The Synergy between Methanol M100 and Plasma-Assisted Ignition System PAI to Achieve Increasingly Leaner Mixtures in a Single-Cylinder Engine
Abstract
:1. Introduction
Present Contribution
2. Materials and Methods
3. Case Study
4. Results and Discussion
4.1. Combustion Stability
4.2. Combustion Duration
4.3. Indicated Work and Efficiency
4.4. Nitrogen Oxides Emissions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
ACIS | Advanced Corona Ignition System |
APmax | Crank Angle Degree at The Maximum In-Cylinder Pressure |
aTDC | After The Top Dead Center |
BDI | Barrier Discharge Igniter |
CAD | Crank Angle Degree |
CoV | Coefficient Of Variation |
E5 | European Market Gasoline |
ECU | Engine Control Unit |
EGR | Exhaust Gas Recirculation |
ICE | Internal Combustion Engine |
IMEP | Indicated Mean Effective Pressure |
LTP | Low-Temperature Plasma |
M100 | Methanol |
MBT | Maximum Brake Torque |
MON | Motor Octane Number |
PFI | Port Fuel Injection |
RF | Radio Frequency |
SI | Spark Ignition |
ton | Corona Activation Time |
UHC | Unburned Hydrocarbon |
Vd | Driving Voltage |
λ | Relative Air–Fuel Ratio |
References
- Reitz, R.D.; Ogawa, H.; Payri, R.; Fansler, T.; Kokjohn, S.; Moriyoshi, Y.; Agarwal, A.; Arcoumanis, D.; Assanis, D.; Bae, C.; et al. IJER editorial: The future of the internal combustion engine. Int. J. Engine Res. 2020, 21, 3–10. [Google Scholar] [CrossRef]
- Yu, X.; Zhao, Z.; Huang, Y.; Shi, W.; Guo, Z.; Li, Z.; Du, Y.; Jin, Z.; Li, D.; Wang, T.; et al. Experimental study on the effects of EGR on combustion and emission of an SI engine with gasoline port injection plus ethanol direct injection. Fuel 2021, 305, 121421. [Google Scholar] [CrossRef]
- Zsiga, N.; Voser, C.; Onder, C.; Guzzella, L. Intake Manifold Boosting of Turbocharged Spark-Ignited Engines. Energies 2013, 6, 1746–1763. [Google Scholar] [CrossRef]
- Zembi, J.; Battistoni, M.; Mariani, F.; Irimescu, A.; Vaglieco, B.; Merola, S. Investigations on the impact of port water injection on soot formation in a DISI engine through CFD simulations and optical methods. Fuel 2023, 337, 127170. [Google Scholar] [CrossRef]
- Szybist, J.P.; Busch, S.; McCormick, R.L.; Pihl, J.A.; Splitter, D.A.; Ratcliff, M.A.; Kolodziej, C.P.; Storey, J.M.; Moses-DeBusk, M.; Vuilleumier, D.; et al. What fuel properties enable higher thermal efficiency in spark-ignited engines? Prog. Energy Combust. Sci. 2021, 82, 100876. [Google Scholar] [CrossRef]
- Ausfelder, F.; Wagemann, K. Power-to-Fuels: E-Fuels as an Important Option for a Climate-Friendly Mobility of the Future. Chem. Ing. Tech. 2020, 92, 21–30. [Google Scholar] [CrossRef]
- Hombach, L.E.; Doré, L.; Heidgen, K.; Maas, H.; Wallington, T.J.; Walther, G. Economic and environmental assessment of current (2015) and future (2030) use of E-fuels in light-duty vehicles in Germany. J. Clean. Prod. 2019, 207, 153–162. [Google Scholar] [CrossRef]
- Ballal, V.; Cavalett, O.; Cherubini, F.; Watanabe, M.D.B. Climate change impacts of e-fuels for aviation in Europe under present-day conditions and future policy scenarios. Fuel 2023, 338, 127316. [Google Scholar] [CrossRef]
- Puricelli, S.; Cardellini, G.; Casadei, S.; Faedo, D.; van den Oever, A.E.M.; Grosso, M. A review on biofuels for light-duty vehicles in Europe. Renew. Sustain. Energy Rev. 2019, 137, 110398. [Google Scholar] [CrossRef]
- Osman, A.I.; Mehta, N.; Elgarahy, A.M.; Al-Hinai, A.; Al-Muhtaseb, A.H.; Rooney, D.W. Conversion of biomass to biofuels and life cycle assessment: A review. Environ. Chem. Lett. 2021, 19, 4075–4118. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, Y.; Zhen, X.; Liu, Z. The effect of methanol production and application in internal combustion engines on emissions in the context of carbon neutrality: A review. Fuel 2022, 320, 123902. [Google Scholar] [CrossRef]
- Zhen, X.; Wang, Y. An overview of methanol as an internal combustion engine fuel. Renew. Sustain. Energy Rev. 2015, 52, 477–493. [Google Scholar] [CrossRef]
- Arapatsakos, C.I.; Karkanis, A.N.; Sparis, P.D. Behavior of a Small Four-Stroke Engine Using as Fuel Methanolegasoline Mixtures; SAE technical paper No. 2003-32-0024; SAE International: Warrendale, PA, USA, 2003. [Google Scholar] [CrossRef]
- Zhen, X.; Wang, Y.; Xu, S.; Zhu, Y.; Tao, C.; Xu, T.; Song, M. The engine knock analysis—An overview. Appl. Energy 2013, 92, 628–636. [Google Scholar] [CrossRef]
- Celik, M.B.; Ozdalyan, B.; Alkan, F. The use of pure methanol as fuel at high compression ratio in a single cylinder gasoline engine. Fuel 2011, 90, 1591–1598. [Google Scholar] [CrossRef]
- Vacca, A.; Rossi, E.; Cupo, F.; Chiodi, M.; Kulzer, A.C.; Bargende, M.; Villforth, J.; Unger, T.; Deeg, H.P. Virtual Development of a Single-Cylinder Engine for High Efficiency by the Adoption of eFuels, Methanol, Pre-Chamber and Millerization; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2022. [Google Scholar] [CrossRef]
- Dhaliwal, B.; Yi, N.; Checkel, D. Emissions Effects of Alternative Fuels in Light-Duty and Heavy-Duty Vehicles; SAE Technical Paper No. 2000-01-0692; SAE International: Warrendale, PA, USA, 2000. [Google Scholar] [CrossRef]
- Anfilatov, A.A.; Chuvashev, A.N. Effect of methanol use in the engine on the workflow. IOP Conf. Series Mater. Sci. Eng. 2020, 862, 062064. [Google Scholar] [CrossRef]
- Zembi, J.; Battistoni, M.; Mariani, F.; Irimescu, A.; Merola, S.S. Pressure and Flow Field Effects on Arc Channel Characteristics for a J-Type Spark Plug; SAE Technical Papers 2022-01-0436; SAE International: Warrendale, PA, USA, 2022. [Google Scholar] [CrossRef]
- Abidin, Z.; Chadwell, C.J. Parametric Study and Secondary Circuit Model Calibration Using Spark Calorimeter Testing; SAE Technical Paper 2015-01-0778; SAE International: Warrendale, PA, USA, 2015. [Google Scholar] [CrossRef]
- Jung, D.; Iida, N. An investigation of multiple spark discharge using multi-coil ignition system for improving thermal efficiency of lean SI engine operation. Appl. Energy 2018, 212, 322–332. [Google Scholar] [CrossRef]
- Jung, D.; Sasaki, K.; Iida, N. Effects of increased spark discharge energy and enhanced in-cylinder turbulence level on lean limits and cycle-to-cycle variations of combustion for SI engine operation. Appl. Energy 2017, 205, 1467–1477. [Google Scholar] [CrossRef]
- Breden, D.; Karpatne, A.; Suzuki, K.; Raja, L. High-Fidelity Numerical Modeling of Spark Plug Erosion; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Wyczalek, F.A.; Frank, D.L.; Neuman, J.G. Plasma Jet Ignition of Lean Mixtures; SAE Technical Paper 750349; SAE International: Warrendale, PA, USA, 1975. [Google Scholar] [CrossRef]
- Toulson, E.; Schock, H.J.; Attard, W.P. A Review of Pre-Chamber Initiated Jet Ignition Combustion Systems; SAE Technical Paper 2010-01-2263; SAE International: Warrendale, PA, USA, 2010. [Google Scholar] [CrossRef]
- Mehdi, G.; Bonuso, S.; De Giorgi, M.G. Plasma Assisted Re-Ignition of Aeroengines under High Altitude Conditions. Aerospace 2022, 9, 66. [Google Scholar] [CrossRef]
- Starikovskiy, A.; Aleksandrov, N. Plasma-Assisted Ignition and Combustion. Prog. Energy Combust. Sci. 2013, 39, 61–110. [Google Scholar] [CrossRef]
- Singleton, D.; Pendleton, S.; Gundersen, M. The role of non-thermal transient plasma for enhanced flame ignition in C2H4-air. J. Phys. D Appl. Phys. 2001, 44, 022001. [Google Scholar] [CrossRef]
- Starikovskaia, S.M. Plasma assisted ignition and combustion. J. Phys. D Appl. Phys. 2006, 39, R265–R299. [Google Scholar] [CrossRef]
- Zembi, J.; Cruccolini, V.; Mariani, F.; Scarcelli, R.; Battistoni, M. Modeling of thermal and kinetic processes in non-equilibrium plasma ignition applied to a lean combustion engine. Appl. Therm. Eng. 2021, 197, 117377. [Google Scholar] [CrossRef]
- Starikovskii, A. Plasma supported combustion. Proc. Combust. Inst. 2005, 30, 2405–2417. [Google Scholar] [CrossRef]
- Breden, D.; Idicheria, C.A.; Keum, S.; Najt, P.M.; Raja, L.L. Modeling of a Dielectric-Barrier Discharge-Based Cold Plasma Combustion Ignition System. IEEE Trans. Plasma Sci. 2019, 47, 410–418. [Google Scholar] [CrossRef]
- Idicheria, C.A.; Yun, H.; Najt, P.M. 1.3 An Advanced Ignition System for High Efficiency Engines. In Proceedings of the 4th International Conference, Berlin, Germany, 6–7 December 2018; pp. 40–54. [Google Scholar] [CrossRef]
- Cruccolini, V.; Discepoli, G.; Ricci, F.; Petrucci, L.; Grimaldi, C.; Papi, S.; Re, M.D. Comparative Analysis between a Barrier Discharge Igniter and a Streamer-Type Radio-Frequency Corona Igniter in an Optically Accessible Engine in Lean Operating Conditions; SAE Technical Papers, 202-01-0276; SAE International: Warrendale, PA, USA, 2020. [Google Scholar] [CrossRef]
- Martinelli, R.; Ricci, F.; Zembi, J.; Battistoni, M.; Grimaldi, C.; Papi, S. Lean Combustion Analysis of a Plasma-Assisted Ignition System in a Single Cylinder Engine fueled with E85; SAE Technical Papers, 2022-24-0034; SAE International: Warrendale, PA, USA, 2022. [Google Scholar] [CrossRef]
- Starikovskaia, S.M. Plasma-assisted ignition and combustion: Nanosecond discharges and development of kinetic mechanisms. J. Phys. D Appl. Phys. 2014, 47, 353001. [Google Scholar] [CrossRef]
- Irimescu, A.; Tornatore, C.; Marchitto, L.; Merola, S.S. Compression ratio and blow-by rates estimation based on motored pressure trace analysis for an optical spark ignition engine. Appl. Therm. Eng. 2013, 61, 101–109. [Google Scholar] [CrossRef]
- Ricci, F.; Discepoli, G.; Cruccolini, V.; Petrucci, L.; Papi, S.; Di Giuseppe, A.; Grimaldi, C. Energy characterization of an innovative non-equilibrium plasma ignition system based on the dielectric barrier discharge via pressure-rise calorimetry. Energy Convers. Manag. 2021, 244, 114458. [Google Scholar] [CrossRef]
- Ricci, F.; Cruccolini, V.; Discepoli, G.; Petrucci, L.; Grimaldi, C.; Papi, S. Luminosity and Thermal Energy Measurement and Comparison of a Dielectric Barrier Discharge in an Optical Pressure-Based Calorimeter at Engine Relevant Conditions; SAE Technical Paper Series, 1; SAE International: Warrendale, PA, USA, 2021; pp. 1–11. [Google Scholar] [CrossRef]
- Zembi, J.; Ricci, F.; Grimaldi, C.; Battistoni, M. Numerical Simulation of the Early Flame Development Produced by a Barrier Discharge Igniter in an Optical Access Engine; SAE Technical Papers, 2021-24-0011; SAE International: Warrendale, PA, USA, 2021. [Google Scholar] [CrossRef]
- Discepoli, G.; Cruccolini, V.; Ricci, F.; Di Giuseppe, A.; Papi, S.; Grimaldi, C. Experimental characterisation of the thermal energy released by a Radio-Frequency Corona Igniter in nitrogen and air. Appl. Energy 2020, 263, 114617. [Google Scholar] [CrossRef]
- Petrucci, L.; Ricci, F.; Mariani, F.; Discepoli, G. A Development of a New Image Analysis Technique for Detecting the Flame Front Evolution in Spark Ignition Engine under Lean Condition. Vehicles 2022, 4, 145–166. [Google Scholar] [CrossRef]
- Germane, G.J.; Wood, C.G.; Hess, C.C. Lean Combustion in Spark-Ignited Internal Combustion Engines—A Review; SAE International: Warrendale, PA, USA, 1983; Volume 31. [Google Scholar] [CrossRef]
- Wu, B.; Wang, L.; Shen, X.; Yan, R.; Dong, P. Comparison of lean burn characteristics of an SI engine fueled with methanol and gasoline under idle condition. Appl. Therm. Eng. 2016, 95, 264–270. [Google Scholar] [CrossRef]
- Eliasson, B.; Kogelschatz, U. Nonequilibrium volume plasma chemical processing. IEEE Trans. Plasma Sci. 1991, 19, 1063–1077. [Google Scholar] [CrossRef]
- Masurier, J.-B.; Foucher, F.; Dayma, G.; Dagaut, P. Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion. Appl. Energy 2015, 160, 566–580. [Google Scholar] [CrossRef]
- Jia, L.; Cheng, P.; Yu, Y.; Chen, S.-H.; Wang, C.-X.; He, L.; Nie, H.-T.; Wang, J.-C.; Zhang, J.-C.; Fan, B.-G.; et al. Regeneration mechanism of a novel high-performance biochar mercury adsorbent directionally modified by multimetal multilayer loading. J. Environ. Manag. 2023, 326, 116790. [Google Scholar] [CrossRef] [PubMed]
Feature | Value |
---|---|
Displaced volume | 500 cc |
Stroke | 88 mm |
Bore | 85 mm |
Connecting Rod | 139 mm |
Compression ratio | 8.8:1 |
Number of Valves | 4 |
Exhaust Valve Open | 13 CAD bBDC |
Exhaust Valve Close | 25 CAD aTDC |
Inlet Valve Open | 20 CAD bTDC |
Intake Valve Close | 24 CAD aBDC |
Properties | Gasoline (E5) | Methanol (M100) |
---|---|---|
C/H ratio [-] | 0.54 | 0.25 |
O/C ratio [-] | 0.03 | 1 |
Density [kg/m3] | 761.42 | 792 |
Lower heating value [MJ/kg] | 44 | 19.93 |
Heat of vaporization [kJ/kg] | 349 | 1160 |
Stoichiometric air-to-fuel ratio | 14.7 | 6.4 |
Research octane number (RON) | 95–98 | 109 |
Autoignition temperature [K] | 536–853 | 738 |
Adiabatic Flame Temperature [°C] | 2002 | 1870 |
Laminar flame speed at the normal temperature and pressure, λ = 1 (cm/s) | 28 | 42 |
Flammability limit in air (λ) | 0.26–1.60 | 0.23–1.81 |
λ | 1.2 | 1.4 | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 | 2.1 |
---|---|---|---|---|---|---|---|---|
Combination Igniter–Fuel | BDI-M100 BDI-E5 SPARK-M100 SPARK-E5 | BDI-M100 BDI-E5 SPARK-M100 SPARK-E5 | BDI-M100 BDI-E5 SPARK-M100 SPARK-E5 | BDI-M100 BDI-E5 SPARK-M100 | BDI-M100 BDI-E5 SPARK-M100 | BDI-M100 BDI-E5 | BDI-M100 | BDI-M100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricci, F.; Mariani, F.; Papi, S.; Zembi, J.; Battistoni, M.; Grimaldi, C.N. The Synergy between Methanol M100 and Plasma-Assisted Ignition System PAI to Achieve Increasingly Leaner Mixtures in a Single-Cylinder Engine. Energies 2024, 17, 1659. https://doi.org/10.3390/en17071659
Ricci F, Mariani F, Papi S, Zembi J, Battistoni M, Grimaldi CN. The Synergy between Methanol M100 and Plasma-Assisted Ignition System PAI to Achieve Increasingly Leaner Mixtures in a Single-Cylinder Engine. Energies. 2024; 17(7):1659. https://doi.org/10.3390/en17071659
Chicago/Turabian StyleRicci, Federico, Francesco Mariani, Stefano Papi, Jacopo Zembi, Michele Battistoni, and Carlo Nazareno Grimaldi. 2024. "The Synergy between Methanol M100 and Plasma-Assisted Ignition System PAI to Achieve Increasingly Leaner Mixtures in a Single-Cylinder Engine" Energies 17, no. 7: 1659. https://doi.org/10.3390/en17071659
APA StyleRicci, F., Mariani, F., Papi, S., Zembi, J., Battistoni, M., & Grimaldi, C. N. (2024). The Synergy between Methanol M100 and Plasma-Assisted Ignition System PAI to Achieve Increasingly Leaner Mixtures in a Single-Cylinder Engine. Energies, 17(7), 1659. https://doi.org/10.3390/en17071659