Strategies for Improving the Resiliency of Distribution Networks in Electric Power Systems during Typhoon and Water-Logging Disasters
Abstract
:1. Introduction
2. Vulnerability Model of Distribution System Components in Wind and Flood Scenarios
2.1. Vulnerability Model of Distribution Network Tower
2.2. Distribution Network Line Vulnerability Model
2.3. Vulnerability Model of Substation and Buried Cable
3. A Multi-Objective Dynamic Model Considering Distribution Network Reconstruction under Wind and Flood Disasters
3.1. Objective Function
3.2. Constraints
3.2.1. Distribution Network Operation Constraints
3.2.2. Distributed Generator (DG) Operation Constraints
3.2.3. Distribution Network Radial Topology Constraints
4. Case Study
4.1. The 33-Node Distribution Network Test System
4.2. The 118-Node Distribution Network Test System
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AHP | Analytical Hierarchical Process |
EDRP | Emergency Demand Response Planning |
RDNP | Resilient Distribution Network Planning |
CDF | Cumulative Distribution Function |
HV | High Voltage |
MV | Medium Voltage |
LV | Low Voltage |
DG | Distributed Generator |
SOCP | Second-Order Cone Programming |
References
- Kayaga, S.M.; Amankwaa, E.F.; Gough, K.V.; Wilby, R.L.; Abarike, M.A.; Codjoe, S.N.A.; Kasei, R.; Nabilse, C.K.; Yankson, P.W.K.; Mensah, P.; et al. Cities and extreme weather events: Impacts of flooding and extreme heat on water and electricity services in Ghana. Environ. Urban. 2021, 33, 131–150. [Google Scholar] [CrossRef]
- Albrecht, F. Natural hazard events and social capital: The social impact of natural disasters. Disasters 2018, 42, 336–360. [Google Scholar] [CrossRef] [PubMed]
- Ahmadiani, M.; Ferreira, S. Well-being effects of extreme weather events in the United States. Resour. Energy Econ. 2021, 64, 101213. [Google Scholar] [CrossRef]
- Dehghanian, P.; Aslan, S.; Dehghanian, P. Maintaining Electric System Safety Through An Enhanced Network Resilience. IEEE Trans. Ind. Appl. 2018, 54, 4927–4937. [Google Scholar] [CrossRef]
- Gkika, A.V.; Zacharis, E.A.; Skikos, D.N.; Lekkas, E.L. Battling the extreme: Lessons learned from weather-induced disasters on electricity distribution networks and climate change adaptation strategies. Hydrol. Res. 2023, 54, 1196–1226. [Google Scholar] [CrossRef]
- Dong, J.; Zhu, L.; Dong, Q.; Kritprajun, P.; Liu, Y.; Liu, Y.; Tolbert, L.M.; Hambrick, J.C.; Xue, Y.S.; Ollis, T.B.; et al. Integrating Transactive Energy Into Reliability Evaluation for a Self-Healing Distribution System With Microgrid. IEEE Trans. Sustain. Energy 2022, 13, 122–134. [Google Scholar] [CrossRef]
- Igder, M.A.; Liang, X.; Mitolo, M. Service Restoration Through Microgrid Formation in Distribution Networks: A Review. IEEE Access 2022, 10, 46618–46632. [Google Scholar] [CrossRef]
- Sabouhi, H.; Doroudi, A.; Fotuhi-Firuzabad, M.; Bashiri, M. Electricity distribution grids resilience enhancement by network reconfiguration. Int. Trans. Electr. Energy Syst. 2021, 31, e13047. [Google Scholar] [CrossRef]
- Osman, S.R.; Sedhom, B.E.; Kaddah, S.S. Optimal resilient microgrids formation based on darts game theory approach and emergency demand response program for cyber-physical distribution networks considering natural disasters. Process. Saf. Environ. Prot. 2023, 173, 893–921. [Google Scholar] [CrossRef]
- Chanda, S.; Srivastava, A.K. Defining and Enabling Resiliency of Electric Distribution Systems With Multiple Microgrids. IEEE Trans. Smart Grid 2016, 7, 2859–2868. [Google Scholar] [CrossRef]
- Mingming, W.; Zhaoheng, L.; Konstantin, M. Optimal risk-driven operation of renewable-penetrated distribution network during natural-disasters: A resiliency-oriented analysis. Sustain. Cities Soc. 2023, 99, 104967. [Google Scholar] [CrossRef]
- Galvan, E.; Mandal, P.; Sang, Y. Networked microgrids with roof-top solar PV and battery energy storage to improve distribution grids resilience to natural disasters. Int. J. Electr. Power Energy Syst. 2020, 123, 106239. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Y.; Yang, Y.; Xu, Q.; Dong, F. Power restoration model for distribution networks after extreme rainstorm disasters based on electric vehicle travel characteristics. Energy Rep. 2023, 9, 372–380. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, J.; Tang, W.; Hou, Y.; Wang, Z.; Xie, F.; Fan, W. Equilibrium Allocation of ESSs in Multiple UIESs-Accessed Distribution Networks Considering the Resilience and Economic Benefits. IEEE Trans. Ind. Appl. 2023, 59, 5230–5242. [Google Scholar] [CrossRef]
- Lin, H.; Zhou, X.; Lu, J. Research on Optimizing the Recovery Strategy of a Distribution Network Communication System Under Extreme Disasters. IOP Conf. Ser. Mater. Sci. Eng. 2020, 853, 012010. [Google Scholar] [CrossRef]
- Moreira, A.; Heleno, M.; Valenzuela, A. A Risk-Averse Approach for Distribution Grid Expansion Planning. Energies 2021, 14, 8482. [Google Scholar] [CrossRef]
- Yuan, W.; Wang, J.; Qiu, F.; Chen, C.; Kang, C.; Zeng, B. Robust Optimization-Based Resilient Distribution Network Planning Against Natural Disasters. IEEE Trans. Smart Grid 2016, 7, 2817–2826. [Google Scholar] [CrossRef]
- Tan, Y.; Qiu, F.; Das, A.K.; Kirschen, D.S.; Arabshahi, P.; Wang, J. Scheduling Post-Disaster Repairs in Electricity Distribution Networks. IEEE Trans. Power Syst. 2019, 34, 2611–2621. [Google Scholar] [CrossRef]
- Chen, L.; Liu, W.; Shi, Q.; Lyu, X.; Bai, Y.; Zhang, S.; Lu, Y.; Liu, Z. Prospect Theory-Based optimal configuration of modular mobile battery energy storage in distribution network considering disaster scenarios. Int. J. Electr. Power Energy Syst. 2022, 142, 108215. [Google Scholar] [CrossRef]
- Panteli, M.; Trakas, D.N.; Mancarella, P.; Hatziargyriou, N.D. Boosting the Power Grid Resilience to Extreme Weather Events Using Defensive Islanding. IEEE Trans. Smart Grid 2016, 7, 2913–2922. [Google Scholar] [CrossRef]
- Panteli, M.; Mancarella, P. Modeling and Evaluating the Resilience of Critical Electrical Power Infrastructure to Extreme Weather Events. IEEE Syst. J. 2017, 11, 1733–1742. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, T.; Li, X.; Tang, J.; Wu, Z.; Mo, Y.; Xue, L.; Zhou, Y.; Niu, T.; Sun, S. A Resilience Assessment Framework for Distribution Systems Under Typhoon Disasters. IEEE Access 2021, 9, 155224–155233. [Google Scholar] [CrossRef]
- Li, S.; Lu, L.; Hu, W.; Tang, J.; Qin, L. Prediction Algorithm of Wind Waterlogging Disaster in Distribution Network Based on Multi-Source Data Fusion. Math. Probl. Eng. 2022, 2022, 2721734. [Google Scholar] [CrossRef]
- Hanif, S.; Mukherjee, M.; Poudel, S.; Yu, M.G.; Jinsiwale, R.A.; Hardy, T.D.; Reeve, H.M. Analyzing at-scale distribution grid response to extreme temperatures. Appl. Energy 2023, 337, 120886. [Google Scholar] [CrossRef]
- Ministry of Water Resources of the People’s Republic of China. China Flood and Drought Disaster Prevention Bulletin; Ministry of Water Resources of the People’s Republic of China: Beijing, China, 2023. Available online: www.waterpub.com.cn (accessed on 28 November 2023).
- Ning, Y.F.; Dong, W.Y.; Lin, L.S.; Zhang, Q. Analyzing the causes of urban waterlogging and sponge city technology in China. Proc. IOP Conf. Ser. Earth Environ. Sci. 2017, 59, 012047. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Z.; Zhang, H.; Dalla Fontana, G.; Tarolli, P. Identifying dominant factors of waterlogging events in metropolitan coastal cities: The case study of Guangzhou, China. J. Environ. Manag. 2020, 271, 110951. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, X.; Zhu, Z.; Xie, Y.; Liu, L.; Wang, X.; Wang, X.; Liu, K. The changing pattern of urban flooding in Guangzhou, China. Sci. Total. Environ. 2018, 622–623, 394–401. [Google Scholar] [CrossRef]
- Li, H.; Ding, L.; Ren, M.; Li, C.; Wang, H. Sponge city construction in China: A survey of the challenges and opportunities. Water 2017, 9, 594. [Google Scholar] [CrossRef]
- Zhang, Z.; Liang, J.; Zhou, Y.; Huang, Z.; Jiang, J.; Liu, J.; Yang, L. A multi-strategy-mode waterlogging-prediction framework for urban flood depth. Nat. Hazards Earth Syst. Sci. 2022, 22, 4139–4165. [Google Scholar] [CrossRef]
- Yu, H.; Zhao, Y.; Fu, Y.; Li, L. Spatiotemporal variance assessment of urban rainstorm waterlogging affected by impervious surface expansion: A case study of Guangzhou, China. Sustainability 2018, 10, 3761. [Google Scholar] [CrossRef]
- Jiang, Y.; Zevenbergen, C.; Ma, Y. Urban pluvial flooding and stormwater management: A contemporary review of China’s challenges and “sponge cities” strategy. Environ. Sci. Policy 2018, 80, 132–143. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Z.; Cao, Z.; Guo, G.; Zhang, H.; Li, C.; Tarolli, P. How to develop site-specific waterlogging mitigation strategies? Understanding the spatial heterogeneous driving forces of urban waterlogging. J. Clean. Prod. 2023, 422, 138595. [Google Scholar] [CrossRef]
- Knight, U.G. The Natural Environment—Some Disturbances Reviewed. In Power Systems in Emergencies; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001; pp. 175–212. [Google Scholar] [CrossRef]
- Ward, D.M. The effect of weather on grid systems and the reliability of electricity supply. Clim. Chang. 2013, 121, 103–113. [Google Scholar] [CrossRef]
- Bhusal, N.; Gautam, M.; Abdelmalak, M.; Benidris, M. Modeling of Natural Disasters and Extreme Events in Power System Resilience Enhancement and Evaluation Methods. In Proceedings of the 2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Liege, Belgium, 18–21 August 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Panteli, M.; Pickering, C.; Wilkinson, S.; Dawson, R.; Mancarella, P. Power System Resilience to Extreme Weather: Fragility Modeling, Probabilistic Impact Assessment, and Adaptation Measures. IEEE Trans. Power Syst. 2017, 32, 3747–3757. [Google Scholar] [CrossRef]
- RESNET: Resilient Electricity Networks for Great Britain—Tyndall Centre for Climate Change Research. 2015. Available online: https://tyndall.ac.uk/projects/resnet-resilient-electricity-networks-for-great-britain/ (accessed on 9 December 2023).
- Murray, K.; Bell, K.R.W. Wind related faults on the GB transmission network. In Proceedings of the 2014 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Durham, UK, 7–10 July 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Panteli, M.; Mancarella, P. Operational resilience assessment of power systems under extreme weather and loading conditions. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Boggess, J.M.; Becker, G.W.; Mitchell, M.K. Storm & flood hardening of electrical substations. In Proceedings of the 2014 IEEE PES T&D Conference and Exposition, Chicago, IL, USA, 14–17 April 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Ma, S.; Su, L.; Wang, Z.; Qiu, F.; Guo, G. Resilience Enhancement of Distribution Grids against Extreme Weather Events. IEEE Trans. Power Syst. 2018, 33, 4842–4853. [Google Scholar] [CrossRef]
- Sánchez-Muñoz, D.; Domínguez-García, J.L.; Martínez-Gomariz, E.; Russo, B.; Stevens, J.; Pardo, M. Electrical Grid Risk Assessment Against Flooding in Barcelona and Bristol Cities. Sustainability 2020, 12, 1527. [Google Scholar] [CrossRef]
- Hazus User & Technica Manuals. 2023. Available online: https://www.fema.gov/flood-maps/tools-resources/flood-map-products/hazus/user-technical-manuals (accessed on 17 October 2023).
- Multi-Hazard Loss Estimation Methodology Flood Model HAZUS-MH MR4 Technical Manual; Federal Emergency Management Agency: Washington, DC, USA, 2009.
- Amicarelli, A.; Manenti, S.; Paggi, M. SPH Modelling of Dam-break Floods, with Damage Assessment to Electrical Substations. Int. J. Comput. Fluid Dyn. 2021, 35, 3–21. [Google Scholar] [CrossRef]
- Miraee-Ashtiani, S.; Vahedifard, F.; Karimi-Ghartemani, M.; Zhao, J.; Mallakpour, I.; AghaKouchak, A. Performance Degradation of Levee-Protected Electric Power Network Due to Flooding in a Changing Climate. IEEE Trans. Power Syst. 2022, 37, 4651–4660. [Google Scholar] [CrossRef]
Time () | Fault Branch () | Fault Bus () |
---|---|---|
(1) | ||
+1 h (5) | , | |
+2 h (9) | , | |
+3 h (13) | , , |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, N.; Xu, Z.; Wang, Y.; Liu, G.; Xin, L.; Liu, D.; Liu, Z.; Shi, J.; Chen, C. Strategies for Improving the Resiliency of Distribution Networks in Electric Power Systems during Typhoon and Water-Logging Disasters. Energies 2024, 17, 1165. https://doi.org/10.3390/en17051165
Ma N, Xu Z, Wang Y, Liu G, Xin L, Liu D, Liu Z, Shi J, Chen C. Strategies for Improving the Resiliency of Distribution Networks in Electric Power Systems during Typhoon and Water-Logging Disasters. Energies. 2024; 17(5):1165. https://doi.org/10.3390/en17051165
Chicago/Turabian StyleMa, Nan, Ziwen Xu, Yijun Wang, Guowei Liu, Lisheng Xin, Dafu Liu, Ziyu Liu, Jiaju Shi, and Chen Chen. 2024. "Strategies for Improving the Resiliency of Distribution Networks in Electric Power Systems during Typhoon and Water-Logging Disasters" Energies 17, no. 5: 1165. https://doi.org/10.3390/en17051165
APA StyleMa, N., Xu, Z., Wang, Y., Liu, G., Xin, L., Liu, D., Liu, Z., Shi, J., & Chen, C. (2024). Strategies for Improving the Resiliency of Distribution Networks in Electric Power Systems during Typhoon and Water-Logging Disasters. Energies, 17(5), 1165. https://doi.org/10.3390/en17051165