Classification and Parametric Analysis of Solar Hybrid PVT System: A Review
Abstract
:1. Introduction
2. Hybrid PVT System and Classifications
- A distinct portion of the solar spectrum is used by both photovoltaic and thermal collectors.
- The visible light portion is used by the solar cell, and infrared waves are used by the collectors.
- Combining the two technologies in a tandem solar cell could lead to a more efficient use of the solar spectrum.
- By employing this system, the installation costs will be split between both systems and lower the overall cost compared to the separate systems, which will reduce the total costs, and this is the most significant benefit. Additionally, it requires less space for installation.
- The PVT system’s additional advantage is that it reduces the building temperature during the summer by improving surface shading and building isolation. Finally, the architecture of the buildings will be beautiful because of the use of PVT rather than two separate systems.
2.1. PVT Classification
2.2. Results
3. Parameters and Optimization Analysis
Results Analysis
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Waeli, A.H.A.; Kazem, H.A.; Chaichan, M.T.; Sopian, K. A review of photovoltaic thermal systems: Achievements and applications. Int. J. Energy Res. 2020, 45, 1269–1308. [Google Scholar] [CrossRef]
- Al-Waeli, A.H.A.; Sopian, K. Photovoltaic/Thermal (PV/T) systems: Status and future prospects. Renew. Sustain. Energy Rev. 2017, 77, 109–130. [Google Scholar] [CrossRef]
- Zervos, A.; Lins, C.; Muth, J. RE-Thinking 2050: A 100% Renewable Energy Vision for the European Union; EREC: Brussels, Belgium, 2010. [Google Scholar]
- Qureshi, U.; Baredar, P.; Kumar, A. Effect of weather conditions on the hybrid solar PV/T collector in variation of voltage and current. Int. J. Res. 2014, 1, 872–879. [Google Scholar]
- Chaichan, M.T.; Kazem, H.A. Generating Electricity Using Photovoltaic Solar Plants in Iraq; Springer International Publishing AG: Cham, Switzerland, 2018. [Google Scholar]
- International Energy Agency. Sol. PV. 2020. Available online: https://www.iea.org/reports/solar-pv (accessed on 25 June 2021).
- Solar Power Europe. EU Market Outlook for Solar Power 2022–2026. Available online: https://api.solarpowereurope.org/uploads/5222_SPE_EMO_2022_full_report_ver_03_1_319d70ca42.pdf (accessed on 16 July 2023).
- Ahmed, M.T.; Gonçalves, T.; Tlemçani, M. Single diode model parameters analysis of photovoltaic cell. In Proceedings of the 5th International Conference on Renewable Energy Research & Applications, Birmingham, UK, 20–23 November 2016. [Google Scholar]
- Camargo, R.L.; Zink, R.; Dorner, W.; Stoeglehner, G. Spatio-temporal modeling of rooftop PV panels for improved technical potential assessment and electricity peak load off setting at the municipal scale. Comput. Environ. Urban Syst. 2015, 52, 58–69. [Google Scholar] [CrossRef]
- Rodrigyuez, G.D. A utility perspective of the role of energy storage in the smart grid. In Proceedings of the Power and Energy Society General Meeting (IEEE), Minneapolis, MN, USA, 25–29 July 2010. [Google Scholar]
- Dolara, A.; Leva, S.; Manzolini, G. Comparison of different physical models for PV power output prediction. Sol. Energy 2015, 119, 83–99. [Google Scholar] [CrossRef]
- Huld, T.; Amillo, A.M.G. Estimating PV module performance over large geographical regions: The role of irradiance, air temperature, wind speed and solar spectrum. Energies 2015, 8, 5159–5181. [Google Scholar] [CrossRef]
- Liou, H.M. Overview of the PV technology status and perspective in Taiwan. Renew. Sustain. Energy 2010, 14, 1202–1215. [Google Scholar] [CrossRef]
- Schindler, F.; Michl, B.; Krenckel, P.; Riepe, S.; Benick, J.; Muller, R.; Richter, A.; Glunz, S.W.; Schubert, M.C. How to achieve efficiencies exceeding 22% with multi-crystalline n-type silicon solar cells. Energy Procedia 2017, 124, 777–780. [Google Scholar] [CrossRef]
- Tiwari, G.N.; Mishra, R.K.; Solanki, S.C. Photovoltaic modules and their applications: A review on thermal modelling. Appl. Energy 2011, 88, 2287–2304. [Google Scholar] [CrossRef]
- Debberma, M.; Sudhakar, K.; Baredar, P. Thermal modeling, exergy analysis, performance of BIPV and BIPVT: A review. Renew. Sustain. Energy Rev. 2017, 73, 1276–1288. [Google Scholar] [CrossRef]
- Xie, K.; Guo, M.; Liu, X.; Huang, H. Enhanced efficiencies in thin and semi-transparent dye-sensitized solar cells under low photon flux conditions using TiO2 nanotube photonic crystal. J. Power Source 2015, 293, 170–177. [Google Scholar] [CrossRef]
- Shaikh, J.S.; Shaikh, N.S.; Shaikh, A.D.; Mali, S.S.; Kale, A.J.; Kanjanaboos, P.; Hong, C.K.; Kim, J.K.; Patil, P.S. Perovskite solar cells: In pursuit of efficiency and stability. Mater. Des. 2017, 136, 54–80. [Google Scholar] [CrossRef]
- Leva, S.; Dolara, A.; Grimaccia, F.; Mussetta, M.; Ogliari, E. Analysis and validation of 24 h ahead neural network forecasting of PV output power. Math Comput. Simul. 2017, 131, 88–100. [Google Scholar] [CrossRef]
- Katsumata, N.; Nakada, Y.; Minemoto, T.; Takakura, H. Estimation of irradiance and outdoor performance of PV modules by meteorological data. Sol. Energy Mater. Sol. Cells 2011, 95, 199–202. [Google Scholar] [CrossRef]
- Chaichan, M.T.; Kazem, H.A. Experimental analysis of solar intensity on PV in hot and humid weather conditions. Int. J. Sci. Eng. Res. 2016, 7, 91–96. [Google Scholar]
- Diwania, S.; Agrawal, S.; Siddiqui, A.S.; Singh, S. Photovoltaic–thermal (PV/T) technology: A comprehensive review on applications and its advancement. Int. J. Energy Environ. Eng. 2020, 11, 33–54. [Google Scholar] [CrossRef]
- Available online: https://www.fluxim.com/absorption-module (accessed on 7 June 2023).
- Fudholi, A.; Sopian, K.; Yazdi, M.H.; Ruslan, M.H.; Ibrahim, A.; Kazem, H.A. Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Convers. Manag. 2014, 78, 641–651. [Google Scholar] [CrossRef]
- Sopian, K.; Alwaeli, A.H.A.; Kazem, H.A. Advanced photovoltaic thermal collectors. J. Mech. Eng. 2020, 234, 206–213. [Google Scholar] [CrossRef]
- Ramos, C.A.F.; Alcaso, A.N.; Cardoso, A.J.M. Photovoltaic-thermal (PVT) technology: Review and case study. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 354. [Google Scholar]
- Ahmed, M.T.; Rashel, M.R.; Janeiro, F.M.; Tlemçani, M. MATHEMATICAL MODELLING AND SIMULATION TECHNIQUES REVIEW FOR HYBRID PHTOVOLTAIC THERMAL SYSTEM. In Proceedings of the SYMCOMP 2021 Évora, Evora, Portugal, 25–26 March 2021. [Google Scholar]
- Naves, A.X.; Barreneche, C.; Fernández, A.I.; Cabeza, L.F.; Haddad, A.N.; Boer, D. Life cycle costing as a bottom line for the life cycle sustainability assessment in the solar energy sector: A review. Sol. Energy 2019, 192, 238–262. [Google Scholar] [CrossRef]
- Molaei, M.J. The optical properties and solar energy conversion applications of carbon quantum dots: A review. Sol. Energy 2020, 196, 549–566. [Google Scholar] [CrossRef]
- Yang, K.Y.; Lee, W.; Jeon, J.Y.; Ha, T.J.; Kim, Y.H. Controlling the visibility of embedded silicon solar cells in building-integrated photovoltaic windows using surface structure modification and metal-oxide back coating. Sol. Energy 2020, 197, 99–104. [Google Scholar] [CrossRef]
- Trindade, A.; Cordeiro, L. Automated formal verification of stand-alone solar photovoltaic systems. Sol. Energy 2019, 193, 684–691. [Google Scholar] [CrossRef]
- Joshi, S.; Dhoble, A.S. Photovoltaic—Thermal systems (PVT): Technology review and future trends. Renew. Sustain. Energy Rev. 2018, 92, 848–882. [Google Scholar] [CrossRef]
- Wolf, M. Performance analyses of combined heating and photovoltaic power systems for residences. Energy Convers. 1976, 16, 79–90. [Google Scholar] [CrossRef]
- Ahmed, M.T.; Rashel, M.R.; Ahmed, M.T. Tlemçani. A Study of Thermal Regulations and Efficiency Analysis in Hybrid PVT Panel. In Proceedings of the 6th International Conference on Numerical and Symbolic Computation Developments and Applications, Evora, Portugal, 30–31 March 2023. [Google Scholar]
- Florschuetz, L.W. Extension of the hottel-whillier model to the analysis of combined photovoltaic/thermal flat plate collectors. Sol. Energy 1979, 22, 361–366. [Google Scholar] [CrossRef]
- Fine, J.P.; Dworkin, S.B.; Friedman, J. A methodology for predicting hybrid solar panel performance in different operating modes. Renew. Energy 2019, 130, 1198–1206. [Google Scholar] [CrossRef]
- Khelifa, A.; Touafek, K.; Moussa, H.B.; Ismail, T. Analysis of a hybrid solar collector photovoltaic thermal (PVT). Energy Procedia 2015, 74, 835–843. [Google Scholar] [CrossRef]
- Magrassi, F.; Rocco, E.; Barberis, S.; Gallo, M.; Del, B.A. Hybrid solar power system versus photovoltaic plant: A comparative analysis through a life cycle approach. Renew. Energy 2019, 130, 290–304. [Google Scholar] [CrossRef]
- Herez, A.; El-Hage, H.H.; Lemenand, T.; Ramadan, M.; Khaled, M. Review on photovoltaic/thermal hybrid solar collectors: Classifications, applications and new systems. Sol. Energy 2020, 207, 1321–1347. [Google Scholar] [CrossRef]
- Abdelrazik, A.S.; Al-Sulaiman, F.A.; Saidur, R.; Ben-Mansour, R. A review on recent development for the design and packaging of hybrid photovoltaic/thermal (PVT) solar systems Renew. Sustain. Energy Rev. 2018, 95, 110–129. [Google Scholar] [CrossRef]
- Al-Sabounchi, A.M.; Yalyali, S.A.; Al-Thani, H.A. Design and performance evaluation of a PV grid-connected system in hot weather conditions. Renew. Energy 2013, 53, 71–78. [Google Scholar] [CrossRef]
- Gasparin, F.P.; Buhler, A.J.; Rampinelli, G.A.; Krenzinger, A. Statistical analysis of I–V curve parameters from PV modules. Sol. Energy 2016, 131, 30–38. [Google Scholar] [CrossRef]
- Chow, T.T.; He, W.; Chan, A.L.S.; Fong, K.F.; Lin, Z.; Ji, J. Computer modeling and experimental validation of a building-integrated PV and water heating system. Appl. Therm. Eng. 2008, 28, 1356–1364. [Google Scholar] [CrossRef]
- Bazilian, M.D.; Leerders, F.; Van Der Ree, B.G.C.; Prasad, D.P.V. Cogeneration in the built environment. Sol. Energy 2001, 71, 57–69. [Google Scholar] [CrossRef]
- Ahmed, M.T.; Rashel, M.R.; Tlemçani, M. Parametric Study and Efficiency Analysis Hybrid PVT System. In Proceedings of the AMPSECA, Marrakech, Morocco, 25–26 May 2023. [Google Scholar]
- Samykano, M. Hybrid Photovoltaic Thermal Systems: Present and Future Feasibilities for Industrial and Building Applications. Buildings 2023, 13, 1950. [Google Scholar] [CrossRef]
- Herrando, M.; Wang, K.; Huang, G.; Otanicar, T.; Mousa, O.B.; Agathokleous, R.A.; Ding, Y.; Kalogirou, S.; Ekins-Daukes, N.; Taylor, R.A.; et al. A Review of Solar Hybrid Photovoltaic-Thermal (PV-T) Collectors and Systems. Prog. Energy Combust. Sci. 2023, 97, 101072. [Google Scholar] [CrossRef]
- Va, T.; Sekhar, R. Hybrid Photovoltaic/Thermal (PVT) Collector Systems with Different Absorber Configurations for Thermal Management—A Review. Energy Environ. 2021, 34. [Google Scholar] [CrossRef]
- Dewangan, D.; Ekka, J.P.; Arjunan, T.V. Solar photovoltaic thermal system: A comprehensive review on recent design and development, applications and future prospects in research. Int. J. Ambient Energy 2022, 43, 7247–7271. [Google Scholar] [CrossRef]
- Abdin, Z.U. Modeling and Control of Hybrid PV Thermal Panels. Modeling and Simulation. Ph.D. Thesis, Université de Picardie Jules Verne, Amiens, France, 2022. NNT: 2022AMIE0057. [Google Scholar]
- Zhou, B.; Pei, J.; Nasir, D.M.; Zhang, J. A review on solar pavement and photovoltaic/thermal (PV/T) system. Transp. Res. Part D Transp. Environ. 2021, 93, 102753. [Google Scholar] [CrossRef]
- Bandaru, S.H.; Becerra, V.; Khanna, S.; Radulovic, J.; Hutchinson, D.; Khusainov, R. A Review of Photovoltaic Thermal (PVT) Technology for Residential Applications: Performance Indicators, Progress, and Opportunities. Energies 2021, 14, 3853. [Google Scholar] [CrossRef]
- Rajoria, C.S.; Kumar, R.; Sharma, A.; Singh, D.; Suhag, S. Development of flat-plate building integrated photovoltaic/thermal (BIPV/T) system: A review. Mater. Today Proc. 2020, 46, 5342–5352. [Google Scholar] [CrossRef]
- Noxpanco, M.G.; Wilkins, J.; Riffat, S. A Review of the Recent Development of Photovoltaic/Thermal (PV/T) Systems and Their Applications. Future Cities Environ. 2020, 6, 9. [Google Scholar] [CrossRef]
- Sredendek, K.; Seme, S. A review of hybrid photovoltaic/thermal systems. J. Energy Technol. 2019, 12, 39–49. [Google Scholar]
- Yuting, J.; Guruprasad, A.; Guiyin, F. Development and applications of photovoltaic–thermal systems: A review. Renew. Sustain. Energy Rev. 2019, 102, 249–265. [Google Scholar]
- Abdullah, A.L.; Misha, S.; Tamaldin, N.; Rosli MA, M.; Sachit, F.A. Technology Progress on Photovoltaic Thermal (PVT) Systems with Flat-Plate Water Collector Designs: A Review. J. Adv. Res. Fluid Mech. Therm. Sci. 2019, 59, 107–141. [Google Scholar]
- Sachit, F.A.; Tamaldin, N.; Rosli, M.A.M.; Misha, S.; Abdullah, A.L. Current progress on flat-plate water collector design in photovoltaic thermal (PV/T) systems: A review. J. Adv. Res. Dyn. Control Syst. 2018, 10, 680–689. [Google Scholar]
- Keizer, C.D.; Bottse, J.; Jong, M.D.; Folkerts, W. An Overview of PVT modules on the European Market and the Barriers and Opportunities for the Dutch Market. In Proceedings of the ISES EuroSun 2018 Conference, Rapperswil, Switzerland, 10–13 September 2018. [Google Scholar]
- Babu, C. The role of thermoelectric generators in the hybrid PV/T systems: A review. Energy Convers. Manag. 2017, 151, 368–385. [Google Scholar] [CrossRef]
- Sathe, T.M.; Dhoble, A.S. A review on recent advancements in photovoltaic thermal techniques. Renew. Sustain. Energy Rev. 2017, 76, 645–672. [Google Scholar] [CrossRef]
- Lamnatou, C.; Chemisana, D. Photovoltaic/thermal (PVT) systems: A review with emphasis on environmental issues. Renew. Energy 2017, 105, 270–287. [Google Scholar] [CrossRef]
- Al-waeli, A.H.; Sopian, K.B.; Kazem, H.A.; Chaichan, M.T. Photovoltaic Solar Thermal (PV/T) Collectors Past, Present and Future: A Review. Int. J. Appl. Eng. Res. 2016, 11, 10757–10765. [Google Scholar]
- Tyagi, V.V.; Kaushik, S.C.; Tyagi, S.K. Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology. Renew. Sustain. Energy Rev. 2012, 16, 1383–1398. [Google Scholar] [CrossRef]
- Avezov, R.R.; Akhatov, J.; Avezova, N.R. A Review on Photovoltaic-Thermal (PV–T) Air and Water Collectors. Appl. Sol. Energy 2011, 47, 169–183. [Google Scholar] [CrossRef]
- Hasan, M.A.; Sumathy, K. Photovoltaic thermal module concepts and their performance analysis: A review. Renew. Sustain. Energy Rev. 2010, 14, 1845–1859. [Google Scholar] [CrossRef]
- Ahliouati, M.; Rabie, E.O.; Kandoussi, K.; Boutaous, M.; Amal, L.; Louzazni, M.; Daya, A. Energetic and parametric studies of a basic hybrid collector (PV/T-Air) and a photovoltaic (PV) module for building applications: Performance analysis under El Jadida weather conditions. Mater. Sci. Energy Technol. 2023, 6, 267–281. [Google Scholar] [CrossRef]
- Pathak, P.K.; Ghoshroy, D.; Yadav, A.K.; Padmanaban, S.; Blaabjerg, F.; Khan, B. A State-of-the-Art Review on Heat Extraction Methodologies of Photovoltaic/Thermal System. IEEE Access 2023, 11, 49738–49759. [Google Scholar] [CrossRef]
- Azad, A.K.; Parvin, S. Photovoltaic thermal (PV/T) performance analysis for different flow regimes: A comparative numerical study. Int. J. Thermofluids 2023, 18, 1000319. [Google Scholar] [CrossRef]
- Barbu, M.; Siroux, M.; Darie, G. Performance Analysis and Comparison of an Experimental Hybrid PV, PVT and Solar Thermal System Installed in a Preschool in Bucharest, Romania. Energies 2023, 16, 5321. [Google Scholar] [CrossRef]
- Herez, A.; Jabe, H.; El-hage, H.H.; Lemenand, T.; Chahine, K.; Ramadan, M.; Khaled, M. Parabolic trough photovoltaic thermoelectric hybrid system: Simulation model, parametric analysis, and practical recommendations. Int. J. Thermofluids 2023, 17, 100309. [Google Scholar] [CrossRef]
- Ajel, M.G.; Gedik, E.; Wahhab, H.A.A.; Shallal, B.A. Performance Analysis of an Open-Flow Photovoltaic/Thermal (PV/T) Solar Collector with Using a Different Fins Shapes. Sustainability 2023, 15, 3877. [Google Scholar] [CrossRef]
- Farjad, M.; Soloveva, T.A. Performance Analysis of Solar Water Heating (SWH) and Photovoltaic-Thermal (PVT) Systems in Vladivostok, Russia. JP J. Heat Mass Transf. 2023, 32, 15–29. [Google Scholar] [CrossRef]
- Madas, S.R.; Narayanan, R.; Gudimetla, P. A systematic review on furtherance of photovoltaic thermal panel technology. In Proceedings of the 3rd International Conference on Energy and Power (ICEP2021), Chiang Mai, Thailand, 18–20 November 2021. [Google Scholar]
- Nascimento, V.F.; Yahyaoui, I.; Fiorotti, R.; Amorim, A.E.A.; Belisario, I.C.; Abreu, C.E.S.; Rocha, H.R.O.; Tadeo, F. Dimensioning and efficiency evaluation of a hybrid photovoltaic thermal system in a tropical climate region. Sustain. Energy Grids Netw. 2022, 32, 100954. [Google Scholar] [CrossRef]
- Yousif, J.H. Prediction and evaluation of photovoltaic-thermal energy systems production using artificial neural network and experimental dataset. Therm. Eng. 2021, 27, 101297. [Google Scholar] [CrossRef]
- Amal, H.; Hicham, E.H.; Hierry, L.; Mohamad, R.; Mahmoud, K. Parabolic trough photovoltaic/thermal hybrid system: Thermal modeling and parametric analysis. Renew. Energy Elsevier 2021, 165, 224–236. [Google Scholar]
- Ventura, C.; Tina, G.M.; Gagliano, A.; Aneli, S. Enhanced models for the evaluation of electrical efficiency of PV/T modules. Sol. Energy 2021, 224, 531–544. [Google Scholar] [CrossRef]
- Hossain, R.; Ahmed, A.J.; Islam, S.M.K.N.; Saha, N.; Debnath, P.; Kouzani, A.Z.; Mahmud, M.A.P. New Design of Solar Photovoltaic and Thermal Hybrid System for Performance Improvement of Solar Photovoltaic. Int. J. Photoenergy 2020, 2020, 8825489. [Google Scholar] [CrossRef]
- Dwivedi, P.; Sudhakar, K.; Soni, A.; Solomin, E.; Kirpichinikova, I. Advanced cooling techniques of P.V. modules: A state of art. Case Stud. Therm. Eng. 2020, 21, 100674. [Google Scholar] [CrossRef]
- Khordehgah, N.; Zabnienska-Gora, A.; Jouhara, H. Energy Performance Analysis of a PV/T System Coupled with Domestic Hot Water System. ChemEngineering 2020, 4, 22. [Google Scholar] [CrossRef]
- Abdul-Ganiyu, S.; Quansah, D.A.; Ramde, W.W.; Seidu, R.; Adaramola, M.S. Investigation of Solar Photovoltaic-Thermal (PVT) and Solar Photovoltaic (PV) Performance: A Case Study in Ghana. Energies 2020, 13, 2701. [Google Scholar] [CrossRef]
- Barbu, M.; Darie, G.; Siroux, M. Analysis of a Residential Photovoltaic-Thermal (PVT) System in Two Similar Climate Conditions. Energies 2019, 12, 3595. [Google Scholar] [CrossRef]
- Antony, A.; Wang, Y.D.; Roskilly, A.P. A detailed optimisation of solar photovoltaic/thermal systems and its application. Energy Procedia 2019, 158, 1141–1148. [Google Scholar] [CrossRef]
- Abdullah, A.L.; Misha, S.; Tamaldin, N.; Rosli, M.A.M.; Sachit, F.A. Hybrid Photovoltaic Thermal PVT Solar Systems Simulation via Simulink/Matlab. CFD Lett. 2019, 4, 64–78. [Google Scholar]
- Fuentes, M.; Vivar, M.; Casa, J.D.L.; Aguilera, J. An experimental comparison between commercial hybrid PV-T and simple PV systems intended for BIPV. Renew. Sustain. Energy Rev. 2018, 93, 110–120. [Google Scholar] [CrossRef]
- Nasir, F.H.M.; Husaini, Y. MATLAB Simulation of Photovoltaic and Photovoltaic/Thermal Systems Performance. IOP Conf. Ser. Mater. Sci. Eng. 2018, 341, 012019. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Malek, A.B.M.A.; Islam, M.M.; Pandey, A.K.; Rahim, N.A. Global advancement of cooling technologies for PV systems: A review. Sol. Energy 2016, 137, 25–45. [Google Scholar] [CrossRef]
- Sargunanathan, S.; Elango, A.; Mohideen, S.T. Performance enhancement of solar photovoltaic cells using effective cooling methods: A review. Renew. Sustain. Energy Rev. 2016, 64, 382–393. [Google Scholar] [CrossRef]
- Oussama, R.; Houcine, D.; Abdelmajid, J. A numerical investigation of a photovoltaic thermal (PV/T) collector. Renew. Energy 2015, 77, 43–50. [Google Scholar]
- Khelifa, A.; Touafek, K.; Moussa, H.B.; Tabet, I. A numerical modeling of hybrid photovoltaic/thermal (PV/T) collector. Sol. Energy 2016, 135, 169–176. [Google Scholar] [CrossRef]
- Moradia, M.; Ebadian, M.A.; Lin, C.-X. A review of PV/T technologies: Effects of control parameters. Int. J. Heat Mass Transf. 2013, 64, 483–500. [Google Scholar] [CrossRef]
- Bahaidarah, H.; Subhan, A.; Gandhidasan, P.; Rehman, S. Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions. Energy 2013, 59, 445–453. [Google Scholar] [CrossRef]
- Chow, T.T. A review on photovoltaic/thermal hybrid solar technology. Appl. Energy 2010, 87, 365–379. [Google Scholar] [CrossRef]
- Tiwari, A.; Sodha, M.S. Performance evaluation of hybrid PV/thermal water/air heating system: A parametric study. Renew. Energy 2006, 31, 2460–2474. [Google Scholar] [CrossRef]
- Islam, M.; Rashel, M.R.; Ahmed, M.T.; Islam, A.K.M.; Tlemçani, M. Artificial Intelligence in Photovoltaic Fault Identification and Diagnosis: A Systematic Review. Energies 2023, 16, 7417. [Google Scholar] [CrossRef]
Reference | Year | Classification | Types |
---|---|---|---|
[46] | 2023 | PVT Systems |
|
[47] | 2023 | PVT Collectors |
|
[48] | 2023 | PVT System |
|
[49] | 2022 | PVT Collector |
|
[50] | 2022 | PVT Collector |
|
[51] | 2021 | PVT Collector |
|
[52] | 2021 | PVT Systems |
|
[39] | 2020 | PVT Collectors |
|
[53] | 2020 | BIPVT |
|
[54] | 2020 | PVT Systems |
|
[55] | 2020 | PVT System |
|
[56] | 2019 | PVT System |
|
[57] | 2019 | PVT System |
|
[58] | 2019 | PVT Collector |
|
[59] | 2019 | PVT System |
|
[60] | 2018 | PVT Systems |
|
[61] | 2018 | PVT System |
|
[62] | 2018 | PVT System |
|
[63] | 2017 | PVT Collectors |
|
[64] | 2017 | PVT System |
|
[65] | 2017 | PVT Collector |
|
[66] | 2016 | PVT System |
|
[67] | 2012 | PVT Collectors |
|
[68] | 2011 | PVT Collector |
|
[69] | 2010 | PVT Products |
|
Reference | Year | Analysis Topic | Parameters |
---|---|---|---|
[67] | 2023 | Parametric |
|
[47] | 2023 | Optimization |
|
[68] | 2023 | Parametric |
|
[69] | 2023 | Parametric |
|
[70] | 2023 | Parametric |
|
[71] | 2023 | Parametric |
|
[72] | 2023 | Parametric |
|
[73] | 2023 | Parametric |
|
[74] | 2022 | Parametric |
|
[75] | 2022 | Optimization |
|
[76] | 2021 | Optimization |
|
[52] | 2021 | Optimization |
|
[77] | 2021 | Parametric |
|
[53] | 2021 | Parametric |
|
[78] | 2021 | Parametric |
|
[79] | 2020 | Parametric |
|
[1] | 2020 | Parametric |
|
[22] | 2020 | Optimization |
|
[80] | 2020 | Parametric |
|
[81] | 2020 | Parametric |
|
[82] | 2020 | Parametric |
|
[57] | 2019 | Optimization |
|
[58] | 2019 | Optimization |
|
[56] | 2019 | Optimization |
|
[83] | 2019 | Parametric |
|
[84] | 2019 | Optimization |
|
[85] | 2019 | Parametric |
|
[58] | 2018 | Optimization |
|
[40] | 2018 | Optimization |
|
[86] | 2018 | Optimization |
|
[87] | 2018 | Parametric |
|
[61] | 2017 | Optimization |
|
[60] | 2017 | Optimization |
|
[2] | 2017 | Optimization |
|
[34] | 2016 | Parametric |
|
[88] | 2016 | Parametric |
|
[89] | 2016 | Parametric |
|
[90] | 2015 | Optimization |
|
[37] | 2015 | Parametric |
|
[91] | 2014 | Parametric |
|
[92] | 2013 | Parametric |
|
[93] | 2013 | Parametric |
|
[66] | 2010 | Parametric |
|
[94] | 2010 | Optimization |
|
[95] | 2010 | Parametric |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, M.T.; Rashel, M.R.; Islam, M.; Islam, A.K.M.K.; Tlemcani, M. Classification and Parametric Analysis of Solar Hybrid PVT System: A Review. Energies 2024, 17, 588. https://doi.org/10.3390/en17030588
Ahmed MT, Rashel MR, Islam M, Islam AKMK, Tlemcani M. Classification and Parametric Analysis of Solar Hybrid PVT System: A Review. Energies. 2024; 17(3):588. https://doi.org/10.3390/en17030588
Chicago/Turabian StyleAhmed, Md Tofael, Masud Rana Rashel, Mahmudul Islam, A. K. M. Kamrul Islam, and Mouhaydine Tlemcani. 2024. "Classification and Parametric Analysis of Solar Hybrid PVT System: A Review" Energies 17, no. 3: 588. https://doi.org/10.3390/en17030588
APA StyleAhmed, M. T., Rashel, M. R., Islam, M., Islam, A. K. M. K., & Tlemcani, M. (2024). Classification and Parametric Analysis of Solar Hybrid PVT System: A Review. Energies, 17(3), 588. https://doi.org/10.3390/en17030588