Microgrid-Based Small Modular Reactor for a High-Renewable-Energy Penetration Grid in Ghana
Abstract
:1. Introduction
2. Literature Review
2.1. Requirements for the Electric Power System’s Stable Operation
2.2. Primary Voltage Control
2.3. Secondary Voltage Control
2.4. SMR Reactive Power Compensation
2.5. Requirements for the Load-Following Operation of SMRs
- (a)
- Scheduled Operation
- (b) Unforeseen Operation
2.6. Power Change Dependent on Grid Plans
- Automatic Generation Control (AGC)
- 2.
- Governor-Free (GF) Control
2.7. Power Change Dependent on Active and Reactive Power
- (a)
- Control Rods
- (b)
- Coolant Flow Control
- (c)
- Turbine and Generator Control
2.8. Microgrid
3. Methodology
3.1. Configuration of IEEE 5-Bus System in ETAP
3.2. Evaluation of Grids with a High Penetration of RES
3.3. Addressing SMR Delays Respond in Output Power Stabilization
3.4. Modelling Case Study for Analysis in ETAP
3.5. Load Flow Analysis Simulation for Voltage Stabilization
4. Results and Discussion
Frequency Response for RE’s Disturbance without Inclusion of SMR to the Power System
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wenisch, A.; Becker, O. NPP Output Flexibility Expectations in the Light of Reality. 2010. Available online: https://pv-magazine-usa.com/wp-content/uploads/sites/2/2017/09/Oko-Institut-flexibility-nuclearpower_final-copy.pdf (accessed on 7 February 2024).
- Akom, K.; Joseph, M.K.; Shongwe, T. Renewable energy sources and grid integration in Ghana: Issues, challenges and solutions. In Proceedings of the 2018 International Conference on Intelligent and Innovative Computing Applications (ICONIC), Mon Tresor, Mauritius, 6–7 December 2018. [Google Scholar] [CrossRef]
- National Electricity Grin Code. 2009. Available online: https://www.energycom.gov.gh/files/National%20Electricity%20Grid%20Code.pdf (accessed on 7 February 2024).
- Oyando, H.C.; Kanyolo, T.N.; Chang, C.K. RNN-Based Main Transformer OLTC Control for SMR Integration into a High Renewable Energy Penetrated Grid. J. Electr. Eng. Technol. 2023, 18, 0123456789. [Google Scholar] [CrossRef]
- Locatelli, G.; Boarin, S.; Pellegrino, F.; Ricotti, M.E. Load following with Small Modular Reactors (SMR): A real options analysis. Energy 2015, 80, 41–54. [Google Scholar] [CrossRef]
- Chang, C.K.; Oyando, H.C. Review of the Requirements for Load Following of Small Modular Reactors. Energies 2022, 15, 6327. [Google Scholar] [CrossRef]
- Meng, L.; Zafar, J.; Khadem, S.K.; Collinson, A.; Murchie, K.C.; Coffele, F.; Burt, G. Fast Frequency Response from Energy Storage Systems—A Review of Grid Standards, Projects and Technical Issues. Available online: https://pureportal.strath.ac.uk/files/100773736/Meng_etal_ IEEE_TSG_2019_Fast_frequency_response_from_energy_storage_systems.pdf (accessed on 9 February 2024).
- Anderson, G. Dynamics and Control of Electric Power Systems. Lecture 227-0528-00, ITET ETH. 2012, pp. 36–46. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4e667f31c50bc898e49d553e2fe7f596523bf40d (accessed on 9 February 2024).
- IEEE Std C57.116-2022; IEEE Guide for Transformers Directly Connected to Generators. IEEE Power and Energy Society: Piscataway, NJ, USA, 2022.
- Nations Online Project. Political Map of Ghana. One World-Nations. 2021. Available online: https://www.nationsonline.org/oneworld/map/ghana_map.htm (accessed on 6 February 2024).
- Karampelas, P.; Ekonomou, L. (Eds.) Electricity Distribution; Intelligent Solutions for Electricity Transmission and Distribution Networks; Springer: Berlin/Heidelberg, Germany, 2016; Available online: http://www.springer.com/us/book/9783662494325 (accessed on 3 December 2023).
- IAEA. System-Integrated Modular Advanced Reactor (SMART). 2011, pp. 1–36. Available online: https://aris.iaea.org/PDF/SMART.pdf (accessed on 6 February 2024).
- IAEA (International Atomic Energy Agency). Non-Baseload Operation in Nuclear Power Plants: Load Following and Frequency Control Modes of Flexible Operation; IAEA Nuclear Energy Series; IAEA: Vienna, Austria, 2018; pp. 1–190. [Google Scholar]
- Chang, C.-K.; Lord, A.G. Flexible Operation of Nuclear Power Plants from the Perspective of Electric Power Systems. In Proceedings of the ICAPP 2023, Gyeongju, Republic of Korea, 23–27 April 2023. Paper 2023185. [Google Scholar]
- Lamarsh, J.R.; Baratta, A.J. Introduction to Nuclear Engineering, 3rd ed.; Prentice-Hall, Inc.: Hoboken, NJ, USA, 2001; p. 327. [Google Scholar]
- The Sustainable Nuclear Energy Technology Platform, Nuclear Energy Factsheets Load Following Capabilities of Nuclear Power Plants. Available online: https://snetp.eu/wp-content/uploads/2020/05/SNETP-Factsheet-7-Load-following-capabilities-of-nuclear-power-plants.pdf (accessed on 6 February 2024).
- IAEA. Introduction Nuclear Power Systems of Limited Capacity: Problem and Remedial Measures No 217. 1987. Available online: https://www.iaea.org/publications/1374/introducing-nuclear-power-plants-into-electrical-power-systems-of-limited-capacityz (accessed on 7 February 2024).
- Fan, H.; Yuan, Q.; Cheng, H. Multi-objective stochastic optimal operation of a grid-connected microgrid considering an energy storage system. Appl. Sci. 2018, 8, 2560. [Google Scholar] [CrossRef]
- Bruynooghe, C.; Eriksson, A.; Fulli, G. Load-Following Operating Mode at Nuclear Power Plants (NPPs) and Incidence on Operation and Maintenance (O&M) Costs. Compatibility with Wind Power Variability; European Commission: Brussels, Belgium, 2010. [Google Scholar]
- Lee, J.-W.; Kim, M.-K.; Kim, H.-J. A Multi-Agent Based Optimization Model for Microgrid Operation with Hybrid Method Using Game Theory Strategy. Energies 2021, 14, 603. [Google Scholar] [CrossRef]
- Maza-Ortega, J.M.; Acha, E.; Garcia, S.; Gomez-Exposito, A. Overview of power electronics technology and applications in power generation transmission and distribution. J. Mod. Power Syst. Energy 2017, 5, 499–514. Available online: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8940984 (accessed on 7 February 2024). [CrossRef]
Bus | Area | Generation | Consumption | |||
---|---|---|---|---|---|---|
Synchronous Machines | Intermittent RES | |||||
MW | Mvar | MW | MW | Mvar | ||
1 | Techiman | Slack bus | - | - | - | - |
2 | Kumasi | 40 | 30 | 9.825 | 49.667 | 24 |
3 | New Obuasi | - | - | 10.825 | 45.285 | 21 |
4 | Nkwakaw | - | - | 9.825 | 39.56 | 5.2 |
5 | Sekondi Takoradi | 107 | 66 | 8.825 | 51.57 | 18 |
Total | 147 | 93 | 39.3 | 186.082 | 68.2 |
From Bus | To Bus | Line ID | Line R (pu) | Line X (pu) | Charging B (pu) | Length km |
---|---|---|---|---|---|---|
Akosombo | Techiman | Z (0–1) | 0.0294 | 0.1284 | 0.1163 | 318 |
Techiman | Kumasi | Z (1–2) | 0.0294 | 0.1284 | 0.1163 | 115.0 |
Techiman | New Obuasi | Z (1–3) | 0.0289 | 0.1212 | 0.1097 | 93.6 |
New Obuasi | Kumasi | Z (2–3) | 0.01595 | 0.0672 | 0.0609 | 60.2 |
New Obuasi | Nkawkaw | Z (3–4) | 0.03749 | 0.1843 | 0.0841 | 105.0 |
Sekondi Takoradi | Nkawkaw | Z (4–5) | 0.0181 | 0.1151 | 0.0534 | 104.0 |
Sekondi Takoradi | Kumasi | Z (2–5) | 0.0586 | 0.2101 | 0.0949 | 132.0 |
Case-1, RES Minimum at Time 7:30 | ||||||||
Bus | Generation | Load | Voltage | |||||
ID | kV | MW | Mvar | RES (MW) | MW | Mvar | % Mag | Angle (Degree) |
Techiman | 161 | 0 | 0 | 0 | 0 | 0 | 98.21 | −1.73 |
Kumasi | 161 | 40 | 30 | 2.5 | 40 | 30 | 97.21 | −1.72 |
Obuasi | 161 | 0 | 0 | 2.5 | 0 | 0 | 97.2 | −1.74 |
Nkwakaw | 161 | 0 | 0 | 2.5 | 0 | 0 | 97.15 | −1.72 |
S-Takoradi | 161 | 77 | 56 | 2.5 | 77 | 56 | 98.15 | −1.73 |
Total Power | 117 | 86 | 10 | 117 +10 | 86 | |||
Case-2, Minimum SMR at Time 11:30 | ||||||||
Bus | Generation | Load | Voltage | |||||
ID | kV | MW | Mvar | RES (MW) | MW | Mvar | % Mag | Angle (Degree) |
Techiman | 161 | 0 | 0 | 0 | 0 | 0 | 98.05 | −1.83 |
Kumasi | 161 | 40 | 30 | 9.5 | 40 | 30 | 97.92 | −1.83 |
Obuasi | 161 | 0 | 0 | 9.5 | 0 | 0 | 96.92 | −1.83 |
Nkwakaw | 161 | 0 | 0 | 9.5 | 0 | 0 | 98.15 | −1.73 |
S-Takoradi | 161 | 41.3 | 40 | 9.5 | 41.3 | 40 | 97.98 | −1.73 |
Total Power | 81.3 | 70 | 38 | 81.3 + 38 | 70 | |||
Case-3, RES Maximum at Time 13:30 | ||||||||
Bus | Generation | Load | Voltage | |||||
ID | kV | MW | Mvar | RES (MW) | MW | Mvar | % Mag | Angle (Degree) |
Techiman | 161 | 0 | 0 | 0 | 0 | 0 | 99.98 | −5.59 |
Kumasi | 161 | 40 | 30 | 9.225 | 40 | 30 | 99.98 | −5.59 |
Obuasi | 161 | 0 | 0 | 9.225 | 0 | 0 | 100.5 | −1.81 |
Nkwakaw | 161 | 0 | 0 | 9.225 | 0 | 0 | 100.5 | −1.76 |
S-Takoradi | 161 | 51.6 | 43.9 | 9.225 | 51.6 | 43.9 | 99.97 | −5.96 |
Total Power | 91.6 | 73.9 | 36.9 | 91.6 + 36.9 | 73.9 | |||
Case-4, SMR Maximum at Time 19:00 | ||||||||
Bus | Generation | Load | Voltage | |||||
ID | kV | MW | Mvar | RES (MW) | MW | Mvar | % Mag | Angle (Degree) |
Techiman | 161 | 0 | 0 | 0 | 0 | 0 | 100.6 | −1.93 |
Kumasi | 161 | 40 | 30 | 0 | 40 | 30 | 100.5 | −1.93 |
Obuasi | 161 | 0 | 0 | 0 | 0 | 0 | 98.72 | −1.89 |
Nkwakaw | 161 | 0 | 0 | 0 | 0 | 0 | 100.5 | −1.88 |
S-Takoradi | 161 | 97.4 | 52.6 | 0 | 97.4 | 52.6 | 100.6 | −1.88 |
Total Power | 137 | 82.6 | 137 + 0 | 82.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asiamah, G.L.; Chang, C.-k. Microgrid-Based Small Modular Reactor for a High-Renewable-Energy Penetration Grid in Ghana. Energies 2024, 17, 1136. https://doi.org/10.3390/en17051136
Asiamah GL, Chang C-k. Microgrid-Based Small Modular Reactor for a High-Renewable-Energy Penetration Grid in Ghana. Energies. 2024; 17(5):1136. https://doi.org/10.3390/en17051136
Chicago/Turabian StyleAsiamah, Genesis Lord, and Choong-koo Chang. 2024. "Microgrid-Based Small Modular Reactor for a High-Renewable-Energy Penetration Grid in Ghana" Energies 17, no. 5: 1136. https://doi.org/10.3390/en17051136
APA StyleAsiamah, G. L., & Chang, C. -k. (2024). Microgrid-Based Small Modular Reactor for a High-Renewable-Energy Penetration Grid in Ghana. Energies, 17(5), 1136. https://doi.org/10.3390/en17051136