On the Employment of a Chloride or Floride Salt Fuel System in Advanced Molten Salt Reactors, Part 2; Core Inventory, Fuel Burnup, and Salt Clean-Up System
Abstract
:1. Introduction
2. Methodology
- Core Type (iMAGINE-EU, iMAGINE-HMR, and EVOL or any other core whose accompanied data has been pre-defined in the database)
- Time Domain (0–100 years, flexible time increment (Δt))
- Power Domain (1 kW, 10 kW, 100 kW, 1 MW, 10 MW)
- Material Domain (25 actinides and 245 non-actinides)
3. Results and Discussion
3.1. iMAGINE-3BIC Package Sample Outputs
3.2. B&B Comparison of Chloride- and Fluoride-Based MSRs
3.3. Salt Clean-Up System
- (i)
- Except for Zr and Mo, other elements do not have significant effects on the iMAGINE core neutron economy (by absorbing neutrons). This is because most of the neutron spectrum of the iMAGINE core (about 98% of all neutrons) has energy greater than 0.01 MeV, while the disappearance cross-section for Ru, Pd, Cs, Nd, and Sm are either low or have no resonance in this energy range, as can be seen in Table 8 and Figure 15.
- (ii)
- In contrast, about 20% of the neutrons in the EVOL core have energy less than 0.01 MeV (while this value is only 2% for iMAGINE) where most of the resonance for candidate poisoning elements—were shown in Figure 15—happen in this energy range. Therefore, while the poisoning elements have almost no effect on the iMAGINE neutron economy in this range, neutron absorption (considering the poisoning elements in Figure 15) can happen in the EVOL core almost 20% more in the E < 0.01 Mev energy range.
- (iii)
- Qualitative analysis of Figure 15 along with Table 8 determines that Zr can be a problematic poisoning material for both cores, especially for EVOL, as a large portion of the neutrons (about 43% of EVOL compared to 19% for iMAGINE) have their energies in the range of 0.1 < E < 1.0 MeV, whereas Zr96 has a high resonance absorption cross-section.
- (iv)
- Analysis can prove that after Zr, Mo is the next most important poisoning element for the neutron economy of both cores, as its maximum neutron disappearance resonance occurs in the range of 0.001 < E < 0.1 MeV where about 21% and 63% of total neutron population of iMAGINE and EVOL cores exist, respectively.
- (v)
- Considering the above-mentioned points, it seems that the effects of poisoning elements on the neutron economy are more substantial in the EVOL core rather than in the iMAGINE system. This phenomenon can happen as a result of a softer spectrum for the EVOL core (compared to a harder one for iMAGINE), which leads to a higher neutron population available in the disappearance resonance energy range (0.001 < E < 0.1 MeV) of the candidate poisoning elements, as can be clearly seen in Figure 15.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviation
AI | Artificial Intelligence |
ALMR | Advanced Liquid-Metal Reactor |
ATW | Accelerator transmutation of waste |
B&B | Breed and Burn |
CNRS | Centre National de la Recherche Scientifique |
GEN IV | Generation IV |
HPC | High-Performance Computer |
ML | Machine Learning |
MLR | Multi-Linear Regression method |
MSFR | Molten Salt Fast Reactor |
MSR | Molten Salt Reactor |
NPP | Nuclear power Plant |
PBR | Particle Bed Reactors |
SNF | Spent Nuclear Fuel |
References
- Merk, B.; Detkina, A.; Atkinson, S.; Litskevich, D.; Cartland-Glover, G. Evaluation of the Breeding Performance of a NaCl-UCl-Based Reactor System. Energies 2019, 12, 3853. [Google Scholar] [CrossRef]
- Cisneros, T. Applications of Fission Product Yields and Other Nuclear Data at TerraPower MCFR Technology; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2023; pp. 1–8.
- Wicaksana, A.; Rachman, T. Molten Salt Reactor Neutronics and Fuel Cycle Modeling and Simulation with SCALE. Angew. Chemie Int. Ed. 2018, 3, 10–27. [Google Scholar]
- Frima, L.L.W. Burnup in a Molten Salt Fast Reactor. Dep. Radiat. Sci. Technol. 2013, 1–93. [Google Scholar]
- Zhou, B.; Yu, X.H.; Zou, Y.; Yang, P.; Yu, S.H.; Liu, Y.F.; Kang, X.Z.; Zhu, G.F.; Yan, R. Study on Dynamic Characteristics of Fission Products in 2 MW Molten Salt Reactor. Nucl. Sci. Tech. 2020, 31, 17. [Google Scholar] [CrossRef]
- Rezaie, A.; Peivaste, I.; Alahyarizadeh, G.; Minuchehr, A.; Aghaie, M. The Burnup Raising Feasibility by Studying the Effects of Th and U Contents on the Thermophysical and Mechanical Properties of Th1-XUxO2 Solid Solutions. Prog. Nucl. Energy 2021, 134, 103644. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, Y.; Xiao, S.; Zhou, Z. Burnup Analysis of Thorium-Uranium Based Molten Salt Blanket in a Fusion-Fission Hybrid Reactor. Fusion Sci. Technol. 2013, 64, 521–524. [Google Scholar] [CrossRef]
- Flanagan, G. Module 4: MSR Neutronics. In Applications and Advantages of MSRs; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2017; pp. 1–30. [Google Scholar]
- Fiorina, C.; Lathouwers, D.; Aufiero, M.; Cammi, A.; Guerrieri, C.; Kloosterman, J.L.; Luzzi, L.; Ricotti, M.E. Modelling and Analysis of the MSFR Transient Behaviour. Ann. Nucl. Energy 2014, 64, 485–498. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Gupta, A.; Krishnani, P.D. A Simplified Burnup Calculation Strategy with Refueling in Static Molten Salt Reactor. Int. At. Energy Agency 2015, 4, 22–23. [Google Scholar]
- Walker, S.A.; Tano, M.E.; Abou-Jaoude, A.; Calvin, O. Depletion-Driven Thermochemistry of Molten Salt Reactors: Review, Method, and Analysis. Front. Nucl. Eng. 2023, 2, 1–17. [Google Scholar] [CrossRef]
- Yu, C.; Zhu, G.; Liu, Y.; Yan, R.; Zou, Y. Comparative Study on the Neutronic Performance of Thermal and Fast Molten Salt Reactors under Once-Through Fuel Cycle. Int. J. Energy Res. 2023, 2023, 8875215. [Google Scholar] [CrossRef]
- Pauwels, F.; Lathouwers, D. Burnup Simulations of the Thorium Cycle in a MSFR Using Perturbation Theory; Delft University of Technology: Delft, The Netherlands, 2020. [Google Scholar]
- Hombourger, B.; Křepel, J.; Pautz, A. Breed-and-Burn Fuel Cycle in Molten Salt Reactors. EPJ Nucl. Sci. Technol. 2019, 5, 15. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, J.; Cai, X.; Zou, C.; Chen, J. Machine Learning Approaches to Equilibrium Burnup Analysis for Molten Salt Reactor. Ann. Nucl. Energy 2023, 192, 109995. [Google Scholar] [CrossRef]
- Constable, C.; Lindley, B.; Parks, G. Maximising Discharge Burnup in an Open Cycle Molten Salt Reactor. In Proceedings of the Physor2020—International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future, Cambridge, UK, 30 March–2 April 2020; pp. 2295–2302. [Google Scholar] [CrossRef]
- Wu, J.; Chen, J.; Cai, X.; Zou, C.; Yu, C.; Cui, Y.; Zhang, A.; Zhao, H. A Review of Molten Salt Reactor Multi-Physics Coupling Models and Development Prospects. Energies 2022, 15, 8296. [Google Scholar] [CrossRef]
- Zhao, X.C.; Zou, Y.; Yan, R.; Cai, X.Z. Analysis of Burnup Performance and Temperature Coefficient for a Small Modular Molten-Salt Reactor Started with Plutonium. Nucl. Sci. Tech. 2023, 34, 17. [Google Scholar] [CrossRef]
- Alexander, L.G. Nuclear Aspects of Molten-Salt Reactors (Chapter 14). Fluid Fuel React. 1958, 626–660. [Google Scholar]
- Dos, V.; Kim, K.; Pettersen, E.E.; Jensen, J.G.; Lee, D. Dynamic Burnup Studies of Seaborg Compact Molten Salt Reactor by Serpent 2. In Proceedings of the Transactions of the Korean Nuclear Society, Virtual Meeting, 17 December 2021; pp. 8–11. [Google Scholar]
- Wheeler, A.M.; Chvála, O. Neutronics for Fast Spectrum, Molten Salt Reactors and Evolution over Burnup. Prog. Nucl. Energy 2023, 155, 104531. [Google Scholar] [CrossRef]
- Ashraf, O.; Smirnov, A.D.; Tikhomirov, G.V. Nuclear Fuel Optimization for Molten Salt Fast Reactor. J. Phys. Conf. Ser. 2018, 1133, 012026. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Ding, M. A Review on Optimization Methods for Nuclear Reactor Fuel Reloading Analysis. Nucl. Eng. Des. 2022, 397, 111950. [Google Scholar] [CrossRef]
- Tan, M.L.; Zhu, G.F.; Zhang, Z.D.; Zou, Y.; Yu, X.H.; Yu, C.G.; Dai, Y.; Yan, R. Burnup Optimization of Once-through Molten Salt Reactors Using Enriched Uranium and Thorium. Nucl. Sci. Tech. 2022, 33, 5. [Google Scholar] [CrossRef]
- Vicente Valdez, P., Jr.; Betzler, B.; Wieselquist, W.; Fratoni, M. Modeling Molten Salt Reactor Fission Product Removal with SCALE; Oak Ridge National Lab: Oak Ridge, TN, USA, 2020; ISBN 1800553684.
- Merk, B.; Detkina, A.; Litskevich, D.; Drurdy, M.; Noori-Kalkhoran, O.; Cartland-Glover, G.; Petit, L.; Rolfo, S.; Elliot, J.P.; Mount, A.R. Defining the Challenges—Identifying the Key Poisoning Elements to Be Separated in a Future Integrated Molten Salt Fast Reactor Clean-Up System for IMAGINE. Appl. Sci. 2022, 12, 4124. [Google Scholar] [CrossRef]
- Dunkle, N.; Wheeler, A.; Richardson, J.; Bogetic, S.; Chvala, O.; Skutnik, S.E. Plutonium Signatures in Molten-Salt Reactor Off-Gas Tank and Safeguards Considerations. J. Nucl. Eng. 2023, 4, 391–411. [Google Scholar] [CrossRef]
- Merk, B.; Litskevich, D.; Gregg, R.; Mount, A.R. Demand Driven Salt Clean-up in a Molten Salt Fast Reactor—Defining a Priority List. PLoS ONE 2018, 13, e0192020. [Google Scholar] [CrossRef] [PubMed]
- Merk, B.; Detkina, A.; Litskevich, D.; Noori-kalkhoran, O.; Jain, L.; Cartland-Glover, G. A HELIOS-Based Dynamic Salt Clean-Up Study Analysing the Effects of a Plutonium-Based Initial Core for IMAGINE. Energies 2022, 15, 9638. [Google Scholar] [CrossRef]
- Li, X.; Cui, D.; Hu, G.; Cai, X.; Chen, J. Potential of Transuranics Transmutation in a Thorium-Based Chloride Salt Fast Reactor. Int. J. Energy Res. 2022, 46, 16461–16475. [Google Scholar] [CrossRef]
- Merk, B.; Litskevich, D.; Bankhead, M.; Taylor, R.J. An Innovative Way of Thinking Nuclear Waste Management—Neutron Physics of a Reactor Directly Operating on SNF. PLoS ONE 2017, 12, e0180703. [Google Scholar] [CrossRef]
- Merk, B.R.; Detkina, A.; Noori-kalkhoran, O.; Jain, L.; Litskevich, D.; Cartland-glover, G.; Scholar, G. New Waste Management Options Created by IMAGINE through Direct Operation on SNF Feed. Energies 2023, 16, 7420. [Google Scholar] [CrossRef]
- Robert, B.; Brown, E.B. Molten Salt Reactor Technology for Partitioning & Transmutation and Harmonisation of the Future Nuclear Fuel Cycle. 2004, pp. 1–14. Available online: https://www.oecd-nea.org/pt/docs/iem/mol98/session2/SIIpaper8.pdf (accessed on 16 December 2023).
- Wicaksana, A.; Rachman, T. The AMSTER Concept (Actinides Molten Salt Transmuter). Angew. Chemie Int. Ed. 2018, 3, 10–27. [Google Scholar]
- Stanisz, P.; Cetnar, J.; Oettingen, M. Radionuclide Neutron Source Trajectories in the Closed Nuclear Fuel Cycle. Nukleonika 2019, 64, 3–9. [Google Scholar] [CrossRef]
- Cetnar, J.; Stanisz, P.; Oettingen, M. Linear Chain Method for Numerical Modelling of Burnup Systems. Energies 2021, 14, 1520. [Google Scholar] [CrossRef]
- Ignatiev, V.; Feynberg, O.; Gnidoi, I.; Merzlyakov, A.; Surenkov, A.; Uglov, V.; Zagnitko, A.; Subbotin, V.; Sannikov, I.; Toropov, A.; et al. Molten Salt Actinide Recycler and Transforming System without and with Th-U Support: Fuel Cycle Flexibility and Key Material Properties. Ann. Nucl. Energy 2014, 64, 408–420. [Google Scholar] [CrossRef]
- Ignatiev, V.; Feynberg, O.; Gnidoi, I.; Konakov, S.; Kormilitsyn, M.; Merzliakov, A.; Surenkov, A.; Uglov, V.; Zagnitko, A. MARS: Story on Molten Salt Actinide Recycler and Transmuter Development by Rosatom in Co-Operation with Euratom; International Atomic Energy Agency: Vienna, Austria, 2015; pp. 92–103. [Google Scholar]
- MultI-Recycling Strategies of LWR SNF Focusing on MOlten SAlt Technology (MIMOSA). Available online: https://www.mimosa-euratom.eu/ (accessed on 16 December 2023).
- Committee on Separations Technology and Transmutation Systems—National Research Council. Nuclear Wastes: Technologies for Separations and Transmutation; National Research Council: Washington, DC, USA, 1996; Volume 12, ISBN 9780309052269.
- Noori-kalkhoran, O.; Litskevich, D.; Detkina, A.; Jain, L.; Cartland-glover, G.; Merk, B. On the Employment of a Chloride or Fluoride Salt Fuel System Properties and Core Criticality. Energies 2022, 15, 8865. [Google Scholar] [CrossRef]
- Kępisty, G.; Cetnar, J. Instabilities of Monte-Carlo Burnup Calculations for Nuclear Reactors—Demonstration and Dependence from Time Step Model. Nucl. Eng. Des. 2015, 286, 49–59. [Google Scholar] [CrossRef]
- Gallmeier, F.X.; Iverson, E.B.; Ferguson, P.D.; Holloway, S.T.; Kelsey, C.; Muhrer, G.; Pitcher, E.; Wohlmuther, M.; Micklich, B. The CINDER’90 Transmutation Code Package for Use in Accelerator Applications in Combination with MCNPX. In Proceedings of the ICANS XIX, 19th Meeting on Collaboration of Advanced Neutron Sources, Grindelwald, Switzerland, 8–12 March 2010. [Google Scholar]
- The MathWorks Inc. Multiple Linear Regression. Available online: https://uk.mathworks.com/help/stats/multiple-linear-regression-1.html (accessed on 16 December 2023).
- Evaluation and Viability of Liquid Fuel Fast Reactor System-EVOL (Project N 249696); Final Report, 2015. Available online: https://cordis.europa.eu/project/id/249696 (accessed on 16 December 2023).
- Merk, B.; Litskevich, D.; Peakman, A.; Benkhad, M. IMAGINE—A Disruptive Change to Nuclear or How Can We Make More Out of the Existing Spent Nuclear Fuel and What Has to Be Done to Make It Possible in the UK? Awt-Int. Z. Fuer Kernenerg. 2019, 64, 353–359. [Google Scholar]
- Herman, M.; Trkov, A. ENDF-6 Formats Manual; Rep. BNL-90365-2009; International Atomic Energy Agency: Vienna, Austria, 2009; Volume 392. [Google Scholar]
- NEA Janis 4.0 User’s Guide; Nuclear Energy Agency: Paris, France, 2013; pp. 1–85.
Non-Actinidie | Actinide | ||||
---|---|---|---|---|---|
Ga | 69Ga 71Ga | I | 127I 129I 130I 131I 132I 133I 134I 135I | Th | 90231 90232 90233 90234 |
Ge | 70Ge 72Ge 73Ge 74Ge 76Ge | Pa | 91232 91233 | ||
As | 74As 75As | U | 92234 92235 92236 92237 92238 92239 92240 | ||
Se | 74Se 76Se 77Se 78Se 79Se 80Se 82Se | Xe | 123Xe 124Xe 126Xe 128Xe 129Xe 130Xe 131Xe 132Xe 133Xe 134Xe 135Xe 136Xe | Np | 93235 93236 93237 93238 93239 94236 94237 94238 94239 |
Br | 79Br 81Br | Pu | 94236 94237 94238 94239 94240 94241 94242 | ||
Kr | 78Kr 80Kr 82Kr 83Kr 84Kr 85Kr 86Kr | Cs | 133Cs 134Cs 135Cs 136Cs 137Cs | ||
Rb | 85Rb 86Rb 87Rb | Ba | 130Ba 132Ba 133Ba 134Ba 135Ba 136Ba 137Ba 138Ba 140Ba | ||
Sr | 84Sr 86Sr 87Sr 88Sr 89Sr 90Sr | La | 138La 139La 140La | ||
Y | 88Y 89Y 90Y 91Y | ||||
Zr | 90Zr 91Zr 92Zr 93Zr 94Zr 95Zr 96Zr | Ce | 136Ce 138Ce 139Ce 140Ce 141Ce 142Ce 143Ce 144Ce | ||
Nb | 93Nb 94Nb 95Nb 97Nb | Pr | 141Pr 142Pr 143Pr 145Pr | ||
Mo | 92Mo 94Mo 95Mo 96Mo 97Mo 98Mo 99Mo 100Mo | Nd | 143Nd 144Nd 145Nd 146Nd 147Nd 148Nd 150Nd | ||
Tc | 99Tc | Pm | 147Pm 148Pm 149Pm 151Pm | ||
Ru | 96Ru 98Ru 99Ru 100Ru 101Ru 102Ru 103Ru 104Ru | Sm | 144Sm 147Sm 148Sm 149Sm 150Sm 151Sm 153Sm 154Sm 152Sm | ||
Rh | 103Rh 105Rh | Eu | 151Eu 152Eu 153Eu 154Eu 155Eu 156Eu 157Eu | ||
Pd | 102Pd 104Pd 105Pd 106Pd 107Pd 108Pd 110Pd | ||||
Ag | 107Ag 109Ag 111Ag | Gd | 152Gd 153Gd 154Gd 155Gd 156Gd 157Gd 158Gd 160Gd | ||
Cd | 106Cd 108Cd 110Cd 111Cd 112Cd 113Cd 114Cd 116Cd | Tb | 159Tb 160Tb | ||
Ln | 113In 115In | Dy | 156Dy 158Dy 160Dy 161Dy 162Dy 163Dy 164Dy | ||
Sn | 112Sn 113Sn 114Sn 115Sn 116Sn 117Sn 118Sn 119Sn 120Sn 122Sn 123Sn 124Sn 125Sn 126Sn | Ho | 165Ho | ||
Sb | 121Sb 123Sb 124Sb 125Sb 126Sb | Er | 162Er 164Er 166Er 167Er 168Er 170Er | ||
Te | 120Te 122Te 123Te 124Te 125Te 126Te 128Te 130Te 132Te | Tm | 169Tm |
ZAID | 90232 | 92234 | 92235 | 92236 | 92237 | 92238 | 92239 | 93236 | 93237 | 93238 | 93239 | 94238 | 94239 | 94240 | 94241 | 94242 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Days/Years | |||||||||||||||||
0/0 | 0 | 0 | 1,658,000 | 0 | 0 | 3,119,000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
10/0.027 | 0 | 0 | 1,658,000 | 0 | 0 | 3,119,000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
110/0.301 | 0 | 0 | 1,658,000 | 0.02348 | 0 | 3,119,000 | 0 | 0 | 0 | 0 | 0 | 0 | 0.02154 | 0 | 0 | 0 | |
310/0.849 | 0 | 0 | 1,658,000 | 0.06618 | 0 | 3,119,000 | 0 | 0 | 0 | 0 | 0 | 0 | 0.06252 | 0 | 0 | 0 | |
675/1.85 | 0 | 0 | 1,658,000 | 0.1441 | 0 | 3,119,000 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1379 | 0 | 0 | 0 | |
2500/6.85 | 0 | 0.005693 | 1,658,000 | 0.5337 | 0 | 3,119,000 | 0 | 0 | 0.005903 | 0 | 0 | 0 | 0.5175 | 0 | 0 | 0 | |
6150/16.85 | 0 | 0.01402 | 1,658,000 | 1.313 | 0 | 3,119,000 | 0 | 0 | 0.01458 | 0 | 0 | 0 | 1.277 | 0 | 0 | 0 | |
13,450/36.85 | 0 | 0.03075 | 1,658,000 | 2.871 | 0 | 3,119,000 | 0 | 0 | 0.03202 | 0 | 0 | 0 | 2.797 | 0 | 0 | 0 | |
24,400/66.85 | 0 | 0.05584 | 1,658,000 | 5.208 | 0 | 3,119,000 | 0 | 0 | 0.05818 | 0 | 0 | 0 | 5.076 | 0 | 0 | 0 | |
36,425/100.00 | 0 | 0.08928 | 1,658,000 | 8.325 | 0 | 3,119,000 | 0 | 0 | 0.09299 | 0 | 0 | 0 | 8.111 | 0 | 0 | 0 |
ZAID | 90232 | 92234 | 92235 | 92236 | 92237 | 92238 | 92239 | 93236 | 93237 | 93238 | 93239 | 94238 | 94239 | 94240 | 94241 | 94242 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Days/Years | |||||||||||||||||
0/0 | 0 | 0 | 1,658,000 | 0 | 0 | 3,119,000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
10/0.027 | 0 | 0 | 1,658,000 | 0.2135 | 0 | 3,119,000 | 0 | 0 | 0 | 0 | 0.06708 | 0 | 0.1409 | 0 | 0 | 0 | |
110/0.301 | 0 | 0.01102 | 1,658,000 | 2.349 | 0 | 3,119,000 | 0 | 0 | 0.02394 | 0 | 0.07083 | 0 | 2.154 | 0 | 0 | 0 | |
310/0.849 | 0 | 0.03114 | 1,658,000 | 6.619 | 0 | 3,119,000 | 0 | 0 | 0.07172 | 0 | 0.07083 | 0 | 6.252 | 0 | 0 | 0 | |
675/1.85 | 0 | 0.06783 | 1,658,000 | 14.41 | 0 | 3,119,000 | 0 | 0 | 0.1564 | 0 | 0.07084 | 0 | 13.79 | 0 | 0 | 0 | |
2500/6.85 | 0 | 0.2514 | 1,658,000 | 53.36 | 0 | 3,119,000 | 0 | 0 | 0.5904 | 0 | 0.07084 | 0 | 51.76 | 0 | 0 | 0 | |
6150/16.85 | 0 | 0.6182 | 1,658,000 | 131.3 | 0 | 3,119,000 | 0 | 0 | 1.463 | 0 | 0.07085 | 0 | 127.8 | 0.003912 | 0 | 0 | |
13,450/36.85 | 0 | 1.353 | 1,657,000 | 287 | 0 | 3,119,000 | 0 | 0 | 3.226 | 0 | 0.07086 | 0 | 279.7 | 0.01872 | 0 | 0 | |
24,400/66.85 | 0 | 2.452 | 1,656,000 | 520.6 | 0 | 3,119,000 | 0 | 0 | 5.885 | 0 | 0.07089 | 0 | 507.5 | 0.0616 | 0 | 0 | |
36,425/100.00 | 0 | 3.916 | 1,654,000 | 831.9 | 0 | 3,118,000 | 0 | 0 | 9.469 | 0 | 0.07093 | 0.005389 | 810.7 | 0.1572 | 0 | 0 |
ZAID | 90232 | 92234 | 92235 | 92236 | 92237 | 92238 | 92239 | 93236 | 93237 | 93238 | 93239 | 94238 | 94239 | 94240 | 94241 | 94242 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Days/Years | |||||||||||||||||
0/0 | 0 | 0 | 1,658,000 | 0 | 0 | 3,119,000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
10/0.027 | 0 | 0.009929 | 1,658,000 | 2.135 | 0.01493 | 3,119,000 | 0.004903 | 0 | 0.008952 | 0 | 0.6709 | 0 | 1.409 | 0 | 0 | 0 | |
110/0.301 | 0 | 0.1093 | 1,658,000 | 23.48 | 0.02326 | 3,119,000 | 0.004902 | 0 | 0.2394 | 0 | 0.7083 | 0 | 21.54 | 0 | 0 | 0 | |
310/0.849 | 0 | 0.3079 | 1,658,000 | 66.17 | 0.0233 | 3,119,000 | 0.004903 | 0 | 0.7174 | 0 | 0.7084 | 0 | 62.52 | 0 | 0 | 0 | |
675/1.85 | 0 | 0.6703 | 1,658,000 | 144.1 | 0.02338 | 3,119,000 | 0.004903 | 0 | 1.569 | 0 | 0.7085 | 0 | 137.9 | 0.004595 | 0 | 0 | |
2500/6.85 | 0 | 2.478 | 1,655,000 | 533.4 | 0.02378 | 3,119,000 | 0.004906 | 0 | 5.958 | 0 | 0.7088 | 0 | 517.4 | 0.06448 | 0 | 0 | |
6150/16.85 | 0 | 6.09 | 1,651,000 | 1311 | 0.02468 | 3,118,000 | 0.004912 | 0 | 15.01 | 0 | 0.7098 | 0.01654 | 1277 | 0.3917 | 0 | 0 | |
13,450/36.85 | 0 | 13.28 | 1,643,000 | 2863 | 0.0264 | 3,116,000 | 0.004926 | 0 | 34.04 | 0 | 0.7118 | 0.07723 | 2793 | 1.877 | 0 | 0 | |
24,400/66.85 | 0.006183 | 24.03 | 1,630,000 | 5185 | 0.0291 | 3,112,000 | 0.004949 | 0 | 64.99 | 0 | 0.7151 | 0.2454 | 5062 | 6.194 | 0.003252 | 0 | |
36,425/100.00 | 0.01467 | 38.24 | 1,612,000 | 8266 | 0.03253 | 3,108,000 | 0.004981 | 0 | 110.5 | 0 | 0.7196 | 0.6005 | 8074 | 15.86 | 0.0102 | 0 |
Reactor Type | Salt Fuel Composition | Fresh Fuel | Utilized Fuel | ||
---|---|---|---|---|---|
Fissile | Fertile | Fissile | Fertile | ||
iMAGINE−Eutectic 1 | NaCl-uCl3-uCl4 (42.5-17-40.5 mol%) | U235 U238 (fissionable) | U238 | U235 U238 (fissionable) 2 Pu239 | U238 |
EVOL | LiF-ThF4-UF4-PuF3 (78.6-12.9-3.5-5 mol%) | U235 U238 (fissionable) Pu239 | Th232 U238 | U233 U235 U238 (fissionable) 2 Pu239 | Th232 U238 |
Actinide Mass (g) | U233 (EVOL) | U235 (iMAGINE-EU) | U235 (EVOL) | U238 (iMAGINE-EU) | U238 (EVOL) | Pu239 (iMAGINE-EU) | Pu239 (EVOL) | Th232 (EVOL) | |
---|---|---|---|---|---|---|---|---|---|
Time (Days/Years) | |||||||||
0/0 | 0 | 1,658,000 | 203,000 | 3,119,000 | 381,900 | 0 | 581,700 | 2,110,000 | |
10/0.027 | 5.069 | 1,658,000 | 203,000 | 3,119,000 | 381,900 | 1.409 | 581,700 | 2,110,000 | |
110/0.301 | 21.1 | 1,658,000 | 203,000 | 3,119,000 | 381,900 | 21.54 | 581,600 | 2,110,000 | |
310/0.849 | 22.44 | 1,658,000 | 202,900 | 3,119,000 | 381,900 | 62.52 | 581,500 | 2,110,000 | |
675/1.85 | 22.47 | 1,658,000 | 202,800 | 3,119,000 | 381,800 | 137.9 | 581,100 | 2,110,000 | |
2500/6.85 | 22.53 | 1,655,000 | 202,200 | 3,119,000 | 381,600 | 517.4 | 579,600 | 2,109,000 | |
6150/16.85 | 22.66 | 1,651,000 | 201,000 | 3,118,000 | 381,200 | 1277 | 576,400 | 2,107,000 | |
13,450/36.85 | 22.82 | 1,643,000 | 198,600 | 3,116,000 | 380,400 | 2793 | 570,000 | 2,102,000 | |
24,400/66.85 | 22.94 | 1,630,000 | 194,900 | 3,112,000 | 379,200 | 5062 | 560,500 | 2,096,000 | |
36,425/100.00 | 23 | 1,612,000 | 190,200 | 3,108,000 | 377,500 | 8074 | 548,000 | 2,087,000 |
Element. | Zr40 | Mo42 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Isotope | 40090 | 40091 | 40092 | 40093 | 40094 | 40095 | 40096 | 42094 | 42095 | 42096 | 42097 | 42098 | 42099 | 42100 |
iMAGINE | ✓ | ✓ | ✓ | ✓ | ✓ | × | ✓ | × | ✓ | × | ✓ | ✓ | × | ✓ |
EVOL | ✓ | ✓ | ✓ | ✓ | ✓ | × | ✓ | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ |
Element | Ru44 | Pd46 | ||||||||||||
Isotope | 44099 | 44101 | 44102 | 44103 | 44104 | 44105 | 44106 | 46102 | 46104 | 46105 | 46106 | 46107 | 46108 | 46110 |
iMAGINE | × | ✓ | ✓ | × | ✓ | × | × | × | × | ✓ | ✓ | ✓ | × | × |
EVOL | × | ✓ | ✓ | × | ✓ | NA | × | NA | × | ✓ | ✓ | ✓ | ✓ | × |
Element | Cs55 | Nd60 | ||||||||||||
Isotope | 55133 | 55134 | 55135 | 55136 | 55137 | 60142 | 60143 | 60144 | 60145 | 60146 | 60147 | 60148 | 60150 | |
iMAGINE | ✓ | × | ✓ | × | × | × | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | × | |
EVOL | ✓ | × | ✓ | NA | ✓ | × | ✓ | ✓ | ✓ | ✓ | × | ✓ | ✓ | |
Element | Sm62 | |||||||||||||
Isotope | 62147 | 62148 | 62149 | 62150 | 62151 | 62152 | 62153 | 62154 | ||||||
iMAGINE | ✓ | × | ✓ | × | ✓ | ✓ | × | ✓ | ||||||
EVOL | ✓ | ✓ | ✓ | × | ✓ | ✓ | NA | ✓ |
Fuel Salt System | E < 0.01 MeV | 0.01 < E < 0.1 | 0.1 < E < 1.0 | E > 1.0 |
---|---|---|---|---|
EVOL (%) | 20 | 43 | 26 | 11 |
iMAGINE-Eutectic (%) | 2 | 19 | 60 | 19 |
Salt Fuel System | iMAGINE-Eutectic (Chloride-Based) | EVOL (Fluoride-Based) | |
---|---|---|---|
Parameter | |||
Fresh Fuel composition (Table 5) | Fissile | U235 U238 (fissionable) | U235 U238 (fissionable) Pu239 |
Fertile | U238 | Th232 U238 | |
Spent Fuel composition (Table 5) | Fissile | U235 U238 (fissionable) Pu239 | U233 U235 U238 (fissionable) Pu239 |
Fertile | U238 | Th232 U238 | |
Start-up Fuel Mass (Fresh Fuel), tons (Figure 13, Table 6) | Fissile | 1.7 (U235) 4.8 (U235 + U238) | 0.61 (U235 + Pu239) 0.99 (U235 + U238 + Pu239) |
Fertile | 3.1 (U238) | 3.4 (Th232 + U238 + Th232 (blanket)) | |
Fissile + Fertile | 4.8 (U235 + U238) | 4.2 (U235 + U238 + Pu239 + Th232 + Th232 (blanket)) | |
Fuel Burnup During reactor lifetime (Figure 14) | Less fuel Burnup | More fuel Burnup (+ 35% *) | |
Main Poisoning elements (Table 7) | Zr, Mo | Zr, Mo | |
Subsidiary Poisoning elements (E < 0.01 Mev) (Table 7, Figure 15) | -- | Ru, Pd, Nd, Sm (+20% *) | |
Neutron disappearance strength ** (Table 7, Figure 15) | Poisoning Concentration | More (+ 5%) | Less |
Microscopic Cross-section-resonance energy overlap range | Less | More (+ 20% at least *) | |
Required Salt Clean-up power *** (operational time) | Less | More |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noori-kalkhoran, O.; Jain, L.; Powell, L.; Jones, A.; Aflyatunova, D.; Merk, B. On the Employment of a Chloride or Floride Salt Fuel System in Advanced Molten Salt Reactors, Part 2; Core Inventory, Fuel Burnup, and Salt Clean-Up System. Energies 2024, 17, 1475. https://doi.org/10.3390/en17061475
Noori-kalkhoran O, Jain L, Powell L, Jones A, Aflyatunova D, Merk B. On the Employment of a Chloride or Floride Salt Fuel System in Advanced Molten Salt Reactors, Part 2; Core Inventory, Fuel Burnup, and Salt Clean-Up System. Energies. 2024; 17(6):1475. https://doi.org/10.3390/en17061475
Chicago/Turabian StyleNoori-kalkhoran, Omid, Lakshay Jain, Lewis Powell, Andrew Jones, Daliya Aflyatunova, and Bruno Merk. 2024. "On the Employment of a Chloride or Floride Salt Fuel System in Advanced Molten Salt Reactors, Part 2; Core Inventory, Fuel Burnup, and Salt Clean-Up System" Energies 17, no. 6: 1475. https://doi.org/10.3390/en17061475
APA StyleNoori-kalkhoran, O., Jain, L., Powell, L., Jones, A., Aflyatunova, D., & Merk, B. (2024). On the Employment of a Chloride or Floride Salt Fuel System in Advanced Molten Salt Reactors, Part 2; Core Inventory, Fuel Burnup, and Salt Clean-Up System. Energies, 17(6), 1475. https://doi.org/10.3390/en17061475