The Ability of Convergent–Divergent Diffusers for Wind Turbines to Exploit Yawed Flows on Moderate-to-High-Slope Hills
Abstract
:1. Introduction
2. Methodology
2.1. The Turbine Virtual Model, VBM
2.2. Geometry of the Two Diffusers
2.3. Characteristics of the Hilly Reliefs
- A-hill. It is the typical recommended hill for wind turbine installation; its profile is well rounded with a smoothed ridge, and it is able to concentrate the wind gradually, avoiding increased turbulence in the turbine area, and without flow separation;
- B-hill. The shape is triangular, with a slope of 18° compared to the horizontal plane. Flow separation from the hilltop and a large turbulent wake released downstream of the hill are expected. For these reasons, the position of the turbine should be chosen with caution (assumed to be on the top in this study);
- C1-hill. It is a cliff-type relief but, unlike a stepped profile, it has a rounded ridge. The turbine is moved upstream from the plateau, above the ridge (2.34 m lower than the maximum height of the hill), where significant vertical velocities of the flow are expected;
- C2-hill. It is the same relief of C1, the difference being that the turbine is simulated on the plateau, at the maximum height of the hill. The literature advises to be careful, as flow separation could occur above the plateau.
2.4. Domain Dimensions and Grids
2.5. Solver Setup
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elgendi, M.; AlMallahi, M.; Abdelkhalig, A.; Selim, M.Y. A review of wind turbines in complex terrain. Int. J. Thermofluids 2023, 17, 100289. [Google Scholar] [CrossRef]
- Abohela, I.; Hamza, N.; Dudek, S. Effect of roof shape, wind direction, building height and urban configuration on the energy yield and positioning of roof mounted wind turbines. Renew. Energy 2013, 50, 1106–1118. [Google Scholar] [CrossRef]
- Xu, W.; Li, G.; Zheng, X.; Li, Y.; Li, S.; Zhang, C.; Wang, F. High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part II, array of vertical axis wind turbines between buildings. Renew. Energy 2021, 176, 461–474. [Google Scholar] [CrossRef]
- Kosasih, B.; Tondelli, A. Experimental study of shrouded micro-wind turbine. Procedia Eng. 2012, 49, 92–98. [Google Scholar] [CrossRef]
- Watanabe, K.; Ohya, Y. A Simple Theory and Performance Prediction for a Shrouded Wind Turbine with a Brimmed Diffuser. Energies 2021, 14, 3661. [Google Scholar] [CrossRef]
- Tang, J.; Avallone, F.; Bontempo, R.; Van Bussel, G.J.W.; Manna, M. Experimental investigation on the effect of the duct geometrical parameters on the performance of a ducted wind turbine. J. Phys. Conf. Ser. 2018, 1037, 022034. [Google Scholar] [CrossRef]
- Ohya, Y.; Karasudani, T. A Shrouded Wind Turbine Generating High Output Power with Wind-lens Technology. Energies 2010, 3, 634–649. [Google Scholar] [CrossRef]
- Rivarolo, M.; Freda, A.; Traverso, A. Test campaign and application of a small-scale ducted wind turbine with analysis of yaw angle influence. Appl. Energy 2020, 279, 115850. [Google Scholar] [CrossRef]
- Foreman, K.M.; Gilbert, B.L. Further Investigations of Diffuser Augmented Wind Turbines Parts I and II; Grumman Research Department: New York, NY, USA, 1979. [Google Scholar]
- Oman, R.A.; Foreman, K.M.; Gilbert, B.L. Investigation of Diffuser-Augmented Wind Turbines; Part II. Technical Report; Grumman Aerospace Corporation: Bethpage, NY, USA, 1977. [Google Scholar]
- Grassmann, H.; Bet, F.; Cabras, G.; Ceschia, M.; Cobai, D.; Del Papa, C. A partially static turbine—First experimental results. Renew. Energy 2003, 28, 1779–1785. [Google Scholar] [CrossRef]
- Maia, P.V.M.; Santos, R.M.; Vaz, J.R.P.; Silva, M.O.; Lins, E.F. Experimental study of three different airfoils applied to diffuser-augmented wind turbines. J. Urban Environ. Eng. 2018, 12, 147–153. [Google Scholar] [CrossRef]
- Rahmatian, M.A.; Hashemi Tari, P.; Mojaddam, M.; Majidi, S. Numerical and experimental study of the ducted diffuser effect on improving the aerodynamic performance of a micro horizontal axis wind turbine. Energy 2022, 245, 123267. [Google Scholar] [CrossRef]
- Phillips, D.G. An Investigation on Diffuser Augmented Wind Turbine Design. Ph.D. Thesis, University of Auckland, Auckland, New Zealand, 2003. [Google Scholar]
- Igra, O. Research and development for shrouded wind turbines. Energy Convers. Manag. 1981, 21, 13–48. [Google Scholar] [CrossRef]
- Nasrul, M.; Rizianiza, I. Shrouded wind turbine for low wind speed. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1034, 012042. [Google Scholar] [CrossRef]
- Zanforlin, S.; Buzzi, F.; Francesconi, M. Performance analysis of hydrofoil shaped and bi-directional diffusers for cross flow tidal turbines in single and double-rotor configurations. Energies 2019, 12, 272. [Google Scholar] [CrossRef]
- Arya, S.P.S.; Capuano, M.E.; Fagen, L.C. Some fluid modeling studies of flow and dispersion over two-dimensional low hills. Atmos. Environ. 1967, 21, 753–764. [Google Scholar] [CrossRef]
- Kanda, I.; Yamao, Y.; Uehara, K.; Wakamatsu, S. Particle-Image Velocimetry Measurements of Separation and Re-attachment of Airflow over Two-Dimensional Hills with Various Slope Angles and Approach-Flow Characteristics. Bound.-Layer Meteorol. 2013, 148, 157–175. [Google Scholar] [CrossRef]
- Bowen, A.J.; Lindley, D. A wind-tunnel investigation of the wind speed and turbulence characteristics close to the ground over various escarpment shapes. Bound.-Layer Meteorol. 1977, 12, 259–271. [Google Scholar] [CrossRef]
- Nanos, E.M.; Yilmazlar, K.; Zanotti, A.; Croce, A.; Bottasso, C.L. Wind tunnel testing of a wind turbine in complex terrain. J. Phys. Conf. Ser. 2020, 1618, 032041. [Google Scholar] [CrossRef]
- Shamsoddin, S.; Porté-Agel, F. Large-eddy simulation of atmospheric boundary-layer flow through a wind farm sited on topography. Bound-Layer Meteorol. 2017, 163, 1–17. [Google Scholar] [CrossRef]
- Liu, L.; Stevens, R.J.A.M. Effects of Two-Dimensional Steep Hills on the Performance of Wind Turbines and Wind Farms. Bound.-Layer Meteorol. 2020, 176, 251–269. [Google Scholar] [CrossRef]
- Berg, J.; Troldborg, N.; Sørensen, N.N.; Patton, E.G.; Sullivan, P.P. Large-eddy simulation of turbine wake in complex terrain. J. Phys. Conf. Ser. 2017, 854, 012003. [Google Scholar] [CrossRef]
- Qian, G.-W.; Ishihara, T. Numerical study of wind turbine wakes over escarpments by a modified delayed detached eddy simulation. J. Wind. Eng. Ind. Aerodyn. 2019, 191, 41–53. [Google Scholar] [CrossRef]
- Bernardoni, F.; Guzman, M.; Leonardi, S. Implications of complex terrain topography on the performance of a real wind farm. J. Phys. Conf. Ser. 2023, 2505, 012052. [Google Scholar] [CrossRef]
- Burton, T.; Jenkins, N.; Sharpe, D.; Bossanyi, E. Wind Energy Handbook, 2nd ed.; John Wiley & Sons Inc.: West Sussex, UK, 2011. [Google Scholar]
- Zori, L.; Rajagopalan, G.R. Navier-Stokes Calculation of Rotor-Airframe Interaction in Forward Flight. J. Am. Helicopter Soc. 1995, 40, 57–67. [Google Scholar] [CrossRef]
- Attene, F.; Balduzzi, F.; Bianchini, A.; Campobasso, M.S. Using Experimentally Validated Navier-Stokes CFD to Minimize Tidal Stream Turbine Power Losses Due to Wake/Turbine Interactions. Sustainability 2020, 12, 8768. [Google Scholar] [CrossRef]
- Sufian, S.F.; Li, M. 3D-CFD numerical modeling of impacts from horizontal axis tidal turbines in the near region. In Proceedings of the Coastal Engineering Conference, ICCE, Seoul, Republic of Korea, 15–20 June 2014. [Google Scholar]
- Javaherchi, T.; Aliseda, A. The transport of suspended sediment in the wake of a marine hydrokinetic turbine: Simulations via a validated Discrete Random Walk (DRW) model. Ocean Eng. 2017, 129, 529–537. [Google Scholar] [CrossRef]
- Lombardi, N.; Ordonez-Sanchez, S.; Zanforlin, S.; Johnston, C. A Hybrid BEM-CFD Virtual Blade Model to Predict Interactions between Tidal Stream Turbines under Wave Conditions. J. Mar. Sci. Eng. 2020, 8, 969. [Google Scholar] [CrossRef]
- Bianchini, A.; Balduzzi, F.; Gentiluomo, D.; Ferrara, G.; Ferrari, L. Potential of the Virtual Blade Model in the analysis of wind turbine wakes using wind tunnel blind tests. Energy Procedia 2017, 126, 573–580. [Google Scholar] [CrossRef]
- Balduzzi, F.; Bigalli, S.; Bianchini, A. A hybrid BEM-CFD model for effective numerical siting analyses of wind turbines in the urban environment. J. Phys. Conf. Ser. 2018, 1037, 072029. [Google Scholar] [CrossRef]
- Radfar, S.; Kianoush, B.; Majidi Nezhad, M.; Neshat, M. Developing an Extended Virtual Blade Model for Efficient Numerical Modeling of Wind and Tidal Farms. Sustainability 2022, 14, 13886. [Google Scholar] [CrossRef]
- Zanforlin, S.; Pucci, M. Low-order CFD simulation of a ducted wind turbine in realistic hilly environments. In Proceedings of the International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA 2024), Victoria, Seychelles, 1–2 February 2024. [Google Scholar]
- Somers, D. Design and Experimental Results for the S809 Airfoil; Technical Report NREL/SR-440-6918; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 1997. [Google Scholar]
- Hand, M.M.; Simms, D.A.; Fingersh, L.J.; Jager, D.W.; Cotrell, J.R.; Schreck, S.; Larwood, S.M. Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns; Technical Report NREL/TP-500-29955; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2001. [Google Scholar]
- Ordonez-Sanchez, S.; Allmark, M.; Porter, K.; Ellis, R.; Lloyd, C.; Santic, I.; O’Doherty, T.; Johnstone, C. Analysis of a Horizontal-Axis Tidal Turbine Performance in the Presence of Regular and Irregular Waves Using Two Control Strategies. Energies 2019, 12, 367. [Google Scholar] [CrossRef]
- Lombardi, N. Hybrid BEM-CFD Virtual Blade Model to Investigate the Interaction between two Marine Turbines under Tidal Current and Wave Conditions. Master’s Thesis, University of Pisa, Pisa, Italy, 2020. [Google Scholar]
- Cresswell, N.W.; Ingram, G.L.; Dominy, R.G. The impact of diffuser augmentation on a tidal stream turbine. Ocean Eng. 2015, 108, 155–163. [Google Scholar] [CrossRef]
- Shives, M.; Crawford, C. Developing an empirical model for ducted tidal turbine performance using numerical simulation results. Proc. Inst. Mech. Eng. Part A J. Power Energy 2011, 226, 112–125. [Google Scholar] [CrossRef]
- Sanz, W.; Kelterer, M.; Pecnik, R.; Marn, A.; Göttlich, E. Numerical Investigation of the Effect of Tip Leakage Flow on an Aggressive S-Shaped Intermediate Turbine Duct. In Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea, and Air, Orland, FL, USA, 8–12 June 2009; Volume 7. Turbomachinery, Parts A and B. [Google Scholar]
- Jamieson, P. Innovation in Wind Turbine Design; John Wiley & Sons Inc.: West Sussex, UK, 2011. [Google Scholar]
Setup of Simulations | |
---|---|
Turbulence closure | Realizable k-ε |
Velocity–pressure coupling | SIMPLEC |
Spatial discretization | LSCB for gradient Second order for other variables |
Temporal discretization | Second order implicit |
Time step | 0.15 s preliminary phase (turbine off), 40° of blade revolution (turbine on) |
Convergence criterion | Residuals of 5 × 10−5 |
Turbine characteristics | Diameter of 16.16 m 2 blades Airfoil S809 Chord and twist distribution from [38] Pitch of 3° |
Inlet velocity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pucci, M.; Zanforlin, S. The Ability of Convergent–Divergent Diffusers for Wind Turbines to Exploit Yawed Flows on Moderate-to-High-Slope Hills. Energies 2024, 17, 990. https://doi.org/10.3390/en17050990
Pucci M, Zanforlin S. The Ability of Convergent–Divergent Diffusers for Wind Turbines to Exploit Yawed Flows on Moderate-to-High-Slope Hills. Energies. 2024; 17(5):990. https://doi.org/10.3390/en17050990
Chicago/Turabian StylePucci, Micol, and Stefania Zanforlin. 2024. "The Ability of Convergent–Divergent Diffusers for Wind Turbines to Exploit Yawed Flows on Moderate-to-High-Slope Hills" Energies 17, no. 5: 990. https://doi.org/10.3390/en17050990
APA StylePucci, M., & Zanforlin, S. (2024). The Ability of Convergent–Divergent Diffusers for Wind Turbines to Exploit Yawed Flows on Moderate-to-High-Slope Hills. Energies, 17(5), 990. https://doi.org/10.3390/en17050990