Sensitivity Assessment of Building Energy Performance Simulations Using MARS Meta-Modeling in Combination with Sobol’ Method
Abstract
:1. Introduction
2. Methodology
2.1. Statistical Performance Metrics
2.2. Morris’ Method
2.3. Sobol’ Method
2.4. Meta-Modeling
3. Case Study
4. Results and Discussion
4.1. Validation of Deterministic Simulations
4.2. Sensitivity Analysis Using Morris’ Method
4.3. Meta-Modeling
4.4. Sensitivity Analysis Using Sobol’ Method
5. Conclusions and Future Work
5.1. Conclusions
- In the first stage, two deterministic simulations are carried out. The comparative testing validation method is used to assess the deviation of the simulation results.
- In the second stage, the screening-based SA using Morris’ method is performed to identify the most important input parameters, which have a significant influence on the model output (annual energy consumption). In this stage, the number of uncertain parameters in the investigated case study is reduced from 105 to 44 prior to performing variance-based SA. The selected input parameters are used for constructing the meta-model.
- In the third stage, meta-modeling techniques are applied to tackle the computational costs of the variance-based SA, especially in cases of large numbers of time-consuming simulation runs. LHS, in combination with Monte Carlo simulation, is used to propagate uncertainties by running 400 simulation runs in the Dymola model and to generate a database for training and testing meta-models. A comparison study of the four meta-models, MARS, PR, RF, and SVR (based on the RBF kernel), is conducted. The results show that MARS is the most accurate meta-model in this study and provides a very precise prediction for the annual energy consumption compared to the original Dymola model.
- Finally, in the fourth stage, the variance-based SA using Sobol’ method is performed as a final, robust stage of SA. MARS is applied to implement uncertainty propagation based on Monte Carlo simulations (23,040 simulation runs). Running the MARS meta-model can be implemented faster and reduce the computational cost of Sobol’ sensitivity indices in comparison with the direct simulation of complex building models.
5.2. Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Index | Parameter | Baseline Point | Parameter Range (Lower and Upper Bounds) |
---|---|---|---|
Wall south | |||
1 | Conductivity layer 1 (plaster) | 0.140 W/(m·K) | [0.126, 0.154] |
2 | Density layer 1 (plaster) | 800 kg/m3 | [720, 880] |
3 | Specific heat capacity layer 1 (plaster) | 1500 J/(kg·K) | [1350, 1650] |
4 | Thickness layer 1 (plaster) | 0.005 m | [0.0045, 0.0055] |
5 | Conductivity layer 2 (insulation) | 0.040 W/(m·K) | [0.036, 0.044] |
6 | Density layer 2 (insulation) | 50 kg/m3 | [45, 55] |
7 | Specific heat capacity layer 2 (insulation) | 1000 J/(kg·K) | [900, 1100] |
8 | Thickness layer 2 (insulation) | 0.100 m | [0.09, 0.11] |
9 | Conductivity layer 3 (concrete) | 1.200 W/(m·K) | [1.08, 1.32] |
10 | Density layer 3 (concrete) | 2000 kg/m3 | [1800, 2200] |
11 | Specific heat capacity layer 3 (concrete) | 1000 J/(kg·K) | [900, 1100] |
12 | Thickness layer 3 (concrete) | 0.200 m | [0.18, 0.22] |
13 | Internal convective heat transfer coefficient | 2.5 W/(m2·K) | [2.25, 2.75] |
14 | External convective heat transfer coefficient | 8 W/(m2·K) | [7.2, 8.8] |
15 | Solar absorptance coefficient of external wall surface | 0.6 | [0.54, 0.66] |
16 | Longwave emission coefficient of internal wall surface | 0.9 | [0.81, 0.99] |
Wall west | |||
17 | Conductivity Layer 1 (plaster) | 0.140 W/(m·K) | [0.126, 0.154] |
18 | Density layer 1 (plaster) | 800 kg/m3 | [720, 880] |
19 | Specific heat capacity layer 1 (plaster) | 1500 J/(kg·K) | [1350, 1650] |
20 | Thickness layer 1 (plaster) | 0.005 m | [0.0045, 0.0055] |
21 | Conductivity layer 2 (insulation) | 0.040 W/(m·K) | [0.036, 0.044] |
22 | Density layer 2 (insulation) | 50 kg/m3 | [45, 55] |
23 | Specific heat capacity layer 2 (insulation) | 1000 J/(kg·K) | [900, 1100] |
24 | Thickness layer 2 (insulation) | 0.100 m | [0.09, 0.11] |
25 | Conductivity layer 3 (concrete) | 1.200 W/(m·K) | [1.08, 1.32] |
26 | Density layer 3 (concrete) | 2000 kg/m3 | [1800, 2200] |
27 | Specific heat capacity layer 3 (concrete) | 1000 J/(kg·K) | [900, 1100] |
28 | Thickness layer 3 (concrete) | 0.200 m | [0.18, 0.22] |
29 | Internal convective heat transfer coefficient | 2.5 W/(m2·K) | [2.25, 2.75] |
30 | External convective heat transfer coefficient | 8 W/(m2·K) | [7.2, 8.8] |
31 | Solar absorptance coefficient of external wall surface | 0.6 | [0.54, 0.66] |
32 | Longwave emission coefficient of internal wall surface | 0.9 | [0.81, 0.99] |
Wall north | |||
33 | Conductivity Layer 1 (plaster) | 0.140 W/(m·K) | [0.126, 0.154] |
34 | Density layer 1 (plaster) | 800 kg/m3 | [720, 880] |
35 | Specific heat capacity layer 1 (plaster) | 1500 J/(kg·K) | [1350, 1650] |
36 | Thickness layer 1 (plaster) | 0.005 m | [0.0045, 0.0055] |
37 | Conductivity layer 2 (insulation) | 0.040 W/(m·K) | [0.036, 0.044] |
38 | Density layer 2 (insulation) | 50 kg/m3 | [45, 55] |
39 | Specific heat capacity layer 2 (insulation) | 1000 J/(kg·K) | [900, 1100] |
40 | Thickness layer 2 (insulation) | 0.100 m | [0.09, 0.11] |
41 | Conductivity layer 3 (concrete) | 1.200 W/(m·K) | [1.08, 1.32] |
42 | Density layer 3 (concrete) | 2000 kg/m3 | [1800, 2200] |
43 | Specific heat capacity layer 3 (concrete) | 1000 J/(kg·K) | [900, 1100] |
44 | Thickness layer 3 (concrete) | 0.200 m | [0.18, 0.22] |
45 | Internal convective heat transfer coefficient | 2.5 W/(m2·K) | [2.25, 2.75] |
46 | External convective heat transfer coefficient | 8 W/(m2·K) | [7.2, 8.8] |
47 | Solar absorptance coefficient of external wall surface | 0.6 | [0.54, 0.66] |
48 | Longwave emission coefficient of internal wall surface | 0.9 | [0.81, 0.99] |
Wall east | |||
49 | Conductivity Layer 1 (plaster) | 0.140 W/(m·K) | [0.126, 0.154] |
50 | Density layer 1 (plaster) | 800 kg/m3 | [720, 880] |
51 | Specific heat capacity layer 1 (plaster) | 1500 J/(kg·K) | [1350, 1650] |
52 | Thickness layer 1 (plaster) | 0.005 m | [0.0045, 0.0055] |
53 | Conductivity layer 2 (insulation) | 0.040 W/(m·K) | [0.036, 0.044] |
54 | Density layer 2 (insulation) | 50 kg/m3 | [45, 55] |
55 | Specific heat capacity layer 2 (insulation) | 1000 J/(kg·K) | [900, 1100] |
56 | Thickness layer 2 (insulation) | 0.100 m | [0.09, 0.11] |
57 | Conductivity layer 3 (concrete) | 1.200 W/(m·K) | [1.08, 1.32] |
58 | Density layer 3 (concrete) | 2000 kg/m3 | [1800, 2200] |
59 | Specific heat capacity layer 3 (concrete) | 1000 J/(kg·K) | [900, 1100] |
60 | Thickness layer 3 (concrete) | 0.200 m | [0.18, 0.22] |
61 | Internal convective heat transfer coefficient | 2.5 W/(m2·K) | [2.25, 2.75] |
62 | External convective heat transfer coefficient | 8 W/(m2·K) | [7.2, 8.8] |
63 | Solar absorptance coefficient of external wall surface | 0.6 | [0.54, 0.66] |
64 | Longwave emission coefficient of internal wall surface | 0.9 | [0.81, 0.99] |
Ceiling | |||
65 | Conductivity Layer 1 (plaster) | 0.140 W/(m·K) | [0.126, 0.154] |
66 | Density layer 1 (plaster) | 800 kg/m3 | [720, 880] |
67 | Specific heat capacity layer 1 (plaster) | 1500 J/(kg·K) | [1350, 1650] |
68 | Thickness layer 1 (plaster) | 0.005 m | [0.0045, 0.0055] |
69 | Conductivity layer 2 (insulation) | 0.040 W/(m·K) | [0.036, 0.044] |
70 | Density layer 2 (insulation) | 50 kg/m3 | [45, 55] |
71 | Specific heat capacity layer 2 (insulation) | 1000 J/(kg·K) | [900, 1100] |
72 | Thickness layer 2 (insulation) | 0.100 m | [0.09, 0.11] |
73 | Conductivity layer 3 (concrete) | 1.200 W/(m·K) | [1.08, 1.32] |
74 | Density layer 3 (concrete) | 2000 kg/m3 | [1800, 2200] |
75 | Specific heat capacity layer 3 (concrete) | 1000 J/(kg·K) | [900, 1100] |
76 | Thickness layer 3 (concrete) | 0.200 m | [0.18, 0.22] |
77 | Internal convective heat transfer coefficient | 2.5 W/(m2·K) | [2.25, 2.75] |
78 | External convective heat transfer coefficient | 8 W/(m2·K) | [7.2, 8.8] |
79 | Solar absorptance coefficient of external wall surface | 0.6 | [0.54, 0.66] |
80 | Longwave emission coefficient of internal wall surface | 0.9 | [0.81, 0.99] |
Floor | |||
81 | Conductivity Layer 1 (plaster) | 0.140 W/(m·K) | [0.126, 0.154] |
82 | Density layer 1 (plaster) | 800 kg/m3 | [720, 880] |
83 | Specific heat capacity layer 1 (plaster) | 1500 J/(kg·K) | [1350, 1650] |
84 | Thickness layer 1 (plaster) | 0.005 m | [0.0045, 0.0055] |
85 | Conductivity layer 2 (insulation) | 0.040 W/(m·K) | [0.036, 0.044] |
86 | Density layer 2 (insulation) | 50 kg/m3 | [45, 55] |
87 | Specific heat capacity layer 2 (insulation) | 1000 J/(kg·K) | [900, 1100] |
88 | Thickness layer 2 (insulation) | 0.100 m | [0.09, 0.11] |
89 | Conductivity layer 3 (concrete) | 1.200 W/(m·K) | [1.08, 1.32] |
90 | Density layer 3 (concrete) | 2000 kg/m3 | [1800, 2200] |
91 | Specific heat capacity layer 3 (concrete) | 1000 J/(kg·K) | [900, 1100] |
92 | Thickness layer 3 (concrete) | 0.200 m | [0.18, 0.22] |
93 | Internal convective heat transfer coefficient | 2.5 W/(m2·K) | [2.25, 2.75] |
94 | External convective heat transfer coefficient | 8 W/(m2·K) | [7.2, 8.8] |
95 | Solar absorptance coefficient of external wall surface | 0.6 | [0.54, 0.66] |
96 | Longwave emission coefficient of internal wall surface | 0.9 | [0.81, 0.99] |
Window properties | |||
97 | Total surface area (window glazing + frame) | 3 m2 | [2.70, 3.30] |
98 | U-value (window glazing + frame) | 1.10 W/(m2·K) | [0.99, 1.21] |
99 | g-value (SHGC—Solar Heat Gain Coefficient) | 0.6 | [0.54, 0.66] |
Operation parameters | |||
100 | Infiltration rate | 0.5 1/h | [0.45, 0.55] |
101 | Convective internal heat gains | 80 W | [72, 88] |
102 | Radiative internal heat gains | 120 W | [108, 132] |
103 | Albedo (ground reflectance) | 0.2 | [0.18, 0.22] |
HVAC system | |||
104 | Heating set-point temperature | 20 °C | [18, 22] |
105 | Cooling set-point temperature | 28 °C | [25.2, 30.8] |
References
- Fumo, N. A review on the basics of building energy estimation. Renew. Sustain. Energy Rev. 2014, 31, 53–60. [Google Scholar] [CrossRef]
- Borgstein, E.; Lamberts, R.; Hensen, J. Evaluating energy performance in non-domestic buildings: A review. Energy Build. 2016, 128, 734–755. [Google Scholar] [CrossRef]
- de Wilde, P. The gap between predicted and measured energy performance of buildings: A framework for investigation. Autom. Constr. 2014, 41, 40–49. [Google Scholar] [CrossRef]
- Van Dronkelaar, C.; Dowson, M.; Burman, E.; Spataru, C.; Mumovic, D. A Review of the Regulatory Energy Performance Gap and Its Underlying Causes in Non-domestic Buildings. Front. Mech. Eng. 2016, 1, 17. [Google Scholar] [CrossRef]
- Bowman, N.T.; Lomas, K.J. Empirical validation of dynamic thermal computer models of buildings. Build. Serv. Eng. Res. Technol. 1985, 6, 153–162. [Google Scholar] [CrossRef]
- Judkoff, R. Validation of building energy analysis simulation programs at the solar energy research institute. Energy Build. 1988, 10, 221–239. [Google Scholar] [CrossRef]
- Judkoff, R.; Wortman, D.; O’Doherty, B.; Burch, J. Methodology for Validating Building Energy Analysis Simulations; Technical Report; National Renewable Energy Lab (NREL): Golden, CO, USA, 2008. [Google Scholar]
- Lauster, M.; Teichmann, J.; Fuchs, M.; Streblow, R.; Mueller, D. Low order thermal network models for dynamic simulations of buildings on city district scale. Build. Environ. 2014, 73, 223–231. [Google Scholar] [CrossRef]
- Roberti, F.; Oberegger, U.F.; Gasparella, A. Calibrating historic building energy models to hourly indoor air and surface temperatures: Methodology and case study. Energy Build. 2015, 108, 236–243. [Google Scholar] [CrossRef]
- Ferroukhi, M.Y.; Abahri, K.; Belarbi, R.; Limam, K.; Nouviaire, A. Experimental validation of coupled heat, air and moisture transfer modeling in multilayer building components. Heat Mass Transf. 2016, 52, 2257–2269. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, K.; Hong, T.; Yura, Y.; Hinokuma, R. A novel Variable Refrigerant Flow (VRF) heat recovery system model: Development and validation. Energy Build. 2018, 168, 399–412. [Google Scholar] [CrossRef]
- Kim, J.; Frank, S.; Im, P.; Braun, J.E.; Goldwasser, D.; Leach, M. Representing Small Commercial Building Faults in EnergyPlus, Part II: Model Validation. Buildings 2019, 9, 239. [Google Scholar] [CrossRef]
- Lee, S.H.; Hong, T. Validation of an inverse model of zone air heat balance. Build. Environ. 2019, 161, 106232. [Google Scholar] [CrossRef]
- Im, P.; New, J.R.; Joe, J. Empirical validation of building energy modeling using flexible research platform. In Proceedings of the Building Simulation 2019: 16th Conference of IBPSA, Rome, Italy, 2–4 September 2019; pp. 4515–4521. [Google Scholar]
- Halimov, A.; Lauster, M.; Müller, D. Development and validation of PCM models integrated into the high order building model of Modelica library—Aixlib. In Proceedings of the Building Simulation 2019: 16th Conference of IBPSA, Rome, Italy, 2–4 September 2019; pp. 4698–4705. [Google Scholar] [CrossRef]
- Kalogeras, G.; Rastegarpour, S.; Koulamas, C.; Kalogeras, A.P.; Casillas, J.; Ferrarini, L. Predictive capability testing and sensitivity analysis of a model for building energy efficiency. Build. Simul. 2020, 13, 33–50. [Google Scholar] [CrossRef]
- Gutiérrez, G.V.; Ramos Ruiz, G.; Fernández Bandera, C. Empirical and Comparative Validation for a Building Energy Model Calibration Methodology. Sensors 2020, 20, 5003. [Google Scholar] [CrossRef]
- Eriksson, M.; Akander, J.; Moshfegh, B. Development and validation of energy signature method—Case study on a multi-family building in Sweden before and after deep renovation. Energy Build. 2020, 210, 109756. [Google Scholar] [CrossRef]
- Shi, H.; Chen, Q. Building energy management decision-making in the real world: A comparative study of HVAC cooling strategies. J. Build. Eng. 2021, 33, 101869. [Google Scholar] [CrossRef]
- Yi, Z.; Lv, Y.; Xu, D.; Xu, J.; Qian, H.; Zhao, D.; Yang, R. Energy saving analysis of a transparent radiative cooling film for buildings with roof glazing. Energy Built Environ. 2021, 2, 214–222. [Google Scholar] [CrossRef]
- Eguía-Oller, P.; Martínez-Mariño, S.; Granada-Álvarez, E.; Febrero-Garrido, L. Empirical validation of a multizone building model coupled with an air flow network under complex realistic situations. Energy Build. 2021, 249, 111197. [Google Scholar] [CrossRef]
- Magni, M.; Ochs, F.; Streicher, W. Comprehensive analysis of the influence of different building modelling approaches on the results and computational time using a cross-compared model as a reference. Energy Build. 2022, 259, 111859. [Google Scholar] [CrossRef]
- Loutzenhiser, P.G.; Manz, H.; Moosberger, S.; Maxwell, G.M. An empirical validation of window solar gain models and the associated interactions. Int. J. Therm. Sci. 2009, 48, 85–95. [Google Scholar] [CrossRef]
- Tabares-Velasco, P.C.; Griffith, B. Diagnostic test cases for verifying surface heat transfer algorithms and boundary conditions in building energy simulation programs. J. Build. Perform. Simul. 2012, 5, 329–346. [Google Scholar] [CrossRef]
- Mateus, N.M.; Pinto, A.; da Graça, G.C. Validation of EnergyPlus thermal simulation of a double skin naturally and mechanically ventilated test cell. Energy Build. 2014, 75, 511–522. [Google Scholar] [CrossRef]
- Alaidroos, A.; Krarti, M. Experimental validation of a numerical model for ventilated wall cavity with spray evaporative cooling systems for hot and dry climates. Energy Build. 2016, 131, 207–222. [Google Scholar] [CrossRef]
- Sandels, C.; Brodén, D.; Widén, J.; Nordström, L.; Andersson, E. Modeling office building consumer load with a combined physical and behavioral approach: Simulation and validation. Appl. Energy 2016, 162, 472–485. [Google Scholar] [CrossRef]
- Cattarin, G.; Pagliano, L.; Causone, F.; Kindinis, A. Empirical and comparative validation of an original model to simulate the thermal behaviour of outdoor test cells. Energy Build. 2018, 158, 1711–1723. [Google Scholar] [CrossRef]
- Nageler, P.; Schweiger, G.; Pichler, M.; Brandl, D.; Mach, T.; Heimrath, R.; Schranzhofer, H.; Hochenauer, C. Validation of dynamic building energy simulation tools based on a real test-box with thermally activated building systems (TABS). Energy Build. 2018, 168, 42–55. [Google Scholar] [CrossRef]
- Barone, G.; Buonomano, A.; Forzano, C.; Palombo, A. Building Energy Performance Analysis: An Experimental Validation of an In-House Dynamic Simulation Tool through a Real Test Room. Energies 2019, 12, 4107. [Google Scholar] [CrossRef]
- Nouri, A.; Frisch, J.; van Treeck, C. Statistical methodologies for verification of building energy performance simulation. In Proceedings of the Building Simulation 2021: 17th Conference of IBPSA, Bruges, Belgium, 1–3 September 2021. [Google Scholar] [CrossRef]
- Tian, Z.; Love, J.A.; Tian, W. Applying quality control in building energy modelling: Comparative simulation of a high performance building. J. Build. Perform. Simul. 2009, 2, 163–178. [Google Scholar] [CrossRef]
- Lucchino, E.C.; Gelesz, A.; Skeie, K.; Gennaro, G.; Reith, A.; Serra, V.; Goia, F. Modelling double skin façades (DSFs) in whole-building energy simulation tools: Validation and inter-software comparison of a mechanically ventilated single-story DSF. Build. Environ. 2021, 199, 107906. [Google Scholar] [CrossRef]
- Heiselberg, P.; Brohus, H.; Hesselholt, A.; Rasmussen, H.; Seinre, E.; Thomas, S. Application of sensitivity analysis in design of sustainable buildings. Renew. Energy 2009, 34, 2030–2036. [Google Scholar] [CrossRef]
- Spitz, C.; Mora, L.; Wurtz, E.; Jay, A. Practical application of uncertainty analysis and sensitivity analysis on an experimental house. Energy Build. 2012, 55, 459–470. [Google Scholar] [CrossRef]
- Strachan, P.; Monari, F.; Kersken, M.; Heusler, I. IEA Annex 58: Full-scale Empirical Validation of Detailed Thermal Simulation Programs. Energy Procedia 2015, 78, 3288–3293. [Google Scholar] [CrossRef]
- Cattarin, G.; Pagliano, L.; Causone, F.; Kindinis, A.; Goia, F.; Carlucci, S.; Schlemminger, C. Empirical validation and local sensitivity analysis of a lumped-parameter thermal model of an outdoor test cell. Build. Environ. 2018, 130, 151–161. [Google Scholar] [CrossRef]
- Alongi, A.; Angelotti, A.; Mazzarella, L. A numerical model to simulate the dynamic performance of Breathing Walls. J. Build. Perform. Simul. 2021, 14, 155–180. [Google Scholar] [CrossRef]
- Raslan, R.; Davies, M. Results variability in accredited building energy performance compliance demonstration software in the UK: An inter-model comparative study. J. Build. Perform. Simul. 2010, 3, 63–85. [Google Scholar] [CrossRef]
- Shrestha, S.S.; Maxwell, G. Empirical validation of building energy simulation software: EnergyPlus. In Proceedings of the Building Simulation 2011: 12th Conference of IBPSA, Sydney, Australia, 14–16 November 2011. [Google Scholar]
- Tabares-Velasco, P.C.; Christensen, C.; Bianchi, M. Verification and validation of EnergyPlus phase change material model for opaque wall assemblies. Build. Environ. 2012, 54, 186–196. [Google Scholar] [CrossRef]
- Antretter, F.; Sauer, F.; Schöpfer, T.; Holm, A. Validation of a hygrothermal whole building simulation software. In Proceedings of the Building Simulation 2011: 12th Conference of IBPSA, Sydney, Australia, 14–16 November 2011. [Google Scholar]
- Zhu, D.; Hong, T.; Yan, D.; Wang, C. A detailed loads comparison of three building energy modeling programs: EnergyPlus, DeST and DOE-2.1E. Build. Simul. 2013, 6, 323–335. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Yoon, S.-H.; Park, C.-S. Stochastic comparison between simplified energy calculation and dynamic simulation. Energy Build. 2013, 64, 332–342. [Google Scholar] [CrossRef]
- Buonomano, A. Code-to-Code Validation and Application of a Dynamic Simulation Tool for the Building Energy Performance Analysis. Energies 2016, 9, 301. [Google Scholar] [CrossRef]
- Moronis, A.; Koulamas, C.; Kalogeras, A. Validation of a monthly quasi-steady-state simulation model for the energy use in buildings. In Proceedings of the 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Limassol, Cyprus, 12–15 September 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Nouri, A.; Nicolai, A.; Krämer, B.; Hirth, S.; Agudelo, J.; Seifert, C.; Malhotra, A.; Madjidi, M.; Frisch, J.; van Treeck, C. Entwicklung von Qualitätsstandards für die energetische Gebäude- und Anlagensimulation als Planungswerkzeug. In Proceedings of the BauSim Conference 2020: 8th Conference of IBPSA, Graz, Austria, 23–25 September 2020; pp. 79–86. [Google Scholar] [CrossRef]
- Zakula, T.; Badun, N.; Ferdelji, N.; Ugrina, I. Framework for the ISO 52016 standard accuracy prediction based on the in-depth sensitivity analysis. Appl. Energy 2021, 298, 117089. [Google Scholar] [CrossRef]
- Saltelli, A.; Ratto, M.; Tarantola, S.; Campolongo, F. Update 1 of: Sensitivity Analysis for Chemical Models. Chem. Rev. 2012, 112, PR1–PR21. [Google Scholar] [CrossRef]
- Tian, W. A review of sensitivity analysis methods in building energy analysis. Renew. Sustain. Energy Rev. 2013, 20, 411–419. [Google Scholar] [CrossRef]
- Yang, J. Convergence and uncertainty analyses in Monte-Carlo based sensitivity analysis. Environ. Model. Softw. 2011, 26, 444–457. [Google Scholar] [CrossRef]
- Saltelli, A.; Annoni, P. How to avoid a perfunctory sensitivity analysis. Environ. Model. Softw. 2010, 25, 1508–1517. [Google Scholar] [CrossRef]
- Hygh, J.S.; DeCarolis, J.F.; Hill, D.B.; Ranjithan, S.R. Multivariate regression as an energy assessment tool in early building design. Build. Environ. 2012, 57, 165–175. [Google Scholar] [CrossRef]
- McLeod, R.S.; Hopfe, C.J.; Kwan, A. An investigation into future performance and overheating risks in Passivhaus dwellings. Build. Environ. 2013, 70, 189–209. [Google Scholar] [CrossRef]
- Kristensen, M.H.; Petersen, S. Choosing the appropriate sensitivity analysis method for building energy model-based investigations. Energy Build. 2016, 130, 166–176. [Google Scholar] [CrossRef]
- Mechri, H.E.; Capozzoli, A.; Corrado, V. USE of the ANOVA approach for sensitive building energy design. Appl. Energy 2010, 87, 3073–3083. [Google Scholar] [CrossRef]
- Pang, Z.; O’Neill, Z.; Li, Y.; Niu, F. The role of sensitivity analysis in the building performance analysis: A critical review. Energy Build. 2020, 209, 109659. [Google Scholar] [CrossRef]
- Garcia Sanchez, D.; Lacarrière, B.; Musy, M.; Bourges, B. Application of sensitivity analysis in building energy simulations: Combining first- and second-order elementary effects methods. Energy Build. 2014, 68, 741–750. [Google Scholar] [CrossRef]
- Van Gelder, L.; Das, P.; Janssen, H.; Roels, S. Comparative study of metamodelling techniques in building energy simulation: Guidelines for practitioners. Simul. Model. Pract. Theory 2014, 49, 245–257. [Google Scholar] [CrossRef]
- Rivalin, L.; Stabat, P.; Marchio, D.; Caciolo, M.; Hopquin, F. A comparison of methods for uncertainty and sensitivity analysis applied to the energy performance of new commercial buildings. Energy Build. 2018, 166, 489–504. [Google Scholar] [CrossRef]
- Wate, P.; Iglesias, M.; Coors, V.; Robinson, D. Framework for emulation and uncertainty quantification of a stochastic building performance simulator. Appl. Energy 2020, 258, 113759. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer Series in Statistics; Springer Science & Business Media: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Chou, J.-S.; Bui, D.-K. Modeling heating and cooling loads by artificial intelligence for energy-efficient building design. Energy Build. 2014, 82, 437–446. [Google Scholar] [CrossRef]
- Hester, J.; Gregory, J.; Kirchain, R. Sequential early-design guidance for residential single-family buildings using a probabilistic metamodel of energy consumption. Energy Build. 2017, 134, 202–211. [Google Scholar] [CrossRef]
- Eisenhower, B.; O’neill, Z.; Narayanan, S.; Fonoberov, V.A.; Mezić, I. A methodology for meta-model based optimization in building energy models. Energy Build. 2012, 47, 292–301. [Google Scholar] [CrossRef]
- Jain, R.K.; Smith, K.M.; Culligan, P.J.; Taylor, J.E. Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy. Appl. Energy 2014, 123, 168–178. [Google Scholar] [CrossRef]
- Amasyali, K.; El-Gohary, N.M. A review of data-driven building energy consumption prediction studies. Renew. Sustain. Energy Rev. 2018, 81, 1192–1205. [Google Scholar] [CrossRef]
- Cheng, M.-Y.; Cao, M.-T. Accurately predicting building energy performance using evolutionary multivariate adaptive regression splines. Appl. Soft Comput. 2014, 22, 178–188. [Google Scholar] [CrossRef]
- Østergård, T.; Jensen, R.L.; Maagaard, S.E. A comparison of six metamodeling techniques applied to building performance simulations. Appl. Energy 2018, 211, 89–103. [Google Scholar] [CrossRef]
- Calleja Rodríguez, G.; Carrillo Andrés, A.; Domínguez Muñoz, F.; Cejudo López, J.M.; Zhang, Y. Uncertainties and sensitivity analysis in building energy simulation using macroparameters. Energy Build. 2013, 67, 79–87. [Google Scholar] [CrossRef]
- Bucking, S.; Zmeureanu, R.; Athienitis, A. A methodology for identifying the influence of design variations on building energy performance. J. Build. Perform. Simul. 2014, 7, 411–426. [Google Scholar] [CrossRef]
- Kim, Y.-J. Comparative study of surrogate models for uncertainty quantification of building energy model: Gaussian Process Emulator vs. Polynomial Chaos Expansion. Energy Build. 2016, 133, 46–58. [Google Scholar] [CrossRef]
- Morris, M.D. Factorial Sampling Plans for Preliminary Computational Experiments. Technometrics 1991, 33, 161. [Google Scholar] [CrossRef]
- Sobol′, I.M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 2001, 55, 271–280. [Google Scholar] [CrossRef]
- Burhenne, S.; Tsvetkova, O.; Jacob, D.; Henze, G.P.; Wagner, A. Uncertainty quantification for combined building performance and cost-benefit analyses. Build. Environ. 2013, 62, 143–154. [Google Scholar] [CrossRef]
- Helton, J.C.; Davis, F.J. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab. Eng. Syst. Saf. 2003, 81, 23–69. [Google Scholar] [CrossRef]
- Andersson, C.; Åkesson, J.; Führer, C. PyFMI: A Python Package for Simulation of Coupled Dynamic Models with the Functional Mock-up Interface; Technical Report; Lund University: Lund, Sweden, 2016; Available online: https://lup.lub.lu.se/record/961a50eb-e4a8-43bc-80ac-d467eef26193 (accessed on 22 January 2024).
- ASHRAE Guideline 14. Measurement of Energy and Demand Savings; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2002. [Google Scholar]
- FEMP. M&V Guidelines: Measurement and Verification for Performance-Based Contracts, Version 4.0; U.S. Department of Energy Federal Energy Management Program: Washington, DC, USA, 2015. [Google Scholar]
- IPMVP®. International Performance Measurement and Verification Protocol: Concepts and Options for Determining Energy and Water Savings; Efficiency Valuation Organization (EVO): Washington, DC, USA, 2002; Volume 1. [Google Scholar]
- Reddy, T.; Maor, I. ASHRAE Research Project 1051-RP: Procedures for Reconciling Computer-Calculated Results with Measured Energy Data; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Peachtree Corners, GA, USA, 2006. [Google Scholar]
- Campolongo, F.; Cariboni, J.; Saltelli, A. An effective screening design for sensitivity analysis of large models. Environ. Model. Softw. 2007, 22, 1509–1518. [Google Scholar] [CrossRef]
- Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Global Sensitivity Analysis. The Primer; John Wiley & Sons, Ltd.: London, UK, 2007. [Google Scholar] [CrossRef]
- Jin, R.; Chen, W.; Simpson, T. Comparative studies of metamodelling techniques under multiple modelling criteria. Struct. Multidiscip. Optim. 2001, 23, 1–13. [Google Scholar] [CrossRef]
- Brieman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: New York, NY, USA, 1995. [Google Scholar]
- Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; Haussler, D., Ed.; pp. 144–152. [Google Scholar] [CrossRef]
- Friedman, J.H. Multivariate Adaptive Regression Splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- Modelica®. A Unified Object-Oriented Language for Systems Modeling, Language Specification, Version 3.2.2 [Computer Software]. Available online: https://www.modelica.org/ (accessed on 30 October 2022).
- ANSI/ASHRAE/IES Standard 90.1; Energy Standard for Buildings Except Low-Rise Residential Buildings. American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2019.
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?” Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 1135–1144. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Red Hook, NY, USA, 4–9 December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 4768–4777. [Google Scholar]
Reference | Year | Validation Methods | Sensitivity Analysis | Metrics | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Empirical | Comparative | Analytical | MBE | NMBE | RMSE | CVRMSE | R2 | MAE | Other | |||
Judkoff et al. [7] | 2008 | X | X | X | X | |||||||
Loutzenhiser et al. [23] | 2009 | X | X | X | X | X | ||||||
Tian et al. [32] | 2009 | X | X | X | ||||||||
Raslan et al. [39] | 2010 | X | ||||||||||
Shrestha et al. [40] | 2011 | X | ||||||||||
Tabares-Velasco et al. [41] | 2011 | X | X | |||||||||
Antretter et al. [42] | 2011 | X | X | |||||||||
Tabares-Velasco et al. [24] | 2012 | X | X | X | X | |||||||
Spitz et al. [35] | 2012 | X | X | |||||||||
Zhu et al. [43] | 2013 | X | ||||||||||
Kim et al. [44] | 2013 | X | X | X | ||||||||
Lauster et al. [8] | 2014 | X | X | X | X | |||||||
Mateus et al. [25] | 2014 | X | X | X | X | X | ||||||
Strachan et al. [36] | 2015 | X | X | |||||||||
Roberti et al. [9] | 2015 | X | X | X | X | |||||||
Alaidroos and Krarti [26] | 2016 | X | X | X | X | |||||||
Sandels et al. [27] | 2016 | X | X | X | ||||||||
Ferroukhi et al. [10] | 2016 | X | X | X | ||||||||
Buonomano [45] | 2016 | X | ||||||||||
Moronis et al. [46] | 2017 | X | X | |||||||||
Cattarin et al. [28] | 2018 | X | X | X | X | |||||||
Cattarin et al. [37] | 2018 | X | X | |||||||||
Zhang et al. [11] | 2018 | X | X | X | ||||||||
Nageler et al. [29] | 2018 | X | X | X | X | X | ||||||
Kim et al. [12] | 2019 | X | X | X | ||||||||
Lee and Hong [13] | 2019 | X | X | X | ||||||||
Barone et al. [30] | 2019 | X | X | X | X | |||||||
Im et al. [14] | 2019 | X | X | X | ||||||||
Halimov et al. [15] | 2019 | X | X | X | X | X | ||||||
Kalogeras et al. [16] | 2020 | X | X | X | X | X | ||||||
Gutiérrez et al. [17] | 2020 | X | X | X | X | X | X | X | ||||
Eriksson et al. [18] | 2020 | X | X | X | X | X | ||||||
Nouri et al. [47] | 2020 | X | ||||||||||
Shi and Chen [19] | 2021 | X | X | X | X | X | X | |||||
Yi et al. [20] | 2021 | X | X | X | ||||||||
Alongi et al. [38] | 2021 | X | X | X | ||||||||
Catto Lucchino et al. [33] | 2021 | X | X | X | X | X | X | |||||
Nouri et al. [31] | 2021 | X | X | X | X | X | X | |||||
Zakula et al. [48] | 2021 | X | X | X | X | X | ||||||
Eguía-Oller et al. [21] | 2021 | X | X | X | X | X | ||||||
Magni et al. [22] | 2022 | X | X | X | X | X | X | X |
Metric | Formula | Equation |
---|---|---|
MBE | (3) | |
NMBE | (4) | |
RMSE | (5) | |
CVRMSE | (6) | |
GOF | (7) | |
R2 | (8) |
Layer Nr. | Components (Outside to Inside) | Thickness d [m] | Thermal Conductivity | Density | Specific Heat Capacity |
---|---|---|---|---|---|
1 | Plaster | 0.005 | 0.14 | 800 | 1500 |
2 | Thermal insulation | 0.100 | 0.04 | 50 | 1000 |
3 | Concrete | 0.200 | 1.20 | 2000 | 1000 |
Metrics | Comparison of Reference and Synthetic Models |
---|---|
MBE [W] | −32.28 |
NMBE [%] | −15.18 |
RMSE [W] | 43.10 |
CVRMSE [%] | 20.27 |
GOF [%] | 17.91 |
R2 | 0.97 |
Rank | Parameter | Unit | Index | μ* |
---|---|---|---|---|
1 | Cooling set-point | [°C] | 105 | 841.97 |
2 | g-value window | - | 99 | 300.56 |
3 | Window area | m2 | 97 | 220.35 |
4 | Heating set-point | [°C] | 104 | 129.51 |
5 | Internal heat gain (radiative) | W | 102 | 112.71 |
6 | Albedo | - | 103 | 80.10 |
7 | Internal heat gain (convective) | W | 101 | 77.70 |
8 | Solar absorptance ceiling | - | 79 | 58.59 |
9 | External convective coefficient wall west | W/(m2·K) | 30 | 57.46 |
10 | Solar absorptance west | - | 31 | 56.35 |
11 | External convective coefficient ceiling | W/(m2·K) | 78 | 54.48 |
12 | External convective coefficient wall east | W/(m2·K) | 62 | 47.37 |
13 | Solar absorptance east | - | 63 | 46.00 |
14 | Infiltration rate | 1/h (ACH) | 100 | 40.04 |
15 | Thickness floor layer 2 | m | 88 | 27.09 |
16 | U-value window | W/(m2·K) | 98 | 25.39 |
17 | Thickness ceiling layer 2 | m | 72 | 22.43 |
18 | Conductivity ceiling layer 2 | W/(m·K) | 69 | 20.78 |
19 | Conductivity floor layer 2 | W/(m·K) | 85 | 18.80 |
20 | Conductivity wall east layer 2 | W/(m·K) | 53 | 16.28 |
21 | External convective coefficient floor | W/(m2·K) | 94 | 14.77 |
22 | Internal convective coefficient wall east | W/(m2·K) | 61 | 14.35 |
22 | External convective coefficient wall south | W/(m2·K) | 14 | 14.35 |
24 | Internal convective coefficient wall west | W/(m2·K) | 29 | 14.25 |
25 | Solar absorptance wall south | - | 15 | 14.04 |
26 | Thickness wall west layer 2 | M | 24 | 13.58 |
27 | Conductivity wall west layer 2 | W/(m·K) | 21 | 13.05 |
28 | Thickness wall north layer 2 | M | 40 | 11.65 |
29 | Solar absorptance floor | - | 95 | 11.50 |
30 | External convective coefficient wall north | W/(m2·K) | 46 | 11.21 |
31 | Conductivity wall north layer 2 | W/(m·K) | 37 | 9.94 |
32 | Solar absorptance wall north | - | 47 | 9.72 |
33 | Internal convective coefficient ceiling | W/(m2·K) | 77 | 9.03 |
34 | Internal convective coefficient floor | W/(m2·K) | 93 | 7.48 |
35 | Thickness wall east layer 2 | m | 56 | 6.27 |
36 | Internal convective coefficient wall north | W/(m2·K) | 45 | 5.54 |
37 | Specific heat wall west layer 3 | J/(kg·K) | 27 | 4.12 |
38 | Specific heat wall east layer 3 | J/(kg·K) | 59 | 4.03 |
39 | Density wall east layer 3 | kg/m3 | 58 | 3.72 |
40 | Density wall west layer 3 | kg/m3 | 26 | 3.71 |
41 | Thickness wall south layer 2 | m | 8 | 3.52 |
42 | Conductivity wall south layer 2 | W/(m·K) | 5 | 3.30 |
43 | Internal convective coefficient wall south | W/(m2·K) | 13 | 2.74 |
44 | Thickness ceiling layer 3 | m | 76 | 2.55 |
Meta-Model | MBE [kWh] | NMBE [%] | RMSE [kWh] | CVRMSE [%] | GOF [%] | R2 |
---|---|---|---|---|---|---|
MARS | −0.73 | −0.04 | 33.60 | 1.74 | 1.23 | 0.99 |
PR | −13.32 | −0.69 | 52.48 | 2.71 | 1.98 | 0.97 |
RF | −7.94 | −0.41 | 104.32 | 5.39 | 3.82 | 0.88 |
SVR (kernel: RBF) | −9.28 | −0.48 | 115.56 | 5.97 | 4.24 | 0.85 |
Rank | Parameter | Unit | ST |
---|---|---|---|
1 | Cooling set-point | [°C] | 0.7656 |
2 | g-value window | - | 0.0960 |
3 | Window area | m2 | 0.0768 |
4 | Heating set-point | [°C] | 0.0140 |
5 | Internal heat gain (radiative) | W | 0.0113 |
6 | Albedo | - | 0.0067 |
7 | Internal heat gain (convective) | W | 0.0063 |
8 | Solar absorptance ceiling | - | 0.0040 |
9 | External convective coeff. ceiling | W/(m2 K) | 0.0034 |
10 | Solar absorptance west | - | 0.0030 |
11 | External convective coeff. east | W/(m2 K) | 0.0025 |
12 | Solar absorptance east | - | 0.0021 |
13 | External convective coeff. west | W/(m2 K) | 0.0021 |
14 | Infiltration rate | 1/h (ACH) | 0.0020 |
15 | U-value window | W/(m2 K) | 0.0016 |
16 | Solar absorptance south | - | 0.0012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nouri, A.; van Treeck, C.; Frisch, J. Sensitivity Assessment of Building Energy Performance Simulations Using MARS Meta-Modeling in Combination with Sobol’ Method. Energies 2024, 17, 695. https://doi.org/10.3390/en17030695
Nouri A, van Treeck C, Frisch J. Sensitivity Assessment of Building Energy Performance Simulations Using MARS Meta-Modeling in Combination with Sobol’ Method. Energies. 2024; 17(3):695. https://doi.org/10.3390/en17030695
Chicago/Turabian StyleNouri, Amin, Christoph van Treeck, and Jérôme Frisch. 2024. "Sensitivity Assessment of Building Energy Performance Simulations Using MARS Meta-Modeling in Combination with Sobol’ Method" Energies 17, no. 3: 695. https://doi.org/10.3390/en17030695
APA StyleNouri, A., van Treeck, C., & Frisch, J. (2024). Sensitivity Assessment of Building Energy Performance Simulations Using MARS Meta-Modeling in Combination with Sobol’ Method. Energies, 17(3), 695. https://doi.org/10.3390/en17030695