Energy Yield of Spectral Splitting Concentrated Solar Power Photovoltaic Systems
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Parliament. Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency (Text with EEA relevance). OJL 2018, 156, 75–91. [Google Scholar]
- European Parliament. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (Text with EEA relevance). OJL 2018, 328, 82–209. [Google Scholar]
- Katsaprakakis, D.A.; Proka, A.; Zafirakis, D.; Damasiotis, M.; Kotsampopoulos, P.; Hatziargyriou, N.; Dakanali, E.; Arnaoutakis, G.; Xevgenos, D. Greek Islands’ Energy Transition: From Lighthouse Projects to the Emergence of Energy Communities. Energies 2022, 15, 5996. [Google Scholar] [CrossRef]
- World Energy Balances Total Energy Supply (TES) by Source, Greece 1990–2022. Available online: https://www.iea.org/countries/greece (accessed on 9 January 2024).
- Katsaprakakis, D.A.; Dakanali, I.; Condaxakis, C.; Christakis, D.G. Comparing Electricity Storage Technologies for Small Insular Grids. Appl. Energy 2019, 251, 113332. [Google Scholar] [CrossRef]
- Katsaprakakis, D.A.; Christakis, D.G. Seawater Pumped Storage Systems and Offshore Wind Parks in Islands with Low Onshore Wind Potential. A Fundamental Case Study. Energy 2014, 66, 470–486. [Google Scholar] [CrossRef]
- Li, L.; Coventry, J.; Bader, R.; Pye, J.; Lipiński, W. Optics of Solar Central Receiver Systems: A Review. Opt. Express 2016, 24, A985–A1007. [Google Scholar] [CrossRef] [PubMed]
- Arnaoutakis, G.E.; Katsaprakakis, D.A. Concentrating Solar Power Advances in Geometric Optics, Materials and System Integration. Energies 2021, 14, 6229. [Google Scholar] [CrossRef]
- Hernandez, R.R.; Easter, S.B.; Murphy-Mariscal, M.L.; Maestre, F.T.; Tavassoli, M.; Allen, E.B.; Barrows, C.W.; Belnap, J.; Ochoa-Hueso, R.; Ravi, S.; et al. Environmental Impacts of Utility-Scale Solar Energy. Renew. Sustain. Energy Rev. 2014, 29, 766–779. [Google Scholar] [CrossRef]
- Desideri, U.; Campana, P.E. Analysis and Comparison between a Concentrating Solar and a Photovoltaic Power Plant. Appl. Energy 2014, 113, 422–433. [Google Scholar] [CrossRef]
- Zurita, A.; Mata-Torres, C.; Cardemil, J.M.; Escobar, R.A. Assessment of Time Resolution Impact on the Modeling of a Hybrid CSP-PV Plant: A Case of Study in Chile. Sol. Energy 2020, 202, 553–570. [Google Scholar] [CrossRef]
- Vossier, A.; Zeitouny, J.; Katz, E.A.; Dollet, A.; Flamant, G.; Gordon, J.M. Performance Bounds and Perspective for Hybrid Solar Photovoltaic/Thermal Electricity-Generation Strategies. Sustain. Energy Fuels 2018, 2, 2060–2067. [Google Scholar] [CrossRef]
- Otanicar, T.P.; Theisen, S.; Norman, T.; Tyagi, H.; Taylor, R.A. Envisioning Advanced Solar Electricity Generation: Parametric Studies of CPV/T Systems with Spectral Filtering and High Temperature PV. Appl. Energy 2015, 140, 224–233. [Google Scholar] [CrossRef]
- Ganapati, V.; Xiao, T.P.; Yablonovitch, E. Ultra-Efficient Thermophotovoltaics Exploiting Spectral Filtering by the Photovoltaic Band-Edge. arXiv 2018, arXiv:1611.03544. [Google Scholar]
- Ziyati, D.; Dollet, A.; Flamant, G.; Volut, Y.; Guillot, E.; Vossier, A. A Multiphysics Model of Large-Scale Compact PV–CSP Hybrid Plants. Appl. Energy 2021, 288, 116644. [Google Scholar] [CrossRef]
- Ahmed, A.; Alzahrani, M.; Shanks, K.; Sundaram, S.; Mallick, T.K. Effect of Using an Infrared Filter on the Performance of a Silicon Solar Cell for an Ultra-High Concentrator Photovoltaic System. Mater. Lett. 2020, 277, 128332. [Google Scholar] [CrossRef]
- Alzahrani, M.M.; Roy, A.; Sundaram, S.; Mallick, T.K. Investigation of Thermal Stress Arising in a Graphene Neutral Density Filter for Concentrated Photovoltaic System. Energies 2021, 14, 3515. [Google Scholar] [CrossRef]
- Taylor, R.A.; Otanicar, T.; Rosengarten, G. Nanofluid-Based Optical Filter Optimization for PV/T Systems. Light Sci. Appl. 2012, 1, e34. [Google Scholar] [CrossRef]
- Crisostomo, F.; Taylor, R.A.; Surjadi, D.; Mojiri, A.; Rosengarten, G.; Hawkes, E.R. Spectral Splitting Strategy and Optical Model for the Development of a Concentrating Hybrid PV/T Collector. Appl. Energy 2015, 141, 238–246. [Google Scholar] [CrossRef]
- Bierman, D.M.; Lenert, A.; Wang, E.N. Spectral Splitting Optimization for High-Efficiency Solar Photovoltaic and Thermal Power Generation. Appl. Phys. Lett. 2016, 109, 243904. [Google Scholar] [CrossRef]
- Otanicar, T.; Dale, J.; Orosz, M.; Brekke, N.; DeJarnette, D.; Tunkara, E.; Roberts, K.; Harikumar, P. Experimental Evaluation of a Prototype Hybrid CPV/T System Utilizing a Nanoparticle Fluid Absorber at Elevated Temperatures. Appl. Energy 2018, 228, 1531–1539. [Google Scholar] [CrossRef]
- Shou, C.; Luo, Z.; Wang, T.; Shen, W.; Rosengarten, G.; Wei, W.; Wang, C.; Ni, M.; Cen, K. Investigation of a Broadband TiO2/SiO2 Optical Thin-Film Filter for Hybrid Solar Power Systems. Appl. Energy 2012, 92, 298–306. [Google Scholar] [CrossRef]
- Soule, D.E.; Rechel, E.F.; Smith, D.W.; Willis, F.A. Efficient Hybrid Photovoltaic-Photothermal Solar Conversion System with Cogeneration. In Proceedings of the Optical Materials Technology for Energy Efficiency and Solar Energy Conversion IV, San Diego, CA, USA, 20–22 August 1985; SPIE: Bellingham, WA, USA, 1985; Volume 562, pp. 166–175. [Google Scholar]
- Huang, G.; Wang, K.; Markides, C.N. Efficiency Limits of Concentrating Spectral-Splitting Hybrid Photovoltaic-Thermal (PV-T) Solar Collectors and Systems. Light Sci. Appl. 2021, 10, 28. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.A.; Hewakuruppu, Y.; DeJarnette, D.; Otanicar, T.P. Comparison of Selective Transmitters for Solar Thermal Applications. Appl. Opt. 2016, 55, 3829–3839. [Google Scholar] [CrossRef] [PubMed]
- Law, A.M.; Jones, L.O.; Walls, J.M. The Performance and Durability of Anti-Reflection Coatings for Solar Module Cover Glass—A Review. Sol. Energy 2023, 261, 85–95. [Google Scholar] [CrossRef]
- Amotchkina, T.; Fattahi, H.; Pervak, Y.A.; Trubetskov, M.; Pervak, V. Broadband Beamsplitter for High Intensity Laser Applications in the Infra-Red Spectral Range. Opt. Express 2016, 24, 16752. [Google Scholar] [CrossRef] [PubMed]
- Richards, B.S.; Rowlands, S.F.; Honsberg, C.B.; Cotter, J.E. TiO2 DLAR Coatings for Planar Silicon Solar Cells. Prog. Photovolt. Res. Appl. 2003, 11, 27–32. [Google Scholar] [CrossRef]
- Rüdiger, M.; Fischer, S.; Frank, J.; Ivaturi, A.; Richards, B.S.; Krämer, K.W.; Hermle, M.; Goldschmidt, J.C. Bifacial N-Type Silicon Solar Cells for Upconversion Applications. Sol. Energy Mater. Sol. Cells 2014, 128, 57–68. [Google Scholar] [CrossRef]
- Maghanga, C.M.; Niklasson, G.A.; Granqvist, C.G.; Mwamburi, M. Spectrally Selective Reflector Surfaces for Heat Reduction in Concentrator Solar Cells: Modeling and Applications of TiO2:Nb-Based Thin Films. Appl. Opt. 2011, 50, 3296–3302. [Google Scholar] [CrossRef]
- Jiang, S.; Hu, P.; Mo, S.; Chen, Z. Optical Modeling for a Two-Stage Parabolic Trough Concentrating Photovoltaic/Thermal System Using Spectral Beam Splitting Technology. Sol. Energy Mater. Sol. Cells 2010, 94, 1686–1696. [Google Scholar] [CrossRef]
- Arnaoutakis, G.E.; Katsaprakakis, D.A. Energy Performance of Buildings with Thermochromic Windows in Mediterranean Climates. Energies 2021, 14, 6977. [Google Scholar] [CrossRef]
- Wang, Q.; Shen, B.; Huang, J.; Yang, H.; Pei, G.; Yang, H. A Spectral Self-Regulating Parabolic Trough Solar Receiver Integrated with Vanadium Dioxide-Based Thermochromic Coating. Appl. Energy 2021, 285, 116453. [Google Scholar] [CrossRef]
- Mitchell, B.; Peharz, G.; Siefer, G.; Peters, M.; Gandy, T.; Goldschmidt, J.C.; Benick, J.; Glunz, S.W.; Bett, A.W.; Dimroth, F. Four-Junction Spectral Beam-Splitting Photovoltaic Receiver with High Optical Efficiency. Prog. Photovolt. Res. Appl. 2011, 19, 61–72. [Google Scholar] [CrossRef]
- Liew, N.J.Y.; Yu, Z.J.; Holman, Z.; Lee, H.-J. Application of Spectral Beam Splitting Using Wavelength-Selective Filters for Photovoltaic/Concentrated Solar Power Hybrid Plants. Appl. Therm. Eng. 2022, 201, 117823. [Google Scholar] [CrossRef]
- Liang, H.; Han, H.; Wang, F.; Cheng, Z.; Lin, B.; Pan, Y.; Tan, J. Experimental Investigation on Spectral Splitting of Photovoltaic/Thermal Hybrid System with Two-Axis Sun Tracking Based on SiO2/TiO2 Interference Thin Film. Energy Convers. Manag. 2019, 188, 230–240. [Google Scholar] [CrossRef]
- Hong, W.; Li, B.; Li, H.; Niu, X.; Li, Y.; Lan, J. Recent progress in thermal energy recovery from the decoupled photovolta-ic/thermal system equipped with spectral splitters. Renew. Sustain. Energy Rev. 2022, 167, 112824. [Google Scholar] [CrossRef]
- Kandilli, C.; Külahlı, G. Performance Analysis of a Concentrated Solar Energy for Lighting-Power Generation Combined System Based on Spectral Beam Splitting. Renew. Energy 2017, 101, 713–727. [Google Scholar] [CrossRef]
- Zhang, X.; Lei, D.; Zhang, B.; Yao, P.; Wang, Z. SiNx/Cu Spectral Beam Splitting Films for Hybrid Photovoltaic and Concentrating Solar Thermal Systems. ACS Omega 2021, 6, 21709–21718. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, H.; Hu, M.; Huang, X.; Li, J.; Pei, G. Preliminary Performance Study of a High-Temperature Parabolic Trough Solar Evacuated Receiver with an Inner Transparent Radiation Shield. Sol. Energy 2018, 173, 640–650. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, M.; Yang, H.; Cao, J.; Li, J.; Su, Y.; Pei, G. Performance Evaluation and Analyses of Novel Parabolic Trough Evacuated Collector Tubes with Spectrum-Selective Glass Envelope. Renew. Energy 2019, 138, 793–804. [Google Scholar] [CrossRef]
- Atkinson, C.; Sansom, C.L.; Almond, H.J.; Shaw, C.P. Coatings for Concentrating Solar Systems—A Review. Renew. Sustain. Energy Rev. 2015, 45, 113–122. [Google Scholar] [CrossRef]
- Hamdy, M.A.; Osborn, D.E. The Potential for Increasing the Efficiency of Solar Cells in Hybrid Photovoltaic/Thermal Concentrating Systems by Using Beam Splitting. Sol. Wind Technol. 1990, 7, 147–153. [Google Scholar] [CrossRef]
- Osborn, D.E.; Chendo, M.A.C.; Hamdy, M.A.; Luttmann, F.; Jacobson, M.R.; Macleod, H.A.; Swenson, R. Spectral Selectivity Applied to Hybrid Concentration Systems. Sol. Energy Mater. 1986, 14, 299–325. [Google Scholar] [CrossRef]
- Ju, X.; Xu, C.; Han, X.; Du, X.; Wei, G.; Yang, Y. A Review of the Concentrated Photovoltaic/Thermal (CPVT) Hybrid Solar Systems Based on the Spectral Beam Splitting Technology. Appl. Energy 2017, 187, 534–563. [Google Scholar] [CrossRef]
- Widyolar, B.; Jiang, L.; Winston, R. Spectral Beam Splitting in Hybrid PV/T Parabolic Trough Systems for Power Generation. Appl. Energy 2018, 209, 236–250. [Google Scholar] [CrossRef]
- Perez, R.; Ineichen, P.; Moore, K.; Kmiecik, M.; Chain, C.; George, R.; Vignola, F. A New Operational Model for Satellite-Derived Irradiances: Description and Validation. Sol. Energy 2002, 73, 307–317. [Google Scholar] [CrossRef]
- Arnaoutakis, G.E.; Katsaprakakis, D.A.; Christakis, D.G. Dynamic Modeling of Combined Concentrating Solar Tower and Parabolic Trough for Increased Day-to-Day Performance. Appl. Energy 2022, 323, 119450. [Google Scholar] [CrossRef]
- Arnaoutakis, G.E.; Papadakis, N.; Katsaprakakis, D. CombiCSP: A Python Routine for Dynamic Modeling of Concentrating Solar Power Plants. Softw. Impacts 2022, 13, 100367. [Google Scholar] [CrossRef]
- Lamnatou, C.; Vaillon, R.; Parola, S.; Chemisana, D. Photovoltaic/Thermal Systems Based on Concentrating and Non-Concentrating Technologies: Working Fluids at Low, Medium and High Temperatures. Renew. Sustain. Energy Rev. 2021, 137, 110625. [Google Scholar] [CrossRef]
- Orosz, M.; Zweibaum, N.; Lance, T.; Ruiz, M.; Morad, R. Spectrum-Splitting Hybrid CSP-CPV Solar Energy System with Standalone and Parabolic Trough Plant Retrofit Applications. AIP Conf. Proc. 2016, 1734, 070023. [Google Scholar]
Spectral Filter | Cut-Off λ (nm) | R or η (%) | Reference |
---|---|---|---|
Cold mirror | 800–2400 | 90.0 | [38] |
Dichroic mirror | 410–1080 | 93.8 | [34] |
Dichroic mirror | 620–890 | 90.0 | [35] |
SiNx/SiO2 (Si) | ~580–1085 | 95.0 | [19] |
SiNx/SiO2 (GaAs) | ~440–880 | 95.0 | [19] |
TiO2/SiO2 | 400–1100 | 95.0 | [22] |
SiO2/TiO2 | 400–1100 | 96.8 | [36] |
SiNx/Cu | 1100 | 89.7 | [39] |
ZnS/Ag/Zns | 1250 | 80.0 1 | [25] |
ITO | 1250 | 80.0 1 | [25] |
Nb2O5/SiO2 | 1200 | 80.0 | [27] |
TCO/glass/TCO | 1200 | 90.0 | [40] |
In2O3:Sn | 2500 | 75.0 1 | [41] |
VO2 | 1000 | 65.0 1 | [33] |
GaAs | 750 | 92.0 | [14] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arnaoutakis, G.E.; Katsaprakakis, D.A. Energy Yield of Spectral Splitting Concentrated Solar Power Photovoltaic Systems. Energies 2024, 17, 556. https://doi.org/10.3390/en17030556
Arnaoutakis GE, Katsaprakakis DA. Energy Yield of Spectral Splitting Concentrated Solar Power Photovoltaic Systems. Energies. 2024; 17(3):556. https://doi.org/10.3390/en17030556
Chicago/Turabian StyleArnaoutakis, Georgios E., and Dimitris A. Katsaprakakis. 2024. "Energy Yield of Spectral Splitting Concentrated Solar Power Photovoltaic Systems" Energies 17, no. 3: 556. https://doi.org/10.3390/en17030556
APA StyleArnaoutakis, G. E., & Katsaprakakis, D. A. (2024). Energy Yield of Spectral Splitting Concentrated Solar Power Photovoltaic Systems. Energies, 17(3), 556. https://doi.org/10.3390/en17030556