A High-Resolution Satellite-Based Solar Resource Assessment Method Enhanced with Site Adaptation in Arid and Cold Climate Conditions
Abstract
1. Introduction
2. Methodology
3. Data Description
3.1. Satellite Observation
3.2. Ground Measurement
4. Discussion
4.1. Input Selection
4.2. Variation and Distribution of Model Parameters
4.3. Performance Evaluation
Model | MBE | RMSE | nMBE | nRMSE | |
---|---|---|---|---|---|
Ulaanbaatar | |||||
Original | −2.81 | 110.58 | 0.92 | −0.76% | 29.88% |
JAXA SWR | −16.92 | 228.67 | 0.75 | −4.81% | 64.98% |
Proposed | −11.53 | 97.52 | 0.94 | −3.12% | 26.35% |
Darkhan | |||||
Original | −3.05 | 96.35 | 0.94 | −0.87% | 27.44% |
JAXA SWR | −14.32 | 92.83 | 0.95 | −4.33% | 28.06% |
Proposed | −6.17 | 90.89 | 0.95 | −1.76% | 25.89% |
Erdenet | |||||
Original | −9.16 | 120.22 | 0.90 | −2.64% | 34.70% |
JAXA SWR | −40.43 | 114.09 | 0.92 | −12.27% | 34.62% |
Proposed | −10.06 | 113.77 | 0.91 | −2.90% | 32.84% |
Choir | |||||
Original | −21.21 | 94.72 | 0.94 | −5.49% | 24.51% |
JAXA SWR | −17.60 | 90.58 | 0.95 | −4.89% | 25.15% |
Proposed | −6.51 | 85.51 | 0.95 | −1.69% | 22.12% |
4.4. Validation Exercise Under Various Sky Conditions
4.5. Sensitivity Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviations | |
GHI | global horizontal irradiance |
PV | photovoltaic |
IRENA | International Renewable Energy Agency |
LCOE | levelized cost of electricity |
STC | standard test conditions |
MPP | maximum power point |
ASG | Asian super grid |
GIS | geographic information system |
FARMS | Fast All-sky Radiation Model for Solar applications |
GOES | Geostationary Operational Environmental Satellite |
NSRDB | National Solar Radiation Database |
DNI | direct normal irradiance |
GMS | Geostationary Meteorological Satellite |
ESRA | European Solar Radiation Atlas |
MSG | Meteosat Second Generation |
IR | infrared |
RMSE | root mean square error |
MBE | mean bias error |
LUT | lookup table |
nRMSE | normalized root mean square error |
nMBE | normalized mean bias error |
JAXA | Japan Aerospace Exploration Agency |
AHI | advanced Himawari imager |
MTSAT | multi-functional transport satellite |
RGB | red, green, and blue |
PAR | photosynthetically active radiation |
SWR | shortwave radiation |
UTC | coordinated universal time |
MODIS | Moderate Resolution Imaging Spectroradiometer |
WSA | white sky albedo |
BSA | black sky albedo |
SW | shortwave |
VIS | visible |
probability density function | |
Notations | |
IV | current–voltage |
estimated global horizontal irradiance | |
measured global horizontal irradiance | |
transmission coefficient | |
correction coefficient | |
planetary albedo | |
ground albedo | |
airmass | |
solar zenith angle | |
number of pairs | |
correlation coefficient | |
covariance | |
BWk | arid, desert, and cold |
BSk | arid, steppe, and cold |
Dwb | cold, dry winter, and warm summer |
Dwc | cold, dry winter, and cold summer |
Dfb | cold, no dry season, and warm summer |
Dfc | cold, no dry season, and cold summer |
ET | polar and tundra |
References
- International Solar Energy Society (ISES). Online Solar Energy Museum. Available online: https://www.ises.org/what-we-do/ises-online-museum-solar-energy (accessed on 11 October 2024).
- International Renewable Energy Agency (IRENA). Renewable Power Generation Costs in 2021; Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Jul/IRENA_Power_Generation_Costs_2021_Summary.pdf (accessed on 17 December 2024).
- National Renewable Energy Laboratory (NREL). Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 11 October 2024).
- REN21. Renewables Global Status Report; 2023; Available online: https://www.ren21.net/gsr-2023/ (accessed on 17 December 2024).
- PV Education. The Effect of Temperature on the IV Characteristics of a Solar Cell. Available online: https://www.pveducation.org/pvcdrom/solar-cell-operation/effect-of-temperature (accessed on 11 October 2024).
- PVsyst. Standard Test Conditions. Available online: https://www.pvsyst.com/help-pvsyst7/stc.htm (accessed on 11 October 2024).
- Komoto, K.; Ito, M.; van der Vleuten, P.; Faiman, D.; Kurokawa, K. Energy from the Desert; Earthscan: New York, NY, USA, 2009. [Google Scholar]
- Geology.com. The World’s Largest Deserts. Available online: https://geology.com/records/largest-desert.shtml (accessed on 11 October 2024).
- International Renewable Energy Agency (IRENA). Mongolia-Renewables Readiness Assessment; 2016; Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2016/IRENA_RRA_Mongolia_2016.pdf (accessed on 17 December 2024).
- Mano, S.; Ovgor, B.; Samadov, Z.; Pudlik, M.; Julch, V.; Sokolov, D.; Yoon, J.Y. Gobitec and Asian Super Grid for Renewable Energies in Northeast Asia; 2014; Available online: https://www.energycharter.org/fileadmin/DocumentsMedia/Thematic/Gobitec_and_the_Asian_Supergrid_2014_en.pdf (accessed on 17 December 2024).
- Gira, Y. Solar Cadastre of Mongolia; Information and Research Institute of Meteorology, Hydrology and Environment; Ulaanbaatar, Mongolia, 1985. [Google Scholar]
- Adiyabat, A.; Kurokawa, K.; Otani, K.; Enebish, N.; Batsukh, G.; Battushig, M.; Ochirvaani, D.; Ganbat, B. Evaluation of solar energy potential and PV module performance in the Gobi Desert of Mongolia. Prog. Photovolt. Res. Appl. 2006, 14, 553–566. [Google Scholar] [CrossRef]
- Batdelger, D. Solar Radiation Atlas of Mongolia; Mongolian Academy of Sciences: Ulaanbaatar, Mongolia, 2010. [Google Scholar]
- Sengupta, M.; Habte, A.; Wilbert, S.; Gueymard, C.; Remund, J. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications, 3rd ed.; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2021. Available online: https://www.nrel.gov/docs/fy21osti/77635.pdf (accessed on 17 December 2024).
- Xie, Y.; Sengupta, M.; Dudhia, J. A Fast All-sky Radiation Model for Solar applications (FARMS): Algorithm and performance evaluation. Sol. Energy 2016, 135, 435–445. [Google Scholar] [CrossRef]
- Letu, H.; Yang, K.; Nakajima, T.Y.; Ishimoto, H.; Nagao, T.M.; Riedi, J.; Baran, A.J.; Ma, R.; Wang, T.; Shang, H.; et al. High-resolution retrieval of cloud microphysical properties and surface solar radiation using Himawari-8/AHI next-generation geostationary satellite. Remote Sens. Environ. 2020, 239, 111583. [Google Scholar] [CrossRef]
- Huang, C.; Shi, H.; Yang, D.; Gao, L.; Zhang, P.; Fu, D.; Xia, X.; Chen, Q.; Yuan, Y.; Liu, M.; et al. Retrieval of sub-kilometer resolution solar irradiance from Fengyun-4A satellite using a region-adapted Heliosat-2 method. Sol. Energy 2023, 264, 112038. [Google Scholar] [CrossRef]
- Perez, R.; Ineichen, P.; Moore, K.; Kmiecik, M.; Chain, C.; George, R.; Vignola, F. A new operational model for satellite-derived irradiances: Description and validation. Sol. Energy 2002, 73, 307–317. [Google Scholar] [CrossRef]
- Otani, K.; Kurokawa, K.; Tsuda, I.; Saitoh, T.; Horigome, T. Estimation of ground albedo by GMS images for solar irradiation monitoring. Sol. Energy Mater. Sol. Cells 1994, 35, 395–400. [Google Scholar] [CrossRef]
- Han, J.Y.; Vohnicky, P. An optimized approach for mapping solar irradiance in a mid-low latitude region based on a site-adaptation technique using Himawari-8 satellite imageries. Renew. Energy 2022, 187, 603–617. [Google Scholar] [CrossRef]
- Alonso-Montesinos, J.; Batlles, F.J.; Bosch, J.L. Beam, diffuse and global solar irradiance estimation with satellite imagery. Energy Convers. Manag. 2015, 105, 1205–1212. [Google Scholar] [CrossRef]
- Escobar, R.A.; Cortes, C.; Pino, A.; Pereira, E.B.; Martins, F.R.; Cardemil, J.M. Solar energy resource assessment in Chile: Satellite estimation and ground station measurements. Renew. Energy 2014, 71, 324–332. [Google Scholar] [CrossRef]
- World Bank. Climate Change Knowledge Portal. Available online: https://climateknowledgeportal.worldbank.org/ (accessed on 11 October 2024).
- Molina, A.; Falvey, M.; Rondanelli, R. A solar radiation database for Chile. Sci. Rep. 2017, 7, 14823. [Google Scholar] [CrossRef] [PubMed]
- Damiani, A.; Irie, H.; Horio, T.; Takamura, T.; Khatri, P.; Takenaka, H.; Nagao, T.; Nakajima, T.Y.; Cordero, R.R. Evaluation of Himawari-8 surface downwelling solar radiation by ground-based measurements. Atmos. Meas. Tech. 2018, 11, 2501–2521. [Google Scholar] [CrossRef]
- Gueymard, C.A.; Lara-Fanego, V.; Sengupta, M.; Xie, Y. Surface albedo and reflectance: Review of definitions, angular and spectral effects, and intercomparison of major data sources in support of advanced solar irradiance modeling over the Americas. Sol. Energy 2019, 182, 194–212. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA), Global Monitoring Division. General Solar Position Calculations. Available online: https://gml.noaa.gov/grad/solcalc/solareqns.PDF (accessed on 11 October 2024).
- Japan Aerospace Exploration Agency (JAXA). Himawari Monitor P-Tree. Available online: https://www.eorc.jaxa.jp/ptree/ (accessed on 11 October 2024).
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteorol. Soc. Jpn. 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Koppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Climatec. In CHF-SR11/12 Instruction Manual; Tokyo, Japan, 2012.
- National Aeronautics and Space Administration (NASA). Level-1 and Atmosphere Archive Distribution System (LAADS) Distributed Active Archive Center (DAAC). Available online: https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 11 October 2024).
- Zelenka, A.; Perez, R.; Seals, R.; Renne, D. Effective Accuracy of Satellite-Derived Hourly Irradiances. Theor. Appl. Climatol. 1999, 62, 199–207. [Google Scholar] [CrossRef]
- Nouri, B.; Blum, N.; Wilbert, S.; Zarzalejo, L.F. A Hybrid Solar Irradiance Nowcasting Approach: Combining All Sky Imager Systems and Persistence Irradiance Models for Increased Accuracy. Sol. RRL 2022, 6, 2100442. [Google Scholar] [CrossRef]
- Takenaka, H.; Nakajima, T.Y.; Higurashi, A.; Higuchi, A.; Takamura, T.; Pinker, R.T.; Nakajima, T. Estimation of solar radiation using a neural network based on radiative transfer. J. Geophys. Res. Atmos. 2011, 116, 13. [Google Scholar] [CrossRef]
- Yang, J.; Kim, J.H.; Jimenez, P.A.; Sengupta, M.; Dudhia, J.; Xie, Y.; Golnas, A.; Giering, R. An efficient method to identify uncertainties of WRF-Solar variables in forecasting solar irradiance using a tangent linear sensitivity analysis. Sol. Energy 2021, 220, 509–522. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, L.; Xiang, Y.; Dong, J.; Li, Z.; Liu, X.; Tang, Z.; Wang, H.; Wang, X.; An, J.; et al. Coupling meteorological stations data and satellite data for prediction of global solar radiation with machine learning models. Renew. Energy 2022, 198, 1049–1064. [Google Scholar] [CrossRef]
Site | Location | Climate | Land Cover 1 | Parameter Estimation | Test |
---|---|---|---|---|---|
Ulaanbaatar | 47.92° N, 106.92° E | arid, steppe, and cold (BSk) | 32.8% | 981 days (61%) | 617 days (39%) |
Darkhan | 49.46° N, 105.98° E | cold, dry winter, and warm summer (Dwb) | 2.1% | 591 days (57%) | 475 days (43%) |
Erdenet | 49.00° N, 104.01° E | cold, dry winter, and cold summer (Dwc) | 23.5% | 1108 days (75%) | 375 days (25%) |
Choir 2 | 46.32° N, 108.35° E | arid, desert, and cold (BWk) | 37.1% | 667 days (60%) | 459 days (40%) |
Site | Pixel | Albedo | MBE | RMSE | |
---|---|---|---|---|---|
Ulaanbaatar | NW | BSA-SW | −6.64 | 97.1 | 0.94 |
Darkhan | NW/C | long-term monthly average | −6.17 | 90.89 | 0.95 |
Erdenet | N | long-term monthly average | −10.66 | 105.4 | 0.92 |
Choir | NW/N | long-term monthly average | −6.51 | 85.51 | 0.95 |
Month | MBE | RMSE | r | nMBE | nRMSE |
---|---|---|---|---|---|
January | −18.17 | 62.87 | 0.88 | −8.78% | 30.40% |
February | −28.92 | 69.72 | 0.91 | −10.01% | 24.13% |
March | −39.83 | 116.09 | 0.88 | −10.64% | 31.02% |
April | −20.01 | 108.59 | 0.92 | −4.84% | 26.24% |
May | 4.76 | 129.49 | 0.90 | 1.18% | 32.19% |
June | 6.99 | 142.08 | 0.91 | 1.66% | 33.67% |
July | 7.69 | 138.39 | 0.90 | 2.01% | 36.22% |
August | −0.64 | 129.69 | 0.90 | −0.17% | 34.15% |
September | −13.94 | 96.96 | 0.93 | −3.74% | 25.98% |
October | −34.13 | 105.35 | 0.88 | −11.27% | 34.79% |
November | −7.37 | 76.42 | 0.85 | −3.52% | 36.44% |
December | −6.22 | 76.39 | 0.75 | −3.83% | 47.03% |
0.12 | −0.07 | 0.00 | −0.03 | −0.05 | −0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayasgalan, O.; Adiyabat, A.; Otani, K.; Hashimoto, J.; Akisawa, A. A High-Resolution Satellite-Based Solar Resource Assessment Method Enhanced with Site Adaptation in Arid and Cold Climate Conditions. Energies 2024, 17, 6433. https://doi.org/10.3390/en17246433
Bayasgalan O, Adiyabat A, Otani K, Hashimoto J, Akisawa A. A High-Resolution Satellite-Based Solar Resource Assessment Method Enhanced with Site Adaptation in Arid and Cold Climate Conditions. Energies. 2024; 17(24):6433. https://doi.org/10.3390/en17246433
Chicago/Turabian StyleBayasgalan, Onon, Amarbayar Adiyabat, Kenji Otani, Jun Hashimoto, and Atsushi Akisawa. 2024. "A High-Resolution Satellite-Based Solar Resource Assessment Method Enhanced with Site Adaptation in Arid and Cold Climate Conditions" Energies 17, no. 24: 6433. https://doi.org/10.3390/en17246433
APA StyleBayasgalan, O., Adiyabat, A., Otani, K., Hashimoto, J., & Akisawa, A. (2024). A High-Resolution Satellite-Based Solar Resource Assessment Method Enhanced with Site Adaptation in Arid and Cold Climate Conditions. Energies, 17(24), 6433. https://doi.org/10.3390/en17246433