, L. Distributed generation: A definition. Electr. Power Syst. Res. 2001, 57, 195–204. [Google Scholar] [CrossRef]
- Kenny, B.H.; Jansen, R.; Kascak, P.; Dever, T.; Santiago, W. Integrated power and attitude control with two flywheels. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 1431–1449. [Google Scholar] [CrossRef]
- Stecca, M.; Elizondo, L.R.; Soeiro, T.B.; Bauer, P.; Palensky, P. A comprehensive review of the integration of battery energy storage systems into distribution networks. IEEE Open J. Ind. Electron. Soc. 2020, 1, 46–65. [Google Scholar] [CrossRef]
- Sannino, A.; Postiglione, G.; Bollen, M.H. Feasibility of a DC network for commercial facilities. In Proceedings of the Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No. 02CH37344), Pittsburgh, PA, USA, 13–18 October 2002; Volume 3, pp. 1710–1717. [Google Scholar]
- Seo, G.-S.; Baek, J.; Choi, K.; Bae, H.; Cho, B. Modeling and analysis of DC distribution systems. In Proceedings of the 8th International Conference on Power Electronics-ECCE Asia, Jeju, Republic of Korea, 30 May–3 June 2011; pp. 223–227. [Google Scholar]
- Engelen, K.; Shun, E.L.; Vermeyen, P.; Pardon, I.; D’hulst, R.; Driesen, J.; Belmans, R. The feasibility of small-scale residential DC distribution systems. In Proceedings of the IECON 2006-32nd Annual Conference on IEEE Industrial Electronics, Paris, France, 6–10 November 2006; pp. 2618–2623. [Google Scholar]
- Salomonsson, D.; Sannino, A. Low-voltage DC distribution system for commercial power systems with sensitive electronic loads. IEEE Trans. Power Deliv. 2007, 22, 1620–1627. [Google Scholar] [CrossRef]
- Baran, M.E.; Mahajan, N.R. DC distribution for industrial systems: Opportunities and challenges. IEEE Trans. Ind. Appl. 2003, 39, 1596–1601. [Google Scholar] [CrossRef]
- Rodriguez-Diaz, E.; Chen, F.; Vasquez, J.C.; Guerrero, J.M.; Burgos, R.; Boroyevich, D. Voltage-level selection of future two-level LVdc distribution grids: A compromise between grid compatibiliy, safety, and efficiency. IEEE Electrif. Mag. 2016, 4, 20–28. [Google Scholar] [CrossRef]
- Le Métayer, P.; Paez, J.; Touré, S.; Buttay, C.; Dujic, D.; Lamard, E.; Dworakowski, P. Break-even distance for MVDC electricity networks according to power loss criteria. In Proceedings of the 2021 23rd European Conference on Power Electronics and Applications (EPE’21 ECCE Europe), Ghent, Belgium, 6–10 September 2021; pp. 1–9. [Google Scholar]
- Javid, Z.; Karaagac, U.; Kocar, I.; Chan, K.W. Laplacian Matrix-Based Power Flow Formulation for LVDC Grids with Radial and Meshed Configurations. Energies 2021, 14, 1866. [Google Scholar] [CrossRef]
- Majumder, R. Aggregation of microgrids with DC system. Electr. Power Syst. Res. 2014, 108, 134–143. [Google Scholar] [CrossRef]
- Jeon, J.-Y.; Kim, J.-S.; Choe, G.-Y.; Lee, B.-K.; Hur, J.; Jin, H.-C. Design guideline of DC distribution systems for home appliances: Issues and solution. In Proceedings of the 2011 IEEE International Electric Machines & Drives Conference (IEMDC), Niagara Falls, ON, Canada, 15–18 May 2011; pp. 657–662. [Google Scholar]
- Maza-Ortega, J.M.; Mauricio, J.M.; Barragán-Villarejo, M.; Demoulias, C.; Gómez-Expósito, A. Ancillary services in hybrid AC/DC low voltage distribution networks. Energies 2019, 12, 3591. [Google Scholar] [CrossRef]
- Kaipia, T.; Nuutinen, P.; Pinomaa, A.; Lana, A.; Partanen, J.; Lohjala, J.; Matikainen, M. Field test environment for LVDC distribution-implementation experiences. In Proceedings of the CIRED 2012 Workshop: Integration of Renewables into the Distribution Grid, Lisbon, Portugal, 29–30 May 2012. [Google Scholar]
- Chunping, Y.; Yongxian, D.; Jing, M.; Xiong, L.; Wei, L.; Wei, C. Comparative Study on Domestic and International Standards of DC Energy Meter. In Proceedings of the 2021 IEEE 4th International Conference on Renewable Energy and Power Engineering (REPE), Beijing, China, 9–11 October 2021; pp. 11–16. [Google Scholar]
- IEC Std 62053-41:2021; Electricity Metering Equipment—Particular Requirements—Part 41: Static Meters for DC Energy (Classes 0, 5 and 1). International Electrotechnical Commission: Worcester, MA, USA, 2021.
- IEC Std 62052-11:2020; Electricity Metering Equipment—General Requirements, Tests and Test Conditions—Part 11: Metering Equipment. International Electrotechnical Commission: Worcester, MA, USA, 2020.
- van den Brom, H.; Marais, Z.; van Leeuwen, R. Testing of dc electricity meters with broadband conducted electromagnetic disturbances. In Proceedings of the 2022 20th International Conference on Harmonics & Quality of Power (ICHQP), Naples, Italy, 29 May–1 June 2022; pp. 1–6. [Google Scholar]
- Martini, L. DC Energy Metering Applications; Arrow: London, UK, 2021; Volume 55. [Google Scholar]
- Kakigano, H.; Miura, Y.; Ise, T. Low-voltage bipolar-type DC microgrid for super high quality distribution. IEEE Trans. Power Electron. 2010, 25, 3066–3075. [Google Scholar] [CrossRef]
- FREEDM. FREEDM System 2014. Available online: https://www.freedm.ncsu.edu/ (accessed on 10 October 2022).
- She, X.; Yu, X.; Wang, F.; Huang, A.Q. Design and demonstration of a 3.6-kV–120-V/10-kVA solid-state transformer for smart grid application. IEEE Trans. Power Electron. 2013, 29, 3982–3996. [Google Scholar] [CrossRef]
- She, X.; Huang, A.Q.; Lukic, S.; Baran, M.E. On integration of solid-state transformer with zonal DC microgrid. IEEE Trans. Smart Grid 2012, 3, 975–985. [Google Scholar] [CrossRef]
- Karppanen, J. Assessing the Applicability of Low Voltage Direct Current in Electricity Distribution: Key Factors and Design Aspects. Ph.D. Thesis, Lahti University of Technology LUT, Lappeenranta, The Netherlands, 2020. [Google Scholar]
- Vossos, V.; Gerber, D.L.; Gaillet-Tournier, M.; Nordman, B.; Brown, R.; Bernal Heredia, W.; Ghatpande, O.; Saha, A.; Arnold, G.; Frank, S.M. Adoption pathways for DC power distribution in buildings. Energies 2022, 15, 786. [Google Scholar] [CrossRef]
- Makkieh, A.; Burt, G.; Pena Alzola, R.; Jambrich, G.; Fuchs, N.; Kazerooni, A.; Allais, A.; Preve, C.; Bećirović, E.; Yu, J. DC Networks on the Distribution Level–New Trend or Vision? Strathprints: Glasgow, UK, 2021. [Google Scholar]
- Group, C.W. Hybrid Provision of Energy based on Reliability and Resiliency by Integration of DC Equipment (HYPERRIDE). Available online: https://hyperride.eu/about/ (accessed on 21 November 2022).
- TIGON. TIGON Is All about Renewable Energy and Efficient Power Systems for a Sustainable Future. Available online: http://tigon-project.eu/what-is-tigon/ (accessed on 21 November 2022).
- Wu, T.-F.; Chen, Y.-K.; Yu, G.-R.; Chang, Y. Design and development of DC-distributed system with grid connection for residential applications. In Proceedings of the 8th International Conference on Power Electronics-ECCE Asia, Jeju, Republic of Korea, 30 May–3 June 2011; pp. 235–241. [Google Scholar]
- Diaz, E.R.; Su, X.; Savaghebi, M.; Vasquez, J.C.; Han, M.; Guerrero, J.M. Intelligent dc microgrid living laboratories-a chinese-danish cooperation project. In Proceedings of the 2015 IEEE First International Conference on DC Microgrids (ICDCM), Atlanta, GA, USA, 7–10 June 2015; pp. 365–370. [Google Scholar]
- Nuutinen, P.; Kaipia, T.; Karppanen, J.; Mattsson, A.; Lana, A.; Pinomaa, A.; Peltoniemi, P.; Partanen, J.; Luukkanen, M.; Hakala, T. LVDC rules–technical specifications for public LVDC distribution network. CIRED Open Access Proc. J. 2017, 2017, 293–296. [Google Scholar] [CrossRef]
- Hakala, T.; Lähdeaho, T.; Komsi, R. LVDC pilot implementation in public distribution network. In Proceedings of the 23rd International Conference on Electricity Distribution, Lyon, France, 15–18 June 2015; pp. 1–5. [Google Scholar]
- Kaipia, T.; Karppanen, J.; Nuutinen, P.; Pinomaa, A.; Mattsson, A.; Peltoniemi, P.; Silventoinen, P.; Partanen, J.; Hakala, T.; Lahdeaho, T. LVDC RULES-Towards industrial-scale application of low-voltage direct current in public power distribution. In Proceedings of the CIRED Workshop 2016, Helsinki, Finland, 14–15 June 2016. [Google Scholar]
- Stott, B.; Jardim, J.; Alsaç, O. DC power flow revisited. IEEE Trans. Power Syst. 2009, 24, 1290–1300. [Google Scholar] [CrossRef]
- Qi, L.; Pan, J.; Liljestrand, L.; Backman, M.; Antoniazzi, A.; Raciti, L.; Riva, M. DC power distribution: New opportunities and challenges. In Proceedings of the 2017 IEEE Second International Conference on DC Microgrids (ICDCM), Nuremburg, Germany, 27–29 June 2017; pp. 40–46. [Google Scholar]
- AL-Nussairi, M.K.; Bayindir, R.; Padmanaban, S.; Mihet-Popa, L.; Siano, P. Constant power loads (cpl) with microgrids: Problem definition, stability analysis and compensation techniques. Energies 2017, 10, 1656. [Google Scholar] [CrossRef]
- Purgat, P.; Mackay, L.; Schulz, M.; Han, Y.; Qin, Z.; März, M.; Bauer, P. Design of a power flow control converter for bipolar meshed lvdc distribution grids. In Proceedings of the 2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC), Budapest, Hungary, 26–30 August 2018; pp. 1073–1078. [Google Scholar]
- Garcés, A. On the convergence of Newton’s method in power flow studies for DC microgrids. IEEE Trans. Power Syst. 2018, 33, 5770–5777. [Google Scholar] [CrossRef]
- Montoya, O.D. On the existence of the power flow solution in DC grids with CPLs through a graph-based method. IEEE Trans. Circuits Syst. II Express Briefs 2019, 67, 1434–1438. [Google Scholar] [CrossRef]
- Taheri, S.; Kekatos, V. Power flow solvers for direct current networks. IEEE Trans. Smart Grid 2019, 11, 634–643. [Google Scholar] [CrossRef]
- Montoya, O.D.; Garrido, V.M.; Gil-González, W.; Grisales-Noreña, L.F. Power flow analysis in DC grids: Two alternative numerical methods. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 1865–1869. [Google Scholar] [CrossRef]
- Montoya, O.D.; Gil-González, W.; Garcés, A. A successive approximations method for power flow analysis in bipolar DC networks with asymmetric constant power terminals. Electr. Power Syst. Res. 2022, 211, 108264. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.F.; Garzon-Rivera, O.; Ramírez-Vanegas, C.; Montoya, O.; Ramos-Paja, C. Application of the backward/forward sweep method for solving the power flow problem in DC networks with radial structure. In Proceedings of the Journal of Physics: Conference Series, Cartagena de Indias, Colombia, 24–26 September 2019; p. 012012. [Google Scholar]
- Lee, J.-O.; Kim, Y.-S.; Jeon, J.-H. Generic power flow algorithm for bipolar DC microgrids based on Newton–Raphson method. Int. J. Electr. Power Energy Syst. 2022, 142, 108357. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, R.; Zhang, X.; Su, M.; Sun, Y.; Han, H.; Wang, P. Further results on Newton-Raphson method in feasible power-flow for DC distribution networks. IEEE Trans. Power Deliv. 2021, 37, 1348–1351. [Google Scholar] [CrossRef]
- Sepúlveda-García, S.; Montoya, O.D.; Garcés, A. Power Flow Solution in Bipolar DC Networks Considering a Neutral Wire and Unbalanced Loads: A Hyperbolic Approximation. Algorithms 2022, 15, 341. [Google Scholar] [CrossRef]
- Montoya, O.D.; Grisales-Noreña, L.F.; Gil-González, W. Triangular matrix formulation for power flow analysis in radial DC resistive grids with CPLs. IEEE Trans. Circuits Syst. II Express Briefs 2019, 67, 1094–1098. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Shen, X. A loop-analysis theory based power flow method and its linear formulation for low-voltage DC grid. Electr. Power Syst. Res. 2020, 187, 106473. [Google Scholar] [CrossRef]
- Montoya, O.D. On linear analysis of the power flow equations for DC and AC grids with CPLs. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 2032–2036. [Google Scholar]
- Montoya, O.D.; Grisales-Noreña, L.; González-Montoya, D.; Ramos-Paja, C.; Garces, A. Linear power flow formulation for low-voltage DC power grids. Electr. Power Syst. Res. 2018, 163, 375–381. [Google Scholar] [CrossRef]
- Montoya, O.D.; Gil-González, W.; Garces, A. Power flow approximation for DC networks with constant power loads via logarithmic transform of voltage magnitudes. Electr. Power Syst. Res. 2019, 175, 105887. [Google Scholar] [CrossRef]
- Javid, Z.; Karaagac, U.; Kocar, I. Improved Laplacian Matrix based power flow solver for DC distribution networks. Energy Rep. 2022, 8, 528–537. [Google Scholar] [CrossRef]
- Javid, Z.; Xue, T.; Ulas, K.; Kocar, I. Efficient Graph Theory Based Load Flow Solver for DC Distribution Networks Considering DC/DC Converter Models. In Proceedings of the 2022 IEEE 9th International Conference on Power Electronics Systems and Applications (PESA), Hong Kong, 20–22 September 2022; pp. 1–5. [Google Scholar]
- Garcés, A.; Montoya, O.D.; Gil-González, W. Power flow in bipolar DC distribution networks considering current limits. IEEE Trans. Power Syst. 2022, 37, 4098–4101. [Google Scholar] [CrossRef]
- Javid, Z.; Karaagac, U.; Kocar, I. MANA formulation based load flow solution for DC distribution networks. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 2590–2594. [Google Scholar] [CrossRef]
- Javid, Z.; Karaagac, U.; Kocar, I.; Xue, T. DC grid load flow solution incorporating generic DC/DC converter topologies. Energy Rep. 2023, 9, 951–961. [Google Scholar] [CrossRef]
- Dewangan, K.K.; Panchal, A.K. Power flow analysis using successive approximation and adomian decomposition methods with a new power flow formulation. Electr. Power Syst. Res. 2022, 211, 108190. [Google Scholar] [CrossRef]
- Kirthiga, M.V.; Daniel, S.A. Computational techniques for autonomous microgrid load flow analysis. Int. Sch. Res. Not. 2014, 2014, 742171. [Google Scholar] [CrossRef]
- de Sousa, L.L.; Melo, I.D. Interval power flow analysis of microgrids with uncertainties: An approach using the second-order Taylor series expansion. Electr. Eng. 2022, 104, 1623–1633. [Google Scholar] [CrossRef]
- Javid, Z.; Xue, T.; Karaagac, U.; Kocar, I. Unified power flow solver for hybrid AC/DC distribution networks. IEEE Trans. Power Deliv. 2023, 38, 3322–3332. [Google Scholar] [CrossRef]
- Trias, A. The holomorphic embedding load flow method. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–8. [Google Scholar]
- Rao, S.; Feng, Y.; Tylavsky, D.J.; Subramanian, M.K. The holomorphic embedding method applied to the power-flow problem. IEEE Trans. Power Syst. 2015, 31, 3816–3828. [Google Scholar] [CrossRef]
- Huang, Y.; Ai, X.; Fang, J.; Yao, W.; Wen, J. Holomorphic embedding approach for VSC-based AC/DC power flow. IET Gener. Transm. Distrib. 2020, 14, 6239–6249. [Google Scholar] [CrossRef]
- IEEE Std 1547.4-2011; IEEE Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems. IEEE Standards Association: Piscataway, NJ, USA, 2011.
- Eajal, A.; Abdelwahed, M.A.; El-Saadany, E.; Ponnambalam, K. A unified approach to the power flow analysis of AC/DC hybrid microgrids. IEEE Trans. Sustain. Energy 2016, 7, 1145–1158. [Google Scholar] [CrossRef]
- Allam, M.A.; Hamad, A.A.; Kazerani, M. A sequence-component-based power-flow analysis for unbalanced droop-controlled hybrid AC/DC microgrids. IEEE Trans. Sustain. Energy 2018, 10, 1248–1261. [Google Scholar] [CrossRef]
- Aprilia, E.; Meng, K.; Al Hosani, M.; Zeineldin, H.H.; Dong, Z.Y. Unified power flow algorithm for standalone AC/DC hybrid microgrids. IEEE Trans. Smart Grid 2017, 10, 639–649. [Google Scholar] [CrossRef]
- Ahmed, H.M.; Eltantawy, A.B.; Salama, M. A generalized approach to the load flow analysis of AC–DC hybrid distribution systems. IEEE Trans. Power Syst. 2017, 33, 2117–2127. [Google Scholar] [CrossRef]
- Allam, M.A.; Hamad, A.A.; Kazerani, M.; El-Saadany, E.F. A steady-state analysis tool for unbalanced islanded hybrid AC/DC microgrids. Electr. Power Syst. Res. 2017, 152, 71–83. [Google Scholar] [CrossRef]
- Nassar, M.E.; Salama, M. A novel branch-based power flow algorithm for islanded AC microgrids. Electr. Power Syst. Res. 2017, 146, 51–62. [Google Scholar] [CrossRef]
- Nassar, M.E.; Hamad, A.A.; Salama, M.; El-Saadany, E.F. A novel load flow algorithm for islanded AC/DC hybrid microgrids. IEEE Trans. Smart Grid 2017, 10, 1553–1566. [Google Scholar] [CrossRef]
- Beerten, J.; Cole, S.; Belmans, R. Generalized steady-state VSC MTDC model for sequential AC/DC power flow algorithms. IEEE Trans. Power Syst. 2012, 27, 821–829. [Google Scholar] [CrossRef]
- Chai, R.; Zhang, B.; Dou, J.; Hao, Z.; Zheng, T. Unified power flow algorithm based on the NR method for hybrid AC/DC grids incorporating VSCs. IEEE Trans. Power Syst. 2016, 31, 4310–4318. [Google Scholar] [CrossRef]
- Wang, W.; Barnes, M. Power flow algorithms for multi-terminal VSC-HVDC with droop control. IEEE Trans. Power Syst. 2014, 29, 1721–1730. [Google Scholar] [CrossRef]
- Baradar, M.; Ghandhari, M. A multi-option unified power flow approach for hybrid AC/DC grids incorporating multi-terminal VSC-HVDC. IEEE Trans. Power Syst. 2013, 28, 2376–2383. [Google Scholar] [CrossRef]
- Karaagac, U.; Mahseredjian, J.; Gagnon, R.; Gras, H.; Saad, H.; Cai, L.; Kocar, I.; Haddadi, A.; Farantatos, E.; Bu, S. A generic EMT-type model for wind parks with permanent magnet synchronous generator full size converter wind turbines. IEEE Power Energy Technol. Syst. J. 2019, 6, 131–141. [Google Scholar] [CrossRef]
- Sokal, N.O. System oscillations from negative input resistance at power input port of switching-mode regulator, amplifier, DC/DC converter, or DC/DC inverter. In Proceedings of the 1973 IEEE Power Electronics Specialists Conference, Pasadena, CA, USA, 11–13 June 1973; pp. 138–140. [Google Scholar]
- Middlebrook, R.D. Input filter considerations in design and application of switching regulators. In Proceedings of the PESC’76, IEEE Power Electronics Specialists, Conference 1976, Cleveland, OH, USA, 8–10 June 1976. [Google Scholar]
- Middlebrook, R. Design techniques for preventing input-filter oscillations in switched-mode regulators. In Proceedings of the Powercon, San Francisco, CA, USA, 4–6 May 1978; Volume 5, p. A3-1. [Google Scholar]
- Feng, X.; Liu, J.; Lee, F.C. Impedance specifications for stable DC distributed power systems. IEEE Trans. Power Electron. 2002, 17, 157–162. [Google Scholar] [CrossRef]
- Feng, X.; Ye, Z.; Xing, K.; Lee, F.C.; Borojevic, D. Individual load impedance specification for a stable DC distributed power system. In Proceedings of the APEC’99. Fourteenth Annual Applied Power Electronics Conference and Exposition. 1999 Conference Proceedings (Cat. No. 99CH36285), Dallas, TX, USA, 14–18 March 1999; Volume 2, pp. 923–929. [Google Scholar]
- Yu, X.; Salato, M. An optimal minimum-component DC–DC converter input filter design and its stability analysis. IEEE Trans. Power Electron. 2013, 29, 829–840. [Google Scholar]
- Radwan, A.A.A.; Mohamed, Y.A.-R.I. Stabilization of medium-frequency modes in isolated microgrids supplying direct online induction motor loads. IEEE Trans. Smart Grid 2013, 5, 358–370. [Google Scholar] [CrossRef]
- Radwan, A.A.A.; Mohamed, Y.A.-R.I. Assessment and mitigation of interaction dynamics in hybrid AC/DC distribution generation systems. IEEE Trans. Smart Grid 2012, 3, 1382–1393. [Google Scholar] [CrossRef]
- Mohamed, Y.A.-R.I. Mitigation of converter-grid resonance, grid-induced distortion, and parametric instabilities in converter-based distributed generation. IEEE Trans. Power Electron. 2010, 26, 983–996. [Google Scholar] [CrossRef]
- Rudraraju, S.R.; Srivastava, A.K.; Srivastava, S.C.; Schulz, N.N. Small signal stability analysis of a shipboard MVDC power system. In Proceedings of the 2009 IEEE Electric Ship Technologies Symposium, Baltimore, MD, USA, 20–22 April 2009; pp. 135–141. [Google Scholar]
- Griffo, A.; Wang, J. Modeling and stability analysis of hybrid power systems for the more electric aircraft. Electr. Power Syst. Res. 2012, 82, 59–67. [Google Scholar] [CrossRef]
- Benidris, M.; Elsaiah, S.; Sulaeman, S.; Mitra, J. Transient stability of distributed generators in the presence of energy storage devices. In Proceedings of the 2012 North American Power Symposium (NAPS), Champaign, IL, USA, 9–11 September 2012; pp. 1–6. [Google Scholar]
- Zhong, Q.-C.; Weiss, G. Synchronverters: Inverters that mimic synchronous generators. IEEE Trans. Ind. Electron. 2010, 58, 1259–1267. [Google Scholar] [CrossRef]
- Zhong, Q.-C.; Nguyen, P.-L.; Ma, Z.; Sheng, W. Self-synchronized synchronverters: Inverters without a dedicated synchronization unit. IEEE Trans. Power Electron. 2013, 29, 617–630. [Google Scholar] [CrossRef]
- Emadi, A.; Khaligh, A.; Rivetta, C.H.; Williamson, G.A. Constant power loads and negative impedance instability in automotive systems: Definition, modeling, stability, and control of power electronic converters and motor drives. IEEE Trans. Veh. Technol. 2006, 55, 1112–1125. [Google Scholar] [CrossRef]
- Marx, D.; Magne, P.; Nahid-Mobarakeh, B.; Pierfederici, S.; Davat, B. Large signal stability analysis tools in DC power systems with constant power loads and variable power loads—A review. IEEE Trans. Power Electron. 2011, 27, 1773–1787. [Google Scholar] [CrossRef]
- Tabari, M.; Yazdani, A. Stability of a dc distribution system for power system integration of plug-in hybrid electric vehicles. IEEE Trans. Smart Grid 2014, 5, 2564–2573. [Google Scholar] [CrossRef]
- Carling Technologies. DC Circuit Breaker. Available online: http://www.carlingtech.com/sites/default/files/documents/CX-Series_Details_%26_COS_010714.pdf (accessed on 31 October 2022).
- Emhemed, A.A.; Fong, K.; Fletcher, S.; Burt, G.M. Validation of fast and selective protection scheme for an LVDC distribution network. IEEE Trans. Power Deliv. 2016, 32, 1432–1440. [Google Scholar] [CrossRef]
- Oh, Y.-S.; Kim, C.-H.; Gwon, G.-H.; Noh, C.-H.; Bukhari, S.B.A.; Haider, R.; Gush, T. Fault detection scheme based on mathematical morphology in last mile radial low voltage DC distribution networks. Int. J. Electr. Power Energy Syst. 2019, 106, 520–527. [Google Scholar] [CrossRef]
- NTT Facilities, Inc. The world’ First: UL Certification for Socket-Outlet and Plug for 10 A 400 V Class DC Distribution System. Available online: https://www.ntt-f.co.jp/english/news/heisei26/h26-1208.html (accessed on 31 October 2022).
- Meyer, C.; Kowal, M.; De Doncker, R.W. Circuit breaker concepts for future high-power DC-applications. In Proceedings of the Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference, Hong Kong, China, 2–6 October 2005; Volume 2, pp. 860–866. [Google Scholar]
- Huo, Q.; Xiong, J.; Zhang, N.; Guo, X.; Wu, L.; Wei, T. Review of DC circuit breaker application. Electr. Power Syst. Res. 2022, 209, 107946. [Google Scholar] [CrossRef]
- Shen, Z.J.; Miao, Z.; Roshandeh, A.M. Solid state circuit breakers for DC micrgrids: Current status and future trends. In Proceedings of the 2015 IEEE First International Conference on DC Microgrids (ICDCM), Atlanta, GA, USA, 7–10 June 2015; pp. 228–233. [Google Scholar]
- Kempkes, M.; Roth, I.; Gaudreau, M. Solid-state circuit breakers for medium voltage DC power. In Proceedings of the 2011 IEEE Electric Ship Technologies Symposium, Alexandria, VA, USA, 10–13 April 2011; pp. 254–257. [Google Scholar]
- Rodrigues, R.; Du, Y.; Antoniazzi, A.; Cairoli, P. A review of solid-state circuit breakers. IEEE Trans. Power Electron. 2020, 36, 364–377. [Google Scholar] [CrossRef]
- Singh, S.; Gautam, A.R.; Fulwani, D. Constant power loads and their effects in DC distributed power systems: A review. Renew. Sustain. Energy Rev. 2017, 72, 407–421. [Google Scholar] [CrossRef]
- Fletcher, S.; Norman, P.; Galloway, S.; Burt, G. Overvoltage protection on a DC marine electrical system. In Proceedings of the 2008 43rd International Universities Power Engineering Conference, Padua, Italy, 1–4 September 2008; pp. 1–5. [Google Scholar]
- Salomonsson, D.; Soder, L.; Sannino, A. Protection of low-voltage DC microgrids. IEEE Trans. Power Deliv. 2009, 24, 1045–1053. [Google Scholar] [CrossRef]
- Fletcher, S.; Norman, P.; Galloway, S.; Burt, G. Evaluation of Overvoltage Protection Requirements for a DC UAV Electrical Network; SAE Technical Paper 0148-7191; SAE International: Warrendale, PA, USA, 2008. [Google Scholar]
- Paul, D. Light rail transit DC traction power system surge overvoltage protection. IEEE Trans. Ind. Appl. 2002, 38, 21–28. [Google Scholar] [CrossRef]
- Jusoh, A.B.; Abd Razak, M.F.; Saiful, M.H.B.; Sutikno, T. Passive damper network in a simple DC distribution power system. Int. J. Electr. Comput. Eng. 2018, 8, 544. [Google Scholar] [CrossRef]
- Cespedes, M.; Xing, L.; Sun, J. Constant-power load system stabilization by passive damping. IEEE Trans. Power Electron. 2011, 26, 1832–1836. [Google Scholar] [CrossRef]
- Radwan, A.A.A.; Mohamed, Y.A.-R.I. Linear active stabilization of converter-dominated DC microgrids. IEEE Trans. Smart Grid 2011, 3, 203–216. [Google Scholar] [CrossRef]
- Magne, P.; Marx, D.; Nahid-Mobarakeh, B.; Pierfederici, S. Large-signal stabilization of a DC-link supplying a constant power load using a virtual capacitor: Impact on the domain of attraction. IEEE Trans. Ind. Appl. 2012, 48, 878–887. [Google Scholar] [CrossRef]
- Moussa, S.; Ghorbal, M.J.-B.; Slama-Belkhodja, I.; Martin, J.-P.; Pierfederici, S. DC bus voltage instability detection and stabilization under constant power load variation. In Proceedings of the 2018 9th International Renewable Energy Congress (IREC), Hammamet, Tunisia, 20–22 March 2018; pp. 1–6. [Google Scholar]
- Kim, Y.-J.; Kim, H. Modeling for series arc of DC circuit breaker. IEEE Trans. Ind. Appl. 2018, 55, 1202–1207. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Kim, H.-S. Modeling and estimation of break arc extinction distance in low voltage DC systems. Energies 2021, 14, 6646. [Google Scholar] [CrossRef]
- Nuutinen, P.; Peltoniemi, P.; Silventoinen, P. Short-circuit protection in a converter-fed low-voltage distribution network. IEEE Trans. Power Electron. 2012, 28, 1587–1597. [Google Scholar] [CrossRef]
- Wei, X.; Zou, G.; Zhang, S.; Xu, C. Frequency Domain Impedance Based Protection for Flexible DC Distribution Grid. IEEE Access 2022, 10, 114203–114213. [Google Scholar] [CrossRef]
- Park, J.-D. Ground fault detection and location for ungrounded DC traction power systems. IEEE Trans. Veh. Technol. 2015, 64, 5667–5676. [Google Scholar] [CrossRef]
- Tanaka, T.; Honma, Y.; Kuramoto, S.; Tanaka, T.; Babasaki, T.; Nozaki, Y. Basic study on grounding system for high-voltage direct current power supply system. In Proceedings of the INTELEC 2009-31st International Telecommunications Energy Conference, Incheon, Republic of Korea, 18–22 October 2009; pp. 1–4. [Google Scholar]
- Rachi, M.R.K.; Khan, M.A.; Husain, I. Protection coordination system for a converter dominated standalone dc microgrid. In Proceedings of the 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 29 September–3 October 2019; pp. 6254–6261. [Google Scholar]
- Pourmirasghariyan, M.; Zarei, S.F.; Hamzeh, M. DC-system grounding: Existing strategies, performance analysis, functional characteristics, technical challenges, and selection criteria-a review. Electr. Power Syst. Res. 2022, 206, 107769. [Google Scholar] [CrossRef]
- Cairoli, P.; Dougal, R.A.; Ghisla, U.; Kondratiev, I. Power sequencing approach to fault isolation in dc systems: Influence of system parameters. In Proceedings of the 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA, 12–16 September 2010; pp. 72–78. [Google Scholar]
- Li, B.; He, J.; Li, Y.; Li, R. A novel solid-state circuit breaker with self-adapt fault current limiting capability for LVDC distribution network. IEEE Trans. Power Electron. 2018, 34, 3516–3529. [Google Scholar] [CrossRef]
- Seong, J.; Seo, I.; Hwang, J.; Lee, B. Comparative evaluation between DC and AC breakdown characteristic of dielectric insulating materials in liquid nitrogen. IEEE Trans. Appl. Supercond. 2011, 22, 7701504. [Google Scholar] [CrossRef]
- Wang, C.; Sun, Q.; Zhao, L.; Jia, J.; Yao, L.; Peng, Z. Mechanical and dielectric strength of laminated epoxy dielectric graded materials. Polymers 2020, 12, 622. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Phung, B.; Zhang, D. A comprehensive review on DC arc faults and their diagnosis methods in photovoltaic systems. Renew. Sustain. Energy Rev. 2018, 89, 88–98. [Google Scholar] [CrossRef]
- Dalziel, C.F.; Massoglia, F.P. Let-go currents and voltages. Trans. Am. Inst. Electr. Eng. Part II Appl. Ind. 1956, 75, 49–56. [Google Scholar] [CrossRef]
- Wang, M.; Abedrabbo, M.; Leterme, W.; Van Hertem, D.; Spallarossa, C.; Oukaili, S.; Grammatikos, I.; Kuroda, K. A review on ac and dc protection equipment and technologies: Towards multivendor solution. In Proceedings of the CIGRE Winnipeg 2017 Colloquium, Winnipeg, MB, Canada, 30 September–6 October 2017; pp. 1–11. [Google Scholar]
- IEC Std 60479-1:2018; Effects of Current on Human Beings and Livestock—Part 1: General Aspects. International Electrotechnical Commission: Worcester, MA, USA, 2018.
- Hirose, K.; Tanaka, T.; Babasaki, T.; Person, S.; Foucault, O.; Sonnenberg, B.; Szpek, M. Grounding concept considerations and recommendations for 400VDC distribution system. In Proceedings of the 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC), Amsterdam, The Netherlands, 9–13 October 2011; pp. 1–8. [Google Scholar]
- Noritake, M.; Iino, T.; Fukui, A.; Hirose, K.; Yamasaki, M. A study of the safety of the DC 400 V distribution system. In Proceedings of the INTELEC 2009-31st International Telecommunications Energy Conference, Incheon, Republic of Korea, 18–22 October 2009; pp. 1–6. [Google Scholar]
- IEEE Std 1115-2000; IEEE Recommended Practice for Sizing Nickel-Cadmium Batteries for Stationary Applications. IEEE Standards Association: Piscataway, NJ, USA, 2000.
- Yu, J. The effects of earthing strategies on rail potential and stray currents in DC transit railways. In Proceedings of the International Conference on Developments in Mass Transit Systems, London, UK, 20–23 April 1998. [Google Scholar]
- Sikora, R.; Markiewicz, P.; Korzeniewska, E.; Nikitina, A.; Somka, O.; Nozhenko, V. Analysis of Climatic Conditions and the Values of Touch and Step Voltages on the Shock Currents Occurring During the Operation of the Grounding Grid in the LVDC Network. In Proceedings of the 2023 IEEE 5th International Conference on Modern Electrical and Energy System (MEES), Kremenchuk, Ukraine, 27–30 September 2023; pp. 1–5. [Google Scholar]
- Mariscotti, A. Electrical safety and stray current protection with platform screen doors in DC rapid transit. IEEE Trans. Transp. Electrif. 2021, 7, 1724–1732. [Google Scholar] [CrossRef]
- Turhan, M. Smart Touch Voltage Limitation. Sak. Univ. J. Sci. 2021, 25, 547–553. [Google Scholar] [CrossRef]
- Hirose, K. DC power demonstrations in Japan. In Proceedings of the 8th International Conference on Power Electronics-ECCE Asia, Jeju, Republic of Korea, 30 May–3 June 2011; pp. 242–247. [Google Scholar]
- Salonen, P.; Kaipia, T.; Nuutinen, P.; Peltoniemi, P.; Partanen, J. A study of lvdc distribution system grounding. In Proceedings of the Nordic Conference on Electricity Distribution System Management and Development (NORDAC), Bergen, Norway, 8–9 September 2008. [Google Scholar]
- Salonen, P.; Kaipia, T.; Nuutinen, P.; Peltoniemi, P.; Partanen, J. Fault analysis of LVDC distribution system. In Proceedings of the WESC, Iasi, Romania, 30 June–2 July 2008. [Google Scholar]
- Jayamaha, D.; Lidula, N.; Rajapakse, A. Protection and grounding methods in DC microgrids: Comprehensive review and analysis. Renew. Sustain. Energy Rev. 2020, 120, 109631. [Google Scholar] [CrossRef]
- Li, L.; Yong, J.; Zeng, L.; Wang, X. Investigation on the system grounding types for low voltage direct current systems. In Proceedings of the 2013 IEEE Electrical Power & Energy Conference, Halifax, NS, Canada, 21–23 August 2013; pp. 1–5. [Google Scholar]
- Li, B.; Li, Y.; Ma, T. Research on earthing schemes in LV microgrids. In Proceedings of the 2011 International Conference on Advanced Power System Automation and Protection, Beijing, China, 16–20 October 2011; Volume 2, pp. 1003–1007. [Google Scholar]
- Shabani, A.; Mazlumi, K. Studying grounding arrangements of the LVDC system through simulation. Simulation 2018, 94, 441–449. [Google Scholar] [CrossRef]
- Prabhala, V.A.; Baddipadiga, B.P.; Fajri, P.; Ferdowsi, M. An overview of direct current distribution system architectures & benefits. Energies 2018, 11, 2463. [Google Scholar] [CrossRef]
- IEC TR 60479-5:2007; IEC Effects of Current on Human Beings and Livestock—Part 5: Touch Voltage Threshold Values for Physiological Effects. International Electrotechnical Commission: Worcester, MA, USA, 2007. Available online: https://webstore.iec.ch/publication/2225 (accessed on 2 November 2022).
- Mariscotti, A. Power quality phenomena, standards, and proposed metrics for dc grids. Energies 2021, 14, 6453. [Google Scholar] [CrossRef]
- Farhadi, M.; Mohammed, O.A. Real-time operation and harmonic analysis of isolated and non-isolated hybrid DC microgrid. IEEE Trans. Ind. Appl. 2014, 50, 2900–2909. [Google Scholar] [CrossRef]
- Wood, T.; Macpherson, D.; Banham-Hall, D.; Finney, S. Ripple current propagation in bipole HVDC cables and applications to DC grids. IEEE Trans. Power Deliv. 2014, 29, 926–933. [Google Scholar] [CrossRef]
- Benavides, N.D.; Chapman, P.L. Modeling the effect of voltage ripple on the power output of photovoltaic modules. IEEE Trans. Ind. Electron. 2008, 55, 2638–2643. [Google Scholar] [CrossRef]
- Li, H.; Gao, Z.; Ji, S.; Ma, Y.; Wang, F. An Inrush Current Limiting Method for Grid-Connected Converters Considering Grid Voltage Disturbances. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 2608–2618. [Google Scholar] [CrossRef]
- Okilly, A.H.; Kim, N.; Baek, J. Inrush current control of high power density DC–DC converter. Energies 2020, 13, 4301. [Google Scholar] [CrossRef]
- Davies, B. Analysis of inrush currents for DC powered IT equipment. In Proceedings of the 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC), Amsterdam, The Netherlands, 9–13 October 2011; pp. 1–4. [Google Scholar]
- Waniek, C.; Wohlfahrt, T.; Myrzik, J.M.; Meyer, J.; Klatt, M.; Schegner, P. Supraharmonics: Root causes and interactions between multiple devices and the low voltage grid. In Proceedings of the 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Turin, Italy, 26–29 September 2017; pp. 1–6. [Google Scholar]
- Slangen, T.; van Wijk, T.; Ćuk, V.; Cobben, S. The propagation and interaction of supraharmonics from electric vehicle chargers in a low-voltage grid. Energies 2020, 13, 3865. [Google Scholar] [CrossRef]
- Karppanen, J.; Kaipia, T.; Nuutinen, P.; Lana, A.; Peltoniemi, P.; Pinomaa, A.; Mattsson, A.; Partanen, J.; Cho, J.; Kim, J. Effect of voltage level selection on earthing and protection of LVDC distribution systems. In Proceedings of the 11th IET International Conference on AC and DC Power Transmission, Birmingham, UK, 10–12 February 2015. [Google Scholar]
- Luo, S. A review of distributed power systems part I: DC distributed power system. IEEE Aerosp. Electron. Syst. Mag. 2005, 20, 5–16. [Google Scholar] [CrossRef]
- Foster, C.; Dickinson, M. High voltage DC power distribution for telecommunications facilities. In Proceedings of the INTELEC 2008-2008 IEEE 30th International Telecommunications Energy Conference, San Diego, CA, USA, 14–18 September 2008; pp. 1–4. [Google Scholar]
- Lee, P.-W.; Lee, Y.-Z.; Lin, B.-T. Power distribution systems for future homes. In Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems (PEDS’99) (Cat. No. 99TH8475), Hong Kong, 27–29 July 1999; Volume 2, pp. 1140–1146. [Google Scholar]
- Vazquez, A.; Martin, K.; Arias, M.; Sebastian, J. On Bidirectional DC Nano-Grids: Design Considerations and an Architecture Proposal. Energies 2019, 12, 3715. [Google Scholar] [CrossRef]
- Gross, P.; Godrich, K.L. Total DC integrated data centers. In Proceedings of the INTELEC 05-Twenty-Seventh International Telecommunications Conference, Berlin, Germany, 18–22 September 2005; pp. 125–130. [Google Scholar]
- Hua, C.; Gunawardane, K.; Lie, T. Investigation of Progressing Low and Medium Voltage DC Standards to Acquire the Implementation Scenarios for Domestic/Commercial and Industrial Converters and Enabling Technologies. In Proceedings of the 2021 6th Asia Conference on Power and Electrical Engineering (ACPEE), Chongqing, China, 8–11 April 2021; pp. 285–289. [Google Scholar]
- Kaipia, T.; Salonen, P.; Lassila, J.; Partanen, J. Possibilities of the low voltage DC distribution systems. In Proceedings of the Nordac, Nordic Distribution and Asset Management Conference, Stockholm, Sweden, 21–22 August 2006; pp. 1–10. [Google Scholar]
- Emerge Alliance Occupied Space Std, Version 1.1; Occupied Voltage Band for Data Centres; Emerge Alliance: Alexandria, VA, USA, 2012.
- IEEE Std 802.3bu-2016; Physical Layer and Management Parameters for Power over Data Lines (PoDL) of Single Balanced Twisted-Pair Ethernet. IEEE Standards Association: Piscataway, NJ, USA, 2015. Available online: https://www.emergealliance.org/standards/occupied-space-2/#:~:text=Occupied%20Space%20designed%20in%20compliance,controls%20on%20a%20common%20platform (accessed on 5 April 2024).
- EU Std EU LVD 2014/35/EU; Low Voltage Directive (LVD). European Commission: Brussels, Belgium, 2014. Available online: https://single-market-economy.ec.europa.eu/sectors/electrical-and-electronic-engineering-industries-eei/low-voltage-directive-lvd_en#:~:text=The%20low%20voltage%20directive%20(LVD)%20(2014%2F35%2F,applicable%20since%2020%20April%202016 (accessed on 5 April 2024).
- IEC Std 61140:2016; Protection against Electric Shock—Common Aspects for Installation and Equipment. International Electrotechnical Commission: Worcester, MA, USA, 2016. Available online: https://webstore.iec.ch/publication/23997 (accessed on 5 April 2024).
- Chinese Std YD/T 2378-2011; 240 V Direct Current Power Supple System for Telecommunications. Standardization Administration of China: Beijing, China, 2011. Available online: https://gbstandards.org/China_industry_standard_english_2.asp?id=25884 (accessed on 5 April 2024).
- ICT Std ETSI EN 300 132-3-1; Power Supply Interface at the Input to Telecommunications and Datacom (ICT) Equipment—Part 3: Operated by Rectified Current Source, Alternating Current Source or Direct Current Source up to 400 V—Sub-Part 1: Direct Current Source up to 400 V. European Defence Agency: Brussels, Belgium, 2012. Available online: https://edstar.eda.europa.eu/Standards/Details/bc0a0b35-f827-4123-9840-60026ce9f1fe (accessed on 5 April 2024).
- ICT Std ETSI EN 301 605; Earthing and Bonding of 400 VDC Data and Telecom (ICT) Equipment. European Commission: Brussels, Belgium, 2013. Available online: https://www.etsi.org/deliver/etsi_en/301600_301699/301605/01.01.01_20/en_301605v010101a.pdf (accessed on 5 April 2024).
- IT Std ITU-T L.1200; Direct Current Power Feeding Interface up to 400 V at the Input to Telecommunication and ICT Equipment. European Union: Brussels, Belgium, 2012. Available online: https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=11638 (accessed on 5 April 2024).
- IEC Std 60038; IEC Standard Voltages. International Electrotechnical Commission: Worcester, MA, USA, 2018. Available online: https://webstore.iec.ch/publication/153 (accessed on 5 April 2024).
- IEEE Std 1709; Recommended Practice for 1 to 35 kV Medium Voltage DC Power Systems on Ships. IEEE Standards Association: Piscataway, NJ, USA, 2010.
- IEC Std 61975:2010; High-Voltage Direct Current (HVDC) Installations—System Tests. International Electrotechnical Commission: Worcester, MA, USA, 2010. Available online: https://webstore.iec.ch/publication/79661 (accessed on 5 April 2024).
- Duan, J.; Li, Z.; Zhou, Y.; Wei, Z. Study on the voltage level sequence of future urban DC distribution network in China: A Review. Int. J. Electr. Power Energy Syst. 2020, 117, 105640. [Google Scholar] [CrossRef]
- Li, L.; Li, K.-J.; Sun, K.; Liu, Z.; Lee, W.-J. A comparative study on voltage level standard for DC residential power systems. IEEE Trans. Ind. Appl. 2022, 58, 1446–1455. [Google Scholar] [CrossRef]
- Boroyevich, D.; Burgos, R.; Arnedo, L.; Wang, F. Synthesis and integration of future electronic power distribution systems. In Proceedings of the 2007 Power Conversion Conference-Nagoya, Nagoya, Japan, 2–5 April 2007; pp. K-1–K-8. [Google Scholar]
- Fregosi, D.; Ravula, S.; Brhlik, D.; Saussele, J.; Frank, S.; Bonnema, E.; Scheib, J.; Wilson, E. A comparative study of DC and AC microgrids in commercial buildings across different climates and operating profiles. In Proceedings of the 2015 IEEE First International Conference on DC Microgrids (ICDCM), Atlanta, GA, USA, 7–10 June 2015; pp. 159–164. [Google Scholar]
- Dong, D.; Cvetkovic, I.; Boroyevich, D.; Zhang, W.; Wang, R.; Mattavelli, P. Grid-interface bidirectional converter for residential DC distribution systems—Part one: High-density two-stage topology. IEEE Trans. Power Electron. 2012, 28, 1655–1666. [Google Scholar] [CrossRef]
- Spliid, F.M.; Ammar, A.M.; Knott, A. Analysis and design of a resonant power converter with a wide input voltage range for AC/DC applications. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 8, 2056–2066. [Google Scholar] [CrossRef]
- Johnston, J.; Counsell, J.; Banks, G.; Stewart, M.J. Beyond power over Ethernet: The development of digital energy networks for buildings. In Proceedings of the CIBSE Technical Symposium 2012-Buildings Systems and Services for the 21st Century, London, UK, 18–19 April 2012; Session 5 Power and Energy Design. [Google Scholar]
- Pratt, A.; Kumar, P.; Aldridge, T.V. Evaluation of 400V DC distribution in telco and data centers to improve energy efficiency. In Proceedings of the INTELEC 07-29th International Telecommunications Energy Conference, Rome, Italy, 30 September–4 October 2007; pp. 32–39. [Google Scholar]
- Vossos, V.; Garbesi, K.; Shen, H. Energy savings from direct-DC in US residential buildings. Energy Build. 2014, 68, 223–231. [Google Scholar] [CrossRef]
- Weiss, R.; Ott, L.; Boeke, U. Energy efficient low-voltage DC-grids for commercial buildings. In Proceedings of the 2015 IEEE First International Conference on DC Microgrids (ICDCM), Atlanta, GA, USA, 7–10 June 2015; pp. 154–158. [Google Scholar]
- Fotopoulou, M.; Rakopoulos, D.; Trigkas, D.; Stergiopoulos, F.; Blanas, O.; Voutetakis, S. State of the art of low and medium voltage direct current (DC) microgrids. Energies 2021, 14, 5595. [Google Scholar] [CrossRef]
- Mackay, L.; Hailu, T.G.; Mouli, G.C.; Ramírez-Elizondo, L.; Ferreira, J.A.; Bauer, P. From dc nano-and microgrids towards the universal dc distribution system-a plea to think further into the future. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar]
- Faddel, S.; Saad, A.A.; Mohammed, O. Decentralized energy management of hybrid energy storage on MVDC shipboard power system. In Proceedings of the 2018 IEEE Industry Applications Society Annual Meeting (IAS), Portland, OR, USA, 23–27 September 2018; pp. 1–7. [Google Scholar]
- Mills, A.J.; Ashton, R.W. Adaptive, sparse, and multi-rate LQR control of an MVDC shipboard power system with constant power loads. In Proceedings of the 2017 IEEE International Conference on Industrial Technology (ICIT), Toronto, ON, Canada, 22–25 March 2017; pp. 498–503. [Google Scholar]
- Verdicchio, A.; Ladoux, P.; Caron, H.; Courtois, C. New medium-voltage DC railway electrification system. IEEE Trans. Transp. Electrif. 2018, 4, 591–604. [Google Scholar] [CrossRef]
- Costea, S.D.; Orlando, S. LVDC microgrid topology, control and protection in the EU funded project Hyperride. In Proceedings of the 2023 IEEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE), Grenoble, France, 23–26 October 2023; pp. 1–6. [Google Scholar]
- Rekola, J.; Jokipii, J.; Suntio, T. Effect of network configuration and load profile on efficiency of LVDC distribution network. In Proceedings of the 2014 16th European Conference on Power Electronics and Applications, Lappeenranta, Finland, 26–28 August 2014; pp. 1–10. [Google Scholar]
- Dworakowski, P.; Le Métayer, P.; Dujic, D.; Buttay, C. Unidirectional step-up isolated DC-DC converter for MVDC electrical networks. In Proceedings of the CIGRE Session, Paris, France, 29 August–2 September 2022. [Google Scholar]
- Qu, L.; Yu, Z.; Song, Q.; Yuan, Z.; Zhao, B.; Yao, D.; Chen, J.; Liu, Y.; Zeng, R. Planning and analysis of the demonstration project of the MVDC distribution network in Zhuhai. Front. Energy 2019, 13, 120–130. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.; Qu, L.; Yu, Z.; Nie, Z.; Zeng, R. Research on Access Mode of the Flexible DC Power Distribution System into AC System. Energies 2019, 12, 4002. [Google Scholar] [CrossRef]
- Salonen, P.; Nuutinen, P.; Peltoniemi, P.; Partanen, J. LVDC distribution system protection—Solutions, implementation and measurements. In Proceedings of the 2009 13th European Conference on Power Electronics and Applications, Barcelona, Spain, 8–10 September 2009; pp. 1–10. [Google Scholar]
- Kim, J.-Y.; Kim, H.-S.; Baek, J.-W.; Jeong, D.-K. Analysis of effective three-level neutral point clamped converter system for the bipolar LVDC distribution. Electronics 2019, 8, 691. [Google Scholar] [CrossRef]
- Mackay, L.; Hailu, T.; Ramirez-Elizondo, L.; Bauer, P. Towards a DC distribution system-opportunities and challenges. In Proceedings of the 2015 IEEE First International Conference on DC Microgrids (ICDCM), Atlanta, GA, USA, 7–10 June 2015; pp. 215–220. [Google Scholar]
- van der Blij, N.H.; Ramirez-Elizondo, L.M.; Spaan, M.T.; Bauer, P. A state-space approach to modelling DC distribution systems. IEEE Trans. Power Syst. 2017, 33, 943–950. [Google Scholar] [CrossRef]
- Hakala, T.; Jarventausta, P.; Lahdeaho, T. The utilization potential of LVDC distribution. In Proceedings of the 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), Stockholm, Sweden, 10–13 June 2013. [Google Scholar]
- Mcmurray, W. Power Converter Circuits Having a High Frequency Link. U.S. Patent 3,517,300, 23 June 1970. [Google Scholar]
- Liserre, M.; Buticchi, G.; Andresen, M.; De Carne, G.; Costa, L.F.; Zou, Z.-X. The smart transformer: Impact on the electric grid and technology challenges. IEEE Ind. Electron. Mag. 2016, 10, 46–58. [Google Scholar] [CrossRef]
- Shamshuddin, M.A.; Rojas, F.; Cardenas, R.; Pereda, J.; Diaz, M.; Kennel, R. Solid state transformers: Concepts, classification, and control. Energies 2020, 13, 2319. [Google Scholar] [CrossRef]
- She, X.; Burgos, R.; Wang, G.; Wang, F.; Huang, A.Q. Review of solid state transformer in the distribution system: From components to field application. In Proceedings of the 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 15–20 September 2012; pp. 4077–4084. [Google Scholar]
- Kolar, J.W.; Ortiz, G. Solid-state-transformers: Key components of future traction and smart grid systems. In Proceedings of the International Power Electronics Conference-ECCE Asia (IPEC 2014), Hiroshima, Japan, 18–21 May 2014; pp. 18–21. [Google Scholar]
- She, X.; Huang, A. Solid state transformer in the future smart electrical system. In Proceedings of the 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 1–5. [Google Scholar]
- Unamuno, E.; Barrena, J.A. Hybrid AC/DC microgrids—Part I: Review and classification of topologies. Renew. Sustain. Energy Rev. 2015, 52, 1251–1259. [Google Scholar] [CrossRef]
- Hrishikesan, V.; Deka, A.K.; Kumar, C. Capacity enhancement of a radial distribution grid using smart transformer. IEEE Access 2020, 8, 72411–72423. [Google Scholar] [CrossRef]
- Das, D.; Hrishikesan, V.; Kumar, C. Smart transformer-based hybrid lvac and lvdc interconnected microgrid. In Proceedings of the 2018 IEEE 4th Southern Power Electronics Conference (SPEC), Singapore, 10–13 December 2018; pp. 1–7. [Google Scholar]
- Zhuang, Y.; Liu, F.; Huang, Y.; Wang, S.; Pan, S.; Zha, X.; Diao, X. A Multiport DC Solid-State Transformer for MVDC Integration Interface of Multiple Distributed Energy Sources and DC Loads in Distribution Network. IEEE Trans. Power Electron. 2021, 37, 2283–2296. [Google Scholar]
- Wang, D.; Emhemed, A.A.; Burt, G.M. Improved voltage-based protection scheme for an LVDC distribution network interfaced by a solid state smart transformer. IET Gener. Transm. Distrib. 2019, 13, 4821–4829. [Google Scholar] [CrossRef]
- Rojas, F.; Diaz, M.; Espinoza, M.; Cárdenas, R. A solid state transformer based on a three-phase to single-phase modular multilevel converter for power distribution networks. In Proceedings of the 2017 IEEE Southern Power Electronics Conference (SPEC), Puerto Varas, Chile, 4–7 December 2017; pp. 1–6. [Google Scholar]
- Zhang, L.; Liang, J.; Tang, W.; Li, G.; Cai, Y.; Sheng, W. Converting AC distribution lines to DC to increase transfer capacities and DG penetration. IEEE Trans. Smart Grid 2018, 10, 1477–1487. [Google Scholar] [CrossRef]
- Larruskain, D.M.; Zamora, I.; Abarrategui, O.; Aginako, Z. Conversion of AC distribution lines into DC lines to upgrade transmission capacity. Electr. Power Syst. Res. 2011, 81, 1341–1348. [Google Scholar] [CrossRef]
Cluster | Main Area | Links | Occurrences | Related Keywords |
---|---|---|---|---|
1 | Energy storage | 27 | 20 | Efficiency, renewable energy sources, battery, power flow, DG, EV |
2 | AC/DC distribution system | 15 | 42 | Load flow, EV, DG, VSC, power router, AC/DC converters |
3 | Constant power loads | 14 | 16 | DC transformer, DC/DC converters, energy storage, stability analysis |
4 | Modular multilevel converter | 26 | 33 | Stability, DG, protection, DC loads, AC/DC converter, DC/DC converter |
5 | Load modeling | 22 | 10 | Load flow, stability, voltage regulation, network topology, optimal power flow, hybrid AC/DC network |
6 | DC distribution network | 66 | 236 | Energy storage, load flow, stability analysis, protection, voltage levels, network topology, human safety, RES, EVs, DC loads, efficiency |
7 | DC protection | 12 | 11 | Fault detection, fault location, fault identification, DC circuit breaker |
8 | Stability | 23 | 30 | Constant power load, DC/DC converters, EVs, flexible DC distribution |
9 | DC microgrids | 39 | 33 | Power quality, protection, distributed generation, energy management, LVDC, solid-state transformer (SST), renewable energy sources |
10 | Distributed generation | 31 | 44 | Renewable energy, smart grid, power system planning, DC grid, SST |
11 | Solid state transformer (SST) | 8 | 7 | AC and DC distribution network, AC-DC hybrid distribution network, power quality, reliability |
12 | Power flow | 6 | 6 | Distributed generation, constant power loads, RESs |
13 | DC distribution | 72 | 160 | Power flow, DC loads, solid state transformer, network topology, constant power loads, DC/DC converters |
Reference | PF Method | Network Topology | DC/DC Interconnections | Existence and Uniqueness of the PF Solution | Iterative/ Non-Iterative |
---|---|---|---|---|---|
Ref. [113] | LA | R: ✓ M: ✓ BP: ✗ | ✗ | ✓ | iterative |
Ref. [116] | SLA A-oHC | R: ✓ M: ✓ BP: ✗ R: ✓ M: ✓ BP: ✗ | ✗ ✗ | ✗ ✗ | iterative iterative |
Ref. [114] | A-oHC | R: ✓ M: ✗ BP: ✗ | ✗ | ✗ | non-iterative |
Ref. [111] | A-oHC Q-NR | R: ✓ M: ✓ BP: ✓ R: ✓ M: ✓ BP: ✓ | ✗ ✗ | ✗ ✗ | iterative iterative |
Ref. [103] | NR | R: ✓ M: ✓ BP: ✗ | ✗ | ✗ | iterative |
Ref. [109] | NR | R: ✓ M: ✓ BP: ✓ | ✗ | ✗ | iterative |
Ref. [110] | NR | R: ✓ M: ✓ BP: ✗ | ✗ | ✓ | iterative |
Ref. [104] | CIM | R: ✓ M: ✓ BP: ✗ | ✗ | ✓ | iterative |
Ref. [105] | MM Z-bus EFM | R: ✓ M: ✓ BP: ✗ R: ✓ M: ✓ BP: ✗ R: ✓ M: ✓ BP: ✗ | ✗ ✗ ✗ | ✓ ✓ ✓ | iterative iterative non-iterative |
Ref. [108] | BFS | R: ✓ M: ✗ BP: ✗ | ✗ | ✗ | iterative |
Ref. [107] | BFS SA | R: ✓ M: ✓ BP: ✓ R: ✓ M: ✓ BP: ✓ | ✗ ✗ | ✗ ✓ | iterative iterative |
Ref. [106] | SA TSE | R: ✓ M: ✓ BP: ✗ R: ✓ M: ✓ BP: ✗ | ✗ ✗ | ✗ ✗ | iterative iterative |
Ref. [115] | TSE | R: ✓ M: ✓ BP: ✗ | ✗ | ✗ | non-iterative |
Ref. [112] | UTM | R: ✓ M: ✗ BP: ✗ | ✗ | ✗ | iterative |
Ref. [119] | FPI | R: ✓ M: ✓ BP: ✓ | ✗ | ✓ | iterative |
Ref. [75] | LM | R: ✓ M: ✓ BP: ✗ | ✗ | ✓ | iterative |
Ref. [117] | ILM | R: ✓ M: ✓ BP: ✗ | ✗ | ✓ | iterative |
Ref. [118] | e-ILM | R: ✓ M: ✓ BP: ✗ | ✓ | ✓ | iterative |
Ref. [120] | MANA | R: ✓ M: ✓ BP: ✗ | ✗ | ✓ | iterative |
Ref. [121] | e-MANA | R: ✓ M: ✓ BP: ✗ | ✓ | ✓ | iterative |
Volage Band | Voltage Level (Vdc) | Standard |
---|---|---|
SELV & PELV | 24 | [227] (Emerge Alliance (Occupied Space Std)) |
50 | [228] (IEEE 802.3 bt, 802.3 bu) | |
75 | [229] (EU LDV 2014/35/EU) | |
120 | [230] (Limit of SELV and PELV:IEC61140) | |
LVDC | 240 | [231] (Power supply system for Telecom: YD/T 2378-2011) |
380 | [227] Emerge Alliance (Data/Telecom Std) | |
400 | [232] (Limit of Telecom DC Source ETSI EN 300 132-3-1) | |
400 | [233] (Earthing and bonding of 400 Vdc: ETSI EN 301 605) | |
400 | [234] (DC power feeding interface up to 400 Vdc: ITU-T L.1200) | |
1500 | [235] (Limit of LVDC: IEC60038) | |
MVDC | 1.5 kV~100 kV | [236] (IEEE Std. 1709) |
HVDC | 100 kV~800 kV | [237] (IEC 61975:2010) |
Voltage Level | Country | Organization |
---|---|---|
24 | USA [90,208] | Whole Foods Market, Berkeley; Sust. Resource Center; Alliance Center; PNC Bank, Fort Lauderdale; Fort Belvoir, Alexandria; AGU Building Washington DC; Bedrock Real Estate, Detroit |
200 | New Zealand [208,211] | Telecom NZ |
350 | France [208] | France Telecom |
Sweden [208] | UPN AB | |
360 | Italy [253] | HYPERRIDE Demo 3 (Terni) |
380 Vdc | USA [90] | University of California San Diego; Purdue University; SAP; Intel Corporation; Standford University; IO; Duke Energy; Clustered Systems; NEXTEX; IBM; Validus (ABB); Syracuse University; Steel Orca; North America Telecom; Livingston and Haven, Charlotte; Fitness Center, Fort Bragg; Honda Warehouse Retrofit; Silver cloud Winery, Glen Ellen; Kirtland Air Force Base Albuquerque |
Canada [90,208] | Canada Telecom Operator | |
Japan [10] | The Fukuoka Smart House | |
Denmark [10] | Aalborg University | |
France [194,208] | France Telecom | |
Swiss [208] | Green.CH, ABB | |
India [208] | IBM | |
Taiwan [94] | Taiwan IT | |
Singapore [208] | IBM | |
China [208] | China Mobile | |
New Zealand [208] | Telecom NZ | |
400 | USA [90,208] | Intel Corporation |
550 | USA [90,208] | Validus (ABB) |
240/380 | China [208] | China Telecom |
350/380 | Sweden [208] | Netpower Labs AB |
380/400 | Japan [10,208] | NTT Group |
700–750 | Switzerland [92] | HYPERRIDE Demo 1 (Lausanne, CH) |
380–1000 | Germany [92] | HYPERRIDE Demo 2 (Aachen, DE) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javid, Z.; Kocar, I.; Holderbaum, W.; Karaagac, U. Future Distribution Networks: A Review. Energies 2024, 17, 1822. https://doi.org/10.3390/en17081822
Javid Z, Kocar I, Holderbaum W, Karaagac U. Future Distribution Networks: A Review. Energies. 2024; 17(8):1822. https://doi.org/10.3390/en17081822
Chicago/Turabian StyleJavid, Zahid, Ilhan Kocar, William Holderbaum, and Ulas Karaagac. 2024. "Future Distribution Networks: A Review" Energies 17, no. 8: 1822. https://doi.org/10.3390/en17081822
APA StyleJavid, Z., Kocar, I., Holderbaum, W., & Karaagac, U. (2024). Future Distribution Networks: A Review. Energies, 17(8), 1822. https://doi.org/10.3390/en17081822