From Agricultural Waste to Energy: Assessing the Bioenergy Potential of South-Central Texas
Abstract
:1. Introduction
- Identify the type and spatial distribution of crops that provide the highest share of potential residues and energy production in South Central Texas;
- Quantify the potential energy that could be produced by food crops and trees;
- Evaluate the contribution of potential biomass energy production of the region as part of the energy portfolio of the State;
- Provide a contribution to the holistic WEF Nexus compatible solutions on the side of food for energy.
2. Previous Research
3. Materials and Methods
3.1. South Central Texas Regional Water Planning Area (Region L)
3.2. Data
3.3. Calculations of Available Biomass and Corresponding Energy Amount
Corn | Cotton | Rice | Oats | Peanuts | Sorghum | Soybeans | Sunflower | Wheat | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Stalk | Cob | Stalk | Husk | Boll | Straw | Husk | Straw | Shells | Straw | Pods | Straw | Pod | |||||
Arnott (2017) | [40] | 1.3 | |||||||||||||||
Ben-Iwo et al. (2016) | [20] | 2.00 | 0.273 | 3.743 | 1.757 | 0.20 | 2.3 | 0.477 | 1.25 | 2.50 | 1.0 | ||||||
Chen (2016) | [41] | 1.00 | 1.50 | 1.50 | |||||||||||||
Ebadian et al. (2011) | [42] | 1.30 | |||||||||||||||
Einarsson and Persson (2017) | [43] | 1.00 | 0.80 | 2.00 | 0.90 | ||||||||||||
Ericsson and Nilsson (2006) | [44] | 1.30 | 1.30 | ||||||||||||||
Graham et al. (2007) | [45] | 2.00 | 1.70–1.30 | ||||||||||||||
Hiloidhari et al. (2014) | [22] | 2.00 | 0.30 | 3.80 | 1.10 | 1.10 | 1.50 | 0.20 | 2.00 | 0.30 | 3.00 | 1.50 | 0.30 | ||||
Ji (2015) | [46] | 2.00 | 0.20 | 1.00 | 0.25 | 1.14 | 0.30 | 1.60 | 1.50 | 1.17 | |||||||
Jiang et al. (2011) | [24] | 2.00 | 3.00 | 1.00 | 1.10 | ||||||||||||
Johnson et al. (2006) | [47] | 1.40 | 1.50 | 1.20 | |||||||||||||
Kadam and McMillan (2003) | [48] | 0.9–1.1 | |||||||||||||||
Kahr et al. (2013) | [49] | 1.00 | 1.10 | 0.80 | |||||||||||||
Kaltschmitt and Hartmann (2000) | [50] | 1.20 | 0.80–0.90 | ||||||||||||||
Koopmans and Koppejan (1997) | [51] | 1.76 | 1.75 | 1.75 | |||||||||||||
Nelson (2002) | [52] | 1.00 | 1.30–1.70 | ||||||||||||||
Panoutsou and Labalette (2006) | [53] | 1.00 | 1.27 | 1.40 | 1.00 | ||||||||||||
Perlack et al. (2005) | [54] | 1.00 | 1.50–2.00 | ||||||||||||||
Samuel (2015) | [55] | 2.00 | 0.27 | 2.76 | 1.76 | 0.27 | 1.75 | ||||||||||
Soriano et al. (2004) | [56] | 2.61–2.97 | |||||||||||||||
Summers et al. (2003) | [57] | 0.81–2.30 | |||||||||||||||
Walsh et al. (2000) | [58] | 1.00 | 1.30–1.70 | ||||||||||||||
Average | 1.38 | 0.26 | 3.33 | 1.10 | 1.10 | 1.44 | 0.23 | 1.35 | 1.81 | 0.36 | 1.43 | 1.88 | 1.00 | 2.25 | 1.30 | 0.30 |
Available Crop Residue Ratios (%) | |||||||||||||||||
Corn | Cotton | Rice | Oats | Peanuts | Sorghum | Soybeans | Sunflower | Wheat | |||||||||
Stalk | Cob | Stalk | Husk | Boll | Straw | Husk | Straw | Shells | Straw | Pod | Straw | Pod | |||||
Akdag (2007) | [59] | 60 | 60 | 60 | 80 | 80 | 60 | 80 | 15 | 80 | 80 | 60 | 60 | 15 | |||
Arnott (2017) | [40] | 65 | |||||||||||||||
Ben-Iwo et al. (2016) | [20] | 70 | 100 | 100 | 100 | 100 | 50 | 100 | 80 | 100 | 100 | ||||||
Jiang et al. (2011) | [24] | 40.6 | 24.2 | 15.7 | |||||||||||||
Karaca (2015) | [21] | 60 | 60 | 60 | 15 | 80 | 60 | 15 | |||||||||
Panoutsou and Labalette (2006) | [53] | 60 | 50 | 50 | |||||||||||||
Average | 57.65 | 73.3 | 73.33 | 80 | 80 | 61.05 | 90 | 26.67 | 65 | 86.67 | 80 | 80 | 100 | 60 | 32.14 | ||
Calorific Values-Lower Heat Value (MJ kg−1) | |||||||||||||||||
Corn | Cotton | Rice | Oats | Peanuts | Sorghum | Soybeans | Sunflower | Wheat | |||||||||
Stalk | Cob | Stalk | Husk | Boll | Straw | Husk | Straw | Shells | Straw | Pod | Straw | Pod | |||||
Akdag (2007) | [59] | 18.5 | 18.4 | 18.2 | 15.65 | 15.65 | 16.7 | 12.98 | 17.4 | 20.74 | 20.74 | 19.40 | 14.20 | 17.90 | |||
Arnott (2017) | [40] | 17.94 | |||||||||||||||
Ben-Iwo et al. (2016) | [20] | 19.66 | 16.28 | 18.61 | 16.02 | 19.33 | 17.58 | 15.66 | 12.38 | 12.38 | 12.38 | ||||||
Caslin, 2016 | [60] | 14.4 | |||||||||||||||
Hiloidhari et al. (2014) | [22] | 16.67 | 17.39 | 17.4 | 16.7 | 18.3 | 15.54 | 15.54 | 14.4 | 15.56 | 16.99 | 17.53 | 17.15 | 17.39 | |||
Karaca (2015) | [21] | 18.5 | 18.4 | 18.2 | 17.4 | 20.7 | 17.4 | 17.90 | |||||||||
Panoutsou and Labalette (2006) | [53] | 16.7 | 17.4 | 17.90 | |||||||||||||
Average | 18.33 | 17.62 | 18.10 | 16.18 | 16.98 | 16.24 | 15.95 | 17.40 | 17.57 | 18.17 | 12.38 | 16.26 | 12.38 | 16.38 | 17.20 | 17.39 |
4. Results and Discussion
- Crop Diversification: Exploring and cultivating a variety of bioenergy crops that are climate resilient.
- Technological Innovations: Developing and implementing advanced technologies and new methodologies that can adapt to fluctuating environmental factors, such as improved irrigation systems, precision agriculture, regenerative agriculture, or climate-smart agriculture.
- Risk Assessment and Management: Conducting thorough assessments of climate-related risks to bioenergy production and implementing management plans to mitigate those risks.
- Research and Development: Investing in ongoing research to stay ahead of emerging challenges and identify new technologies or practices that can enhance the resilience of bioenergy systems.
- Policy Frameworks: Establishing supportive policies that encourage the adoption of climate-resilient practices within the bioenergy sector.
- Community Engagement: Involving local communities and stakeholders in the planning and implementation of adaptive measures to ensure a comprehensive and inclusive approach.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- United Nations Department of Economic and Social Affairs (UNDESA). The Sustainable Development Goals Report; United Nations: New York, NY, USA, 2023; Available online: https://unstats.un.org/sdgs/report/2023/The-Sustainable-Development-Goals-Report-2023.pdf (accessed on 28 August 2023)ISBN 978-92-1-101425-9. ISSN 2518-3915.
- Rueangsan, K.; Trisupakitti, S.; Senajuk, W.; Morris, J. Fast pyrolysis of Dipterocarpus alatus Roxb and rubber wood in a free-fall reactor. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 44, 2489–2496. [Google Scholar] [CrossRef]
- Hepbasli, A.; Utlub, Z.; Akdeniz, R.C. Energetic and exergetic aspects of cotton stalk production in establishing energy policies. Energy Policy 2006, 35, 3015–3024. [Google Scholar] [CrossRef]
- Pahl-Wostl, C. Governance of the water-energy-food security nexus: A multi-level coordination challenge. Environ. Sci. Policy 2017, 92, 356–367. [Google Scholar] [CrossRef]
- Sánchez-Zarco, X.G.; Mora-Jacobo, E.G.; González-Bravo, R.; Mahlknecht, J.; Ponce-Ortega, J.M. Water, energy, and food security assessment in regions with semiarid climates. Clean. Technol. Environ. Policy 2020, 22, 2145–2161. [Google Scholar] [CrossRef]
- Vaish, B.; Srivastava, V.; Singh, P.K.; Singh, P.; Singh, R.P. Energy and nutrient recovery from agro-wastes: Rethinking their potential possibilities. Environ. Eng. Res. 2020, 25, 623–637. [Google Scholar] [CrossRef]
- Markantonis, V.; Reynaud, A.; Karabulut, A.; El Hajj, R.; Altinbilek, D.; Awad, I.M.; Bruggeman, A.; Constantianos, V.; Mysiak, J.; Bidoglio, G.; et al. Can the Implementation of the Water-Energy-Food Nexus Support Economic Growth in the Mediterranean Region? The Current Status and the Way Forward. Front. Environ. Sci. 2019, 7, 84. [Google Scholar] [CrossRef]
- Ozgunaltay-Ertugrul, G.; Ertugrul, O.; Degirmencioglu, A. Determination of Agricultural Mechanization Levels in Kırşehir Province using Geographical Information Systems (GIS). C. R. Acad. Bulg. Sci. 2019, 72, 8. [Google Scholar] [CrossRef]
- Lebel, L.; Lebel, B. Nexus narratives and resource insecurities in the Mekong Region. Env. Sci. Policy 2018, 90, 164–172. [Google Scholar] [CrossRef]
- Scott, A. Making Governance Work for Water–Energy–Food Nexus Approaches. Working Paper. Climate and Development Knowledge Network. 2017. Available online: https://cdkn.org/wp-content/uploads/2017/06/Working-paper_CDKN_Making-governance-work-for-water-energy-food-nexus-approaches.pdf (accessed on 28 August 2023).
- U.S. Energy Information Administration (EIA). Annual Energy Outlook 2016 with Projections to 2040. DOE/EIA-0383(2016). Available online: https://www.eia.gov/outlooks/aeo/pdf/0383(2016).pdf (accessed on 21 May 2018).
- U.S. Energy Information Administration (EIA). Texas Net Electricity Generation by Source [Internet]. 2017. Available online: https://www.eia.gov/state/?sid=TX#tabs-4 (accessed on 14 April 2018).
- Daher, B.; Mohtar, R.H.; Pistikopoulos, E.N.; Portney, K.E.; Kaiser, R.; Saad, W. Developing Socio-Techno-Economic-Political (STEP) Solutions for Addressing Resource Nexus Hotspots. Sustainability 2018, 10, 512. [Google Scholar] [CrossRef]
- Degirmencioglu, A.; Mohtar, R.; Daher, B.T.; Ozgunaltay-Ertugrul, G.; Ertugrul, O. Assessing the Sustainability of Crop Production in the Gediz Basin-Turkey: A Water—Energy and Food Nexus Approach. Fresen Environ. Bull. 2019, 28, 2511–2522. Available online: https://wefnexus.tamu.edu/files/2019/04/Degirm_etal_GedizBasin.pdf (accessed on 28 August 2023).
- Ertuğrul, Ö.; Özgünaltay Ertuğrul, G.; Değirmencioğlu, A. Turkish-The Relationship of Water, Energy and Food Resources and Their Place in Sustainable Agriculture. In Ziraat ve Su Ürünlerinde Kavramsal ve Olgusal Yaklaşımlar; Academician Publishing House: Ankara, Türkiye, 2022. [Google Scholar]
- Guresci, E. A general view of the biomass energy potential and its use in Turkey. Proc. Inst. Civ. Eng. Energy 2020, 173, 141–149. [Google Scholar] [CrossRef]
- Tun, M.M.; Juchelková, D. Biomass Sources and Energy Potential for Energy Sector in Myanmar: An Outlook. Resources 2019, 8, 102. [Google Scholar] [CrossRef]
- Matindi, R.; Masoud, M.; Hobson, P.; Kent, G.; Liu, S.Q. Harvesting and transport operations to optimise biomass supply chain and industrial biorefinery processes. Int. J. Ind. Eng. Comput. 2018, 9, 265–288. [Google Scholar] [CrossRef]
- Toklu, E. Biomass energy potential and utilization in Turkey. Renew. Energy 2017, 107, 235–244. [Google Scholar] [CrossRef]
- Ben-Iwo, J.; Manovic, V.; Longhurst, P. Biomass resources and biofuels potential for the production of transportation fuels in Nigeria. Renew. Sustain. Energy Rev. 2016, 63, 172–192. [Google Scholar] [CrossRef]
- Karaca, C. Mapping of energy potential through annual crop residues in Turkey. Int. J. Agric. Biol. Eng. 2015, 8, 104–109. [Google Scholar] [CrossRef]
- Hiloidhari, M.; Das, D.; Baruah, D.C. Bioenergy potential from crop residue biomass in India. Renew. Sustain. Energy Rev. 2014, 32, 504–512. [Google Scholar] [CrossRef]
- Milhau, A.; Fallot, A. Assessing the potentials of agricultural residues for energy: What the CDM experience of India tells us about their availability. Energy Policy 2013, 58, 391–402. [Google Scholar] [CrossRef]
- Jiang, D.; Zhuang, D.; Fu, J.; Huang, Y.; Kege, W. Bioenergy potential from crop residues in China: Availability and distribution. Renew. Sustain. Energy Rev. 2012, 16, 1377–1382. [Google Scholar] [CrossRef]
- Al-Hamamre, Z.; Al-Mater, A.; Sweis, F.; Rawajfeh, K. Assessment of the status and outlook of biomass energy in Jordan. Energy Convers. Manag. 2014, 77, 183–192. [Google Scholar] [CrossRef]
- Demirbas, A. Progress and recent trends in biodiesel fuels. Energy Convers. Manag. 2009, 50, 14–34. [Google Scholar] [CrossRef]
- National Institute of Building Sciences. Biomass for Electricity Generation. WBDG Gateway. 2016. Available online: https://www.wbdg.org/resources/biomass-electricity-generation (accessed on 14 April 2018).
- Timmons, D.S.; Buchholz, T.; Veeneman, C.H. Forest biomass energy: Assessing atmospheric carbon impacts by discounting future carbon flows. GCB Bioenergy 2016, 8, 631–643. [Google Scholar] [CrossRef]
- Rey-Salgueiro, L.; Omil, B.; Merino, A.; Martínez-Carballo, E.; Simal-Gándara, J. Organic pollutants profiling of wood ashes from biomass power plants linked to the ash characteristics. Sci. Total Environ. 2016, 544, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Schörghuber, C.; Reichhartinger, M.; Horn, M.; Golles, M.; Seeber, R. Control of a Biomass-Furnace Based on Input-Output-Linearization. In Proceedings of the 2015 European Control Conference (ECC), Linz, Austria, 15–17 July 2015; Available online: https://www.best-research.eu/files/publications/pdf/0326.pdf (accessed on 21 May 2017).
- Thimsen, D.; Maxson, A.; Smith, V.; Cents, T.; Falk-Pedersen, O.; Gorset, O.; Hamborg, E.S. Results from MEA testing at the CO2 Technology Centre Mongstad. Part I: Post-Combustion CO2 capture testing methodology. Energy Procedia 2014, 63, 5938–5958. [Google Scholar] [CrossRef]
- San Antonio River Authority. South Central Texas Regional Water Planning Group (SCTRWPG). [Internet]. San Antonio, TX, USA. Available online: https://www.regionltexas.org/ (accessed on 6 November 2020).
- U.S. Department of Agriculture (USDA); National Agricultural Statistics Service. Census of Agriculture. 2017. Available online: https://www.nass.usda.gov/Publications/AgCensus/2017/Full_Report/Volume_1,_Chapter_2_County_Level/Texas/ (accessed on 21 January 2024).
- Kallestad, J.C.; Mexal, J.G.; Sammis, T.W. Mesilla Valley Pecan Orchard Pruning Residues: Biomass Estimates and Value-Added Opportunities; Research Report 764; Agricultural Experiment Station, College of Agriculture and Home Economics, NM State University: Las Cruces, NM, USA, 2008. [Google Scholar]
- Stein, L. Crop Profile for Peaches in Texas. National Institute of Food and Agriculture, U.S. Department of Agriculture, under Agreement No. 2011-51120-31171, 2013. Management of the Southern IPM Center 2011. Available online: https://ipmdata.ipmcenters.org/documents/cropprofiles/TXpeach2013.pdf (accessed on 21 May 2017).
- Scarlat, N.; Martinov, M.; Dallemand, J.F. Assessment of the availability of agricultural crop residues in the European Union: Potential and limitations for bioenergy use. Waste Manag. 2010, 30, 1889–1897. [Google Scholar] [CrossRef] [PubMed]
- Call, R.E.; Gibson, R.; Kilby, M.W. Pecan Production Guidelines for Small Orchards and Home Yards. AZ1400. The University of Arizona Cooperative Extension. 2006. Available online: https://extension.arizona.edu/sites/extension.arizona.edu/files/pubs/az1400.pdf (accessed on 21 May 2023).
- Dolan, L.; Matulka, R.; Worn, J.; Nizio, J. Safety studies conducted on pecan shell fiber, a food ingredient produced from ground pecan shells. Toxicol. Rep. 2016, 3, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Fasina, O.; Littlefield, B. TG-FTIR analysis of pecan shells thermal decomposition. Fuel Process. Technol. 2012, 102, 61–66. [Google Scholar] [CrossRef]
- Arnott, R. Guidelines for Estimating Wheat Straw Biomass Production Costs 2017, High Crop Residue Zone in Manitoba. Manitoba Agriculture Growing Opportunities (GO), ESR-016086. Available online: http://www.gov.mb.ca/agriculture/business-and-economics/financial-management/pubs/wheatstraw_average_2012.pdf (accessed on 24 May 2017).
- Chen, X. Economic potential of biomass supply from crop residues in China. Appl. Energy 2016, 166, 141–149. [Google Scholar] [CrossRef]
- Ebadian, M.; Sowlati, T.; Sokhansanj, S.; Stumborg, M.; Townley-Smith, L. A new simulation model for multi-agricultural biomass logistics system in bioenergy production. Biosyst. Eng. 2011, 110, 280–290. [Google Scholar] [CrossRef]
- Einarsson, R.; Persson, U.M. Analyzing key constraints to biogas production from crop residues and manure in the EU-A spatially explicit model. PLoS ONE 2017, 12, e0171001. [Google Scholar] [CrossRef]
- Ericsson, K.; Nilsson, L.J. Assessment of the potential biomass supply in Europe using a resource focused approach. Biomass Bioenergy 2006, 30, 1–15. [Google Scholar] [CrossRef]
- Graham, R.L.; Nelson, R.; Sheehan, J.; Perlack, R.D.; Wright, L.L. Current and potential US corn stover supplies. Agron. J. 2007, 99, 1–11. [Google Scholar] [CrossRef]
- Ji, L. An assessment of agricultural residue resources for liquid biofuel production in China. Renew. Sustain. Energy Rev. 2015, 44, 561–575. [Google Scholar] [CrossRef]
- Johnson, J.M.F.; Allmaras, R.R.; Reicosky, D.C. Estimating source carbon from crop residues, roots and rhizodeposits using the grain-yield database. Agron. J. 2006, 98, 622–636. Available online: https://www.semanticscholar.org/paper/Estimating-Source-Carbon-from-Crop-Residues%2C-Roots-Johnson-Allmaras/18d63b4c38544a441cb59b3871e94833584d1a17 (accessed on 21 May 2017).
- Kadam, K.L.; McMillan, J.D. Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresour. Technol. 2003, 88, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Kahr, H.; Wimbergera, J.; Schürza, D.; Jägera, A. Evaluation of the biomass potential for the production of lignocellulosic bioethanol from various agricultural residues in Austria and Worldwide. Energy Procedia 2013, 40, 146–155. [Google Scholar] [CrossRef]
- Kaltschmitt, M.; Hartmann, H. Energie aus Biomasse: Grundlagen. In Techniken und Verfahren; Springer: Berlin/Heidelberg, Germany, 2000; ISBN 3-540-64853-4. [Google Scholar]
- Koopmans, A.; Koppejan, J. Agricultural and Forest Residues—Generation, Utilization and Availability. Regional Consultation on Modern Applications of Biomass Energy, Kuala Lumpur, Malaysia, 6–10 January 1997. Available online: http://www.fao.org/docrep/006/AD576E/ad576e00.pdf (accessed on 21 May 2017).
- Nelson, R.G. Resource assessment and removal analysis for corn stover and wheat straw in the Eastern and Midwestern United States—Rainfall and wind induced soil erosion methodology. Biomass Bioenergy 2002, 22, 349–363. [Google Scholar] [CrossRef]
- Panoutsou, C.; Labalette, F. Cereals straw for bioenergy and competitive uses. In Proceedings of the Cereals Straw Resources for Bioenergy in the European Union, Pamplona, Spain, 18–19 October 2006; Joint Research Centre, Institute for Environment and Sustainability, European Commission: Ispra, Italy, 2006. Available online: http://publications.jrc.ec.europa.eu/repository/bitstream/JRC35679/PUBSY%205679%20-%20EUR%2022626%20-%20docnum.pdf (accessed on 21 May 2017).
- Perlack, R.D.; Wright, L.L.; Turhollow, A.F.; Graham, R.L.; Stokes, B.J.; Erback, D.C. Biomass as Feedstock for Biorefinery and Bioproducts Industry: The Technical Feasibility of Billion Ton Annual Supply. US Department of Energy DEAC05e000R22725. 2005. Available online: https://www1.eere.energy.gov/bioenergy/pdfs/final_billionton_vision_report2.pdf (accessed on 21 May 2017).
- Samuel, P.O. Production of Biogas from Perennial and Biennial Crop Wastes: Peach Palm and Banana’s Wastes as Alternative Biomass in Energy Generation and Environmental Sustainability. Am. J. Environ. Eng. 2015, 5, 79–89. [Google Scholar]
- Soriano, M.A.; Orgaz, F.; Villalobos, F.J.; Fereres, E. Efficiency of water use of early plantings of sunflower. Eur. J. Agron. 2004, 21, 465–476. [Google Scholar] [CrossRef]
- Summers, M.D.; Jenkins, B.M.; Hyde, P.R.; Williams, J.F.; Mutters, R.G.; Scardacci, S.C.; Hair, M.W. Biomass production and allocation in rice with implications for straw harvesting and utilization. Biomass Bioenergy 2003, 24, 163–173. [Google Scholar] [CrossRef]
- Walsh, M.E.; Perlack, R.L.; Turhollow, A.; de la Torre Ugarteb, D.; Beckerc, D.A.; Grahama, R.L.; Slinskyb, S.E.; Rayb, D.E. Biomass Feedstock Availability in the US: 1999 State Level Analysis; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2000. Available online: https://www.nrc.gov/docs/ML0719/ML071930137.pdf (accessed on 12 November 2020).
- Akdag, N.F. Hidrolik ve Yenilenebilir Enerji Çalışma Grubu Biyokütle Enerjisi Alt Çalışma Grubu Raporu; Ankara, Report 3–5. 2007. Available online: https://docplayer.biz.tr/391605-Hidrolik-ve-yenilenebilir-enerji-calisma-grubu-biyokutle-enerjisi-alt-calisma-grubu-raporu.html (accessed on 19 April 2017). (In Turkish).
- Caslin, B. Straw for Energy. Energy Fact Sheet No: 12 August 2016. Naas Printing Limited. Available online: https://www.teagasc.ie/media/website/publications/2016/12.-Straw-for-Energy.pdf (accessed on 11 June 2017).
- Tolessa, A. Bioenergy potential from crop residue biomass resources in Ethiopia. Heliyon 2023, 9, e13572. [Google Scholar] [CrossRef]
- Gabbar, H.A.; Ahmad, M.S. Integrated Waste-to-Energy Process Optimization for Municipal Solid Waste. Energies 2024, 17, 497. [Google Scholar] [CrossRef]
- Mroue, A.M.; Mohtar, R.H.; Pistikopoulos, E.N.; Holtzapple, M.T. Energy Portfolio Assessment Tool (EPAT): Sustainable energy planning using the WEF nexus approach–Texas case. Sci. Total Environ. 2019, 648, 1649–1664. [Google Scholar] [CrossRef] [PubMed]
- Oursbourn, C.; Lacewell, R.D.; LePori, W.; Patton, W.P. Energy potential from agricultural residues in Texas. South J. Agric. Econ. 1978, 10, 73–80. [Google Scholar] [CrossRef]
- Ravula, P.P.; Grisso, R.D.; Cundiff, J.S. Cotton logistics as a model for a biomass transportation system. Biomass Bioenergy 2008, 32, 314–325. [Google Scholar] [CrossRef]
- Evcim, H.Ü.; Değirmencioğlu, A.; Özgünaltay-Ertuğrul, G.; Aygün, İ. Advancements and transitions in technologies for sustainable agricultural production. Econ. Environ. Stud. 2012, 12, 459–466. Available online: http://www.ees.uni.opole.pl/content/04_12/ees_12_4_fulltext_09.pdf (accessed on 15 May 2023).
- Zambon, I.; Colantoni, A.; Cecchini, M.; Mosconi, E.M. Rethinking Sustainability within the Viticulture Realities Integrating Economy, Landscape and Energy. Sustainability 2018, 10, 320. [Google Scholar] [CrossRef]
- Mohtar, R.H.; Daher, B. Water, Energy, and Food: The Ultimate Nexus. Encycl. Agric. Food Biol. Eng. 2012, 2, 5. [Google Scholar] [CrossRef]
- Daher, B.; Lee, S.H.; Kaushik, V.; Blake, J.; Askariyeh, M.H.; Shafiezadeh, H.; Zamaripa, S.; Mohtar, R.H. Towards bridging the water gap in Texas: A water-energy-food nexus approach. Sci. Total Environ. 2019, 647, 449–463. [Google Scholar] [CrossRef]
- Gao, F.; Catalayud, V.; Paoletti, E.; Hoshika, Y.; Feng, Z. Water stress mitigates the negative effects of ozone on photosynthesis and biomass in poplar plants. Environ. Pollut. 2017, 230, 268–279. [Google Scholar] [CrossRef]
- Monarca, D.; Cecchini, M.; Colantoni, A.; Di Giacinto, S.; Marucci, A.; Longo, L. Assessment of the energetic potential by hazelnuts pruning in Viterbo’s area. J. Agric. Eng. 2013, 44, 117. [Google Scholar] [CrossRef]
- Griffin, J.M. A Smart, Price-Based Energy Policy. The Takeaway. Policy Briefs from the Mosbacher Institute for Trade, Economics, and Public Policy. 2017. Volume 8, Policy Brief. Available online: https://bush.tamu.edu/wp-content/uploads/2020/05/V8-1-Energy-Policy-Takeaway1.pdf (accessed on 16 April 2018).
- Huckleberry, J.K.; Potts, M.D. Constraints to implementing the food-energy-water nexus concept: Governance in the Lower Colorado River Basin. Environ. Sci. Policy 2019, 92, 289–298. [Google Scholar] [CrossRef]
- Knápek, J.; Králík, T.; Vávrová, K.; Weger, J. Dynamic biomass potential from agricultural land. Renew. Sustain. Energy Rev. 2020, 134, 110319. [Google Scholar] [CrossRef]
- Lozano-García, D.F.; Santibañez-Aguilar, J.E.; Lozano, F.J.; Flores-Tlacuahuac, A. GIS-based modeling of residual biomass availability for energy and production in Mexico. Renew. Sustain. Energy Rev. 2020, 120, 109610. [Google Scholar] [CrossRef]
- Mohtar, R. Systems Approach to Sustainable Development: Lessons from the Water Sector. Policy Brief. PB—01/24 Policy Center for the New South. 2024. Available online: https://www.policycenter.ma/sites/default/files/2024-01/PB_01_24%20%28Rabi%20Mohtar%29.pdf (accessed on 11 January 2024).
- Ertuğrul, Ö. A Review on the Mechanization Practices for Regenerative Agriculture. In Advance Concepts on Natural and Agricultural Sciences; Kazankaya, A., Ateş, M.A., Eds.; Iksad Publishing House: Ankara, Türkiye, 2023; pp. 295–309. [Google Scholar]
Crops | Residues (kt) | Available Residue (kt) | Total Energy Potential (PJ) |
---|---|---|---|
Corn | 810.83 | 487.60 | 8.87 |
Cotton | 309.00 | 234.79 | 4.10 |
Peanuts | 63.43 | 43.51 | 0.77 |
Rice | 25.19 | 16.38 | 0.27 |
Soybean | 28.48 | 24.76 | 0.36 |
Oats | 7.32 | 1.95 | 0.03 |
Sorghum | 292.25 | 233.80 | 2.89 |
Wheat | 83.78 | 26.93 | 0.46 |
Sunflower | 0.71 | 0.42 | 0.01 |
Pecan | 27.32 | 13.65 | 0.11 |
Peaches | 0.24 | 0.12 | 0.01 |
Total | 1777.33 | 1160.08 | 19.27 |
WEF Nexus Component | Strengths (S) | Weaknesses (W) | Opportunities (O) | Threats (T) |
---|---|---|---|---|
Water | Food production already causes water consumption and abundant agricultural residues indicate a potential for water savings if they can be used instead of energy crops. | Dependence on climate conditions could still affect water availability for crop production. | Technological innovations like improved irrigation and precision agriculture could optimize water use. | Climate change poses a risk to water availability, potentially impacting biomass production. |
Energy | The potential production of 898.7 t kt–1421.39 kt of agricultural waste can contribute significantly to Texas’s energy portfolio. | Current heavy reliance on non-renewable energy sources and theoretical availability of residues can be different from reality. | Transition to bioenergy could enhance energy security and sustainability. | Fluctuating environmental factors and market dynamics could impact the stability of bioenergy supply. |
Food | Crop diversification could lead to more efficient use of land and resources for both food and energy. | Crop rotation and agricultural production are sensitive to climate conditions. | Utilizing waste from agricultural products for bioenergy could foster socio-economic cooperation between agriculture and energy sectors. | Overemphasis on bioenergy crops might direct land and resource use for energy crops that compete with food production, leading to food security concerns. |
Socio-economic | Potential transformation of waste into socio-economic benefits through energy sector collaboration. | Need for extensive research and development to stay ahead of emerging challenges. | Community engagement in bioenergy strategies can lead to inclusive and comprehensive sustainability approaches. | Potential resistance to change in traditional agricultural practices and energy production methods. |
Governance | Supportive policy frameworks could promote the adoption of sustainable bioenergy practices. | Further interregional analyses are required for consistent decision making in agriculture and energy sectors. | Adaptive measures and supportive policies can facilitate the shift towards sustainable energy planning. | Lack of coordinated policies and strategies may lead to fragmented efforts and inefficiencies. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ertuğrul, Ö.; Daher, B.; Özgünaltay Ertuğrul, G.; Mohtar, R. From Agricultural Waste to Energy: Assessing the Bioenergy Potential of South-Central Texas. Energies 2024, 17, 802. https://doi.org/10.3390/en17040802
Ertuğrul Ö, Daher B, Özgünaltay Ertuğrul G, Mohtar R. From Agricultural Waste to Energy: Assessing the Bioenergy Potential of South-Central Texas. Energies. 2024; 17(4):802. https://doi.org/10.3390/en17040802
Chicago/Turabian StyleErtuğrul, Ömer, Bassel Daher, Gülden Özgünaltay Ertuğrul, and Rabi Mohtar. 2024. "From Agricultural Waste to Energy: Assessing the Bioenergy Potential of South-Central Texas" Energies 17, no. 4: 802. https://doi.org/10.3390/en17040802
APA StyleErtuğrul, Ö., Daher, B., Özgünaltay Ertuğrul, G., & Mohtar, R. (2024). From Agricultural Waste to Energy: Assessing the Bioenergy Potential of South-Central Texas. Energies, 17(4), 802. https://doi.org/10.3390/en17040802