Consumer Preferences for Wood-Pellet-Based Green Pricing Programs in the Eastern United States
Abstract
:1. Introduction
2. Background
3. Methods
3.1. Econometric Analysis
3.2. Attributes and Corresponding Levels
3.3. Data Collection
4. Results and Discussion
4.1. State Socio-Demographic Variables
4.2. Introductory Questions
4.3. Paired Estimates for BWS
4.4. Estimation of Binary Choice Task
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roni, M.S.; Chowdhury, S.; Mamun, S.; Marufuzzaman, M.; Lein, W.; Johnson, S. Biomass co-firing technology with policies, challenges, and opportunities: A global review. Renew. Sustain. Energy Rev. 2017, 78, 1089–1101. [Google Scholar] [CrossRef]
- EIA. 2021. Available online: https://www.eia.gov/tools/faqs/faq.php?id=427&t=3 (accessed on 26 July 2021).
- Slade, R.; Bauen, A.; Gross, R. Global bioenergy resources. Nat. Clim. Change 2014, 4, 99–105. [Google Scholar] [CrossRef]
- Pellets Fuel Institute (PFI). 2021. Available online: https://www.pelletheat.org/what-are-pellets- (accessed on 3 July 2021).
- Garcia, R.; Gil, M.V.; Rubiera, F.; Pevida, C. Pelletization of wood and alternative residual biomass blends for producing industrial quality pellets. Fuel 2019, 251, 739–753. [Google Scholar] [CrossRef]
- European Pellet Council (EPC). A European Success Story. Available online: https://epc.bioenergyeurope.org/about-pellets/pellets-basics/wood-pellets-a-european-success-story/ (accessed on 24 September 2019).
- U.S. International Trade Commission (ITC). International Trade in Wood Pellets: Current Trends and Future Prospects. 2018. Available online: https://www.usitc.gov/publications/332/executive_briefings/wood_pellets_ebot_final.pdf (accessed on 1 July 2019).
- EIA. 2021. Available online: https://www.eia.gov/outlooks/steo/report/renew_co2.php (accessed on 26 July 2021).
- Mei, B.; Wetzstein, M. Burning wood pellets for US electricity generation? A regime switching analysis. Energy Econ. 2017, 65, 434–441. [Google Scholar] [CrossRef]
- Goerndt, M.E.; Aguilar, F.X.; Skog, K. Resource potential for renewable energy generation from co-firing of woody biomass with coal in the Northern U.S. Biomass Bioenergy 2013, 59, 348–361. [Google Scholar] [CrossRef]
- Roni, M.S.; Ekisioglu, S.D.; Searcy, E.; Jha, K. A supply chain network design model for biomass co-firing in coal-fired power plants. Transp. Res. Part E 2014, 61, 115–134. [Google Scholar] [CrossRef]
- Johnston, C.M.; Kooten, G.C. Economics of co-firing coal and biomass: An application to Western Canada. Energy Econ. 2015, 48, 7–17. [Google Scholar] [CrossRef]
- Kebede, E.; Ojumu, G.; Adozssi, E. Economic impact of wood pellet co-firing in South and West Alabama. Energy Sustain. Dev. 2013, 17, 252–256. [Google Scholar] [CrossRef]
- Basu, P.; Butler, J.; Leon, M.A. Biomass co-firing options on the emission reduction and electricity generation costs in coal-fired power plants. Renew. Energy 2011, 36, 282–288. [Google Scholar] [CrossRef]
- Karimi, H.; Eksioglu, S.D.; Khademi, A. Analyzing Tax Incentives for Producing Renewable Energy by Biomass Cofiring. IISE Trans. 2017, 50, 4. [Google Scholar] [CrossRef]
- Morrison, B.; Golden, J.S. Life cycle assessment of co-firing coal and wood pellets in the Southeastern United States. J. Clean. Prod. 2017, 150, 188–196. [Google Scholar] [CrossRef]
- Truong, A.H.; Ha-Duong, M.; Tran, H.A. Economics of co-firing rice straw in coal power plants in Vietnam. Renew. Sustain. Energy Rev. 2022, 154, 111742. [Google Scholar] [CrossRef]
- Campbell, R.M.; Venn, T.J.; Anderson, N.M. Social preferences toward energy generation with woody biomass from public forests in Montana, USA. For. Policy Econ. 2016, 73, 58–67. [Google Scholar] [CrossRef]
- Susaeta, A.; Lal, P.; Alavalapati, J.; Mercer, E. Random preferences towards bioenergy environmental externalities: A case study of woody biomass-based electricity in the Southern United States. Energy Econ. 2011, 33, 1111–1118. [Google Scholar] [CrossRef]
- Ko, S.; Lautala, P. Optimal Level of Woody Biomass Co-Firing with Coal Power Plant Considering Advanced Feedstock Logistics System. Agriculture 2018, 8, 74. [Google Scholar] [CrossRef]
- Center for the New Energy Economy, Colorado State University. Green Power Pricing Programs. March 2017. Available online: https://spotforcleanenergy.org/wp-content/uploads/2016/03/31f410651541de4633f9bb77ad42f0ca.pdf (accessed on 2 July 2019).
- Bae, J.H.; Rishi, M. Increasing consumer participation rates for green pricing programs: A choice experiment for South Korea. Energy Econ. 2018, 74, 490–502. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (EPA). Green Power Partnership—Green Power Pricing; 2019. Available online: https://www.epa.gov/greenpower (accessed on 2 July 2019).
- Bae, J.H.; Rishi, M.; Li, D. Consumer preferences for a green certificate program in South Korea. Energy 2011, 230, 120726. [Google Scholar] [CrossRef]
- O’Shaughnessy, E.; Heeter, J.; Sauer, J. Status and Trends in the U.S. Voluntary Green Power Market: 2017 Data; NREL/TP-6A20-72204; National Renewable Energy Laboratory: Golden, CO, USA, 2018. Available online: https://www.nrel.gov/docs/fy19osti/72204.pdf (accessed on 8 October 2022).
- U.S. Environmental Protection Agency (EPA). Green Power markets. 2019. Available online: https://www.epa.gov/green-power-markets/green-power-pricing#two (accessed on 3 July 2019).
- Borchers, A.M.; Duke, J.M.; Parsons, G.R. Does willingness to pay for green energy differ by source? Energy Policy 2007, 35, 3327–3334. [Google Scholar] [CrossRef]
- Ek, K.; Persson, L. Windfarms-Where and how to place them? A choice experiment approach to measure consumer preferences for characteristics of wind farm establishments in Sweden. Ecol. Econ. 2014, 105, 193–203. [Google Scholar] [CrossRef]
- Koto, P.S.; Yiridoe, E.K. Expected willingness to pay for wind energy in Atlantic Canada. Energy Policy 2019, 129, 80–88. [Google Scholar] [CrossRef]
- Arpan, L.M.; Xu, X.; Raney, A.A.; Chen, C.; Wang, Z. Politics, values, and morals: Assessing consumer responses to the framing of residential renewable energy in the United States. Energy Res. Soc. Sci. 2018, 46, 321–331. [Google Scholar] [CrossRef]
- Knapp, L.; O’Shaughnessy, E.; Heeter, J.; Mills, S.; DeCicco, J.M. Will consumers really pay for green electricity? Comparing stated and revealed preferences for residential programs in the United States. Energy Res. Soc. Sci. 2020, 65, 101457. [Google Scholar] [CrossRef]
- American Physical Society (APS). Integrating Renewable Electricity on the Grid—A Report by the APS Panel on Public Affairs. 2015. Available online: https://www.aps.org/policy/reports/popa-reports/upload/integratingelec.pdf (accessed on 24 July 2019).
- Herbes, C.; Friege, C.; Baldo, D.; Mueller, K.M. Willingness to pay lip service? Applying a neuroscience-based method to WTP for green electricity. Energy Policy 2015, 87, 562–572. [Google Scholar] [CrossRef]
- Herbes, C.; Ramme, L. Online marketing of green electricity in Germany—A content analysis of providers’ websites. Energy Policy 2014, 66, 257–266. [Google Scholar] [CrossRef]
- Oluoch, S.; Lal, P.; Wolde, B.; Susaeta, A.; Soto, J.R.; Smith, M.; Adams, D.C. Public Preferences for Longleaf Pine Restoration Programs in the Southeastern United States. For. Sci. 2021, 67, 265–274. [Google Scholar] [CrossRef]
- Smith, M.; Lal, P.; Oluoch, S.; Vedwan, N.; Smith, A. Valuation of sustainable attributes of hard apple cider: A best-worst choice approach. J. Clean. Prod. 2021, 318, 128478. [Google Scholar] [CrossRef]
- Soto, J.R.; Adams, D.C.; Escobedo, F.J. Landowner attitudes and willingness to accept compensation from forest carbon offsets: Application of best-worst choice modeling in Florida USA. For. Policy Econ. 2016, 63, 35–42. [Google Scholar] [CrossRef]
- Soto, J.R.; Escobedo, F.J.; Khachatryan, H.; Adams, D.C. Consumer demand for urban forest ecosystems services and disservices: Examining trade-offs using choice experiments and best-worst scaling. Ecosyst. Serv. 2018, 29, 31–39. [Google Scholar] [CrossRef]
- Tanner, S.J.; Escobedo, F.J.; Soto, J.R. Recognizing the insurance value of resilience: Evidence from a forest restoration policy in the southeastern US. J. Environ. Manag. 2021, 289, 112442. [Google Scholar] [CrossRef] [PubMed]
- Flynn, T.N.; Louviere, J.J.; Peters, T.J.; Coast, J. Best-worst scaling: What it can do for health care research and how to do it. J. Health Econ. 2007, 26, 171–189. [Google Scholar] [CrossRef] [PubMed]
- Federal Energy Management Program (FEMP). Biomass Cofiring in Coal-Fired Boilers. 2019. Available online: https://www.nrel.gov/docs/fy04osti/33811.pdf (accessed on 1 July 2019).
- Morrison, M.; Brown, T.C. Testing the effectiveness of certainty scales, cheap talk, and dissonance-minimization in reducing hypothetical bias in contigent valuation studies. Environ. Resour. Econ. 2009, 44, 307–326. [Google Scholar] [CrossRef]
- Bergmann, A.; Hanley, N.; Wright, R. Valuing the attributes of renewable energy investments. Energy Policy 2006, 34, 1004–1014. [Google Scholar] [CrossRef]
- Bergmann, A.; Colombo, S.; Hanley, N. Rural versus urban preferences for renewable energy developments. Ecol. Econ. 2008, 65, 616–625. [Google Scholar] [CrossRef]
- Ebeling, F.; Lotz, S. Domestic uptake of green energy promoted by opt-out tariffs. Nat. Clim. Change 2015, 5, 868–871. [Google Scholar] [CrossRef]
- Kaeznig, J.; Henzie, S.L.; Wustenhagen, R. Whatever the customer wants, the customer gets? Exploring the gap between consumer preferences and default electricity products in Germany. Energy Policy 2013, 53, 311–322. [Google Scholar]
- Oluoch, S.; Lal, P.; Bevacqua, A.; Wolde, B. Consumer willingness to pay for community solar in New Jersey. Electr. J. 2021, 34, 107006. [Google Scholar] [CrossRef]
- Sagebiel, J.; Muller, J.R.; Rommel, K. Are consumers willing to pay more for electricity from cooperatives? Results from an online Choice Experiment in Germany. Energy Res. Soc. Sci. 2014, 2, 90–101. [Google Scholar] [CrossRef]
- Dillman, D.A.; Phelps, G.; Tortora, R.; Swift, K.; Kohrell, J.; Berck, J.; Messer, B.L. Response rate and measurement differences in mixed-mode surveys using mail, telephone, interactive voice response (IVR) and the Internet. Soc. Sci. Res. 2009, 38, 1–18. [Google Scholar] [CrossRef]
- US Census Bureau. Census Data. 2019. Available online: www.census.gov/data.html (accessed on 20 September 2020).
- Adams, D.C.; Bwenge, A.N.; Lee, D.J.; Larkin, S.L.; Alavalapati, J.R.R. Public preferences for controlling upland invasive plants in state parks: Application of a choice model. For. Policy Econ. 2011, 13, 465–472. [Google Scholar] [CrossRef]
- National Conference of State Legislatures (NCSL). State Renewable Portfolio Standards. 2022. Available online: https://www.ncsl.org/energy/state-renewable-portfolio-standards-and-goals (accessed on 7 October 2022).
- Gilligan, C. US News and World Report: 10 States That Produce the Most Renewable Energy. 2022. Available online: https://www.usnews.com/news/best-states/slideshows/these-states-use-the-most-renewable-energy (accessed on 4 October 2022).
- Bird, L.; Swezey, B.; National Renewable Energy Laboratory. Green Power Marketing in the United States: A Status Report (Eight Edition). Technical Report NREL/TP-620-38994. 2005. Available online: https://www.nrel.gov/docs/fy06osti/38994.pdf (accessed on 10 October 2022).
- Flynn, T.N.; Louviere, J.J.; Peters, T.J.; Coast, J. Estimating preferences for a dermatology consultation using best-worst scaling: Comparison of various methods of analysis. BMC Med. Res. Methodol. 2008, 8, 76. [Google Scholar] [CrossRef] [PubMed]
- Gai, D.H.B.; Shittu, E.; Attanasio, D.; Weigelt, C.; LeBlanc, S.; Dehghanian, P.; Skylar, S. Examining community solar programs to understand accessibility and investment: Evidence from the U.S. Energy Policy 2021, 159, 112600. [Google Scholar]
- Stigka, E.K.; Paravantis, J.A.; Mihalakakou, G.K. Social acceptance of renewable sources: A review of contingent valuation applications. Renew. Sustain. Energy Rev. 2014, 32, 100–106. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Y. Market segmentation and willingness to pay for green electricity among urban residents in China: The case of Jiangsu Province. Energy Policy 2012, 51, 514–523. [Google Scholar] [CrossRef]
- Gamma, K.; Mai, R.; Cometta, C.; Loock, M. Engaging customers in demand response programs: The role of reward and punishment in customer adoption in Switzerland. Energy Res. Soc. Sci. 2021, 74, 101927. [Google Scholar] [CrossRef]
- Swim, J.K.; Geiger, N. Policy attributes, perceived impacts, and climate change policy preferences. J. Environ. Psychol. 2021, 77, 101673. [Google Scholar] [CrossRef]
- Statista. 2022. Available online: https://www.statista.com/statistics/380641/leading-us-states-by-coal-production/ (accessed on 7 October 2022).
- Drake, B.; Smart, J.C.; Termansen, M.; Hubacek, K. Public preferences for production of local and global ecosystem services. Reg Env. Chang. 2013, 13, 649–659. [Google Scholar] [CrossRef]
- Whitehead, J.C.; Cherry, T.L. Willingness to pay for a Green Energy program: A comparison of ex-ante and ex-post hypothetical bias mitigation approaches. Resour. Energy Econ. 2007, 29, 247–261. [Google Scholar] [CrossRef]
Green Energy Attributes | Description | Levels |
---|---|---|
Length of contract (LC) | The contract length for the energy provision service that involves supply of electricity and a renewable energy certificate (REC). | 6 months (6 M) 12 months (12 M) 24 months (24 M) * |
Variability of payments (VP) | Variability of payments due to market factors can be accounted for by RECs that have a fixed premium or fluctuating premium. | Fixed premium (FP) Fluctuating premium ± 5% (F5) Fluctuating premium ± 10% (F10) * |
Flexibility of contract (FC) | The electricity consumer has the option to opt out of the contract with or without a penalty. | Opt out of contract with a penalty (PEN) * Opt out of contract without a penalty (NOPEN) |
Location of energy generation (LG) | The location of the energy provision service can be In State or out of state. | In State (IN-STATE) Out of state (OUT-STATE) * |
Reduction in CO2 Emissions (RC) | Co-firing conversion plants that incorporate wood pellets can result in local reduction of CO2 emissions. | 1–5% (LOW) * 6–10% (MED) 11–20% (HIGH) |
Green Pricing Premium Payment (GP) | The payment vehicle in the form of a biomass renewable energy certificate (REC) added to the monthly electricity bill. With a charge for every Megawatt hour of electricity supplied to the consumer. | USD 10/MWh USD 20/MWh USD 30/MWh USD 40/MWh * |
Category | Sample Population (n = 2000) | US Census a |
---|---|---|
Median age (years) | 39.50 | 39.62 |
Household size (people) | 2.64 | 2.58 |
Education attainment (high school or higher %) | 97.35 | 89.62 |
Female (%) | 50.00 | 51.20 |
Median household income (USD USD) | 74,999.50 | 69,902.40 |
Monthly power bill (USD USD) | 123.32 | 122.15 |
Employment rate (%) | 52.45 | 58.88 |
Alabama | New Jersey | New York | Pennsylvania | Virginia | Pooled States | |
---|---|---|---|---|---|---|
Coeff (Std Dev) | ||||||
Attribute impacts | ||||||
LC | 0.139 (0.093) | −0.131 (0.094) | 0.424 (0.095) *** | 0.299 (0.095) ** | 0.341 (0.095) *** | 0.213 (0.042) *** |
VP | 0.328 (0.094) *** | 0.071 (0.095) | 0.478 (0.095) *** | 0.324 (0.095) *** | 0.519 (0.096) *** | 0.342 (0.042) *** |
FC | 0.238 (0.086) ** | 0.063 (0.087) | 0.279 (0.087) *** | 0.202 (0.087) ** | 0.403 (0.087) *** | 0.235 (0.039) *** |
LG | 0.348 (0.087) *** | 0.350 (0.089) *** | 0.534 (0.088) *** | 0.429 (0.089) *** | 0.556 (0.090) *** | 0.440 (0.040) *** |
RC | 0.970 (0.094) *** | 1.215 (0.096) *** | 1.186 (0.094) *** | 1.375 (0.097) *** | 1.544 (0.097) *** | 1.249 (0.043) *** |
Level scale values | ||||||
M6 | −0.559 (0.091) *** | −0.516 (0.092) *** | −0.270 (0.091) *** | −0.656 (0.093) *** | −0.577 (0.093) *** | −0.510 (0.041) *** |
M12 | 0.308 (0.091) *** | 0.448 (0.092) *** | 0.338 (0.091) *** | 0.477 (0.093) *** | 0.449 (0.093) *** | 0.400 (0.041) *** |
FP | −0.875 (0.088) *** | −1.075 (0.090) *** | −0.859 (0.089) *** | −1.376 (0.090) *** | −1.110 (0.090) *** | −1.051 (0.040) *** |
F5 | 0.187 (0.088) *** | 0.319 (0.089) *** | 0.101 (0.089) | 0.359 (0.089) *** | 0.273 (0.090) ** | 0.247 (0.040) *** |
NOPEN | 1.081 (0.074) *** | 1.214 (0.076) *** | 0.967 (0.074) *** | 1.555 (0.076) *** | 1.310 (0.075) *** | 1.216 (0.034) *** |
INSTATE | 0.761 (0.075) *** | 0.527 (0.077) *** | 0.508 (0.074) *** | 0.814 (0.077) *** | 0.704 (0.077) *** | 0.659 (0.034) *** |
MED | 0.450 (0.090) *** | 0.292 (0.090) *** | 0.325 (0.089) *** | 0.398 (0.092) *** | 0.299 (0.091) *** | 0.346 (0.040) *** |
HIGH | 0.541 (0.091) *** | 0.677 (0.091) *** | 0.427 (0.089) *** | 0.691 (0.092) *** | 0.551 (0.091) *** | 0.574 (0.041) *** |
USD 10/MWH | −1.530 (0.104) *** | −1.346 (0.106) *** | −1.345 (0.105) *** | −1.683 (0.107) *** | −1.714 (0.106) *** | −1.512 (0.047) *** |
USD 20/MWH | 1.046 (0.104) *** | 1.098 (0.106) *** | 1.057 (0.105) *** | 1.355 (0.107) *** | 1.413 (0.108) *** | −1.183 (0.047) *** |
USD 30/MWH | 0.456 (0.104) *** | 0.453 (0.107) *** | 0.587 (0.104) *** | 0.601 (0.107) *** | 0.633 (0.106) *** | 0.541 (0.047) *** |
No. of observations | 72,000 | 72,000 | 71,970 | 72,000 | 71,970 | 359,910 |
No. of respondents | 400 | 400 | 400 | 400 | 400 | 2000 |
Log likelihood | −7421.826 | −7421.826 | −7711.252 | −7355.097 | −7421.699 | −37,670.374 |
Binary Logit | Calibrated Model (Certainty Scale 7 Cut Off) | |||
---|---|---|---|---|
Attribute Level | Parameter Estimates | WTP (USD) | Parameter Estimates | WTP (USD) |
M6 | 0.230 (0.042) *** | 17.13 | 0.341 (0.050) *** | 77.28 |
M12 | 0.097 (0.044) ** | 7.25 | 0.306 (0.053) *** | 69.31 |
FP | 0.122 (0.045) ** | 9.06 | 0.165 (0.054) ** | 37.37 |
F5 | 0.077 (0.045) * | 5.74 | 0.112 (0.054) ** | 25.38 |
NOPEN | 0.084 (0.036) ** | 6.28 | 0.151 (0.042) *** | 34.30 |
INSTATE | 0.069 (0.036) * | 5.10 | 0.238 (0.042) *** | 54.03 |
MED | 0.116 (0.045) ** | 8.61 | 0.273 (0.055) *** | 61.92 |
HIGH | 0.209 (0.043) *** | 15.55 | 0.447 (0.506) *** | 101.33 |
GP | −0.013 (0.001) *** | −0.004 (0.001) ** | ||
No. of respondents | 2000 | |||
No. of Observations | 23,994 | |||
Log likelihood | −8237.32 | −12,016.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oluoch, S.; Lal, P.; Susaeta, A.; Smith, M.; Wolde, B. Consumer Preferences for Wood-Pellet-Based Green Pricing Programs in the Eastern United States. Energies 2024, 17, 1821. https://doi.org/10.3390/en17081821
Oluoch S, Lal P, Susaeta A, Smith M, Wolde B. Consumer Preferences for Wood-Pellet-Based Green Pricing Programs in the Eastern United States. Energies. 2024; 17(8):1821. https://doi.org/10.3390/en17081821
Chicago/Turabian StyleOluoch, Sydney, Pankaj Lal, Andres Susaeta, Meghann Smith, and Bernabas Wolde. 2024. "Consumer Preferences for Wood-Pellet-Based Green Pricing Programs in the Eastern United States" Energies 17, no. 8: 1821. https://doi.org/10.3390/en17081821
APA StyleOluoch, S., Lal, P., Susaeta, A., Smith, M., & Wolde, B. (2024). Consumer Preferences for Wood-Pellet-Based Green Pricing Programs in the Eastern United States. Energies, 17(8), 1821. https://doi.org/10.3390/en17081821