Low-Frequency AC Multiport Asynchronous Grid Connection System to Optimize Generation Costs and Mitigate Bottlenecks
Abstract
:1. Introduction
2. LFAC Power Transmission Technology
2.1. LFAC System Overview
2.2. VFT Operating Principle and Modeling
2.3. VFT Frequency Conversion Controller Structure
2.4. Design of the LFAC Multiport Asynchronous Grid-Connected System Reference Model
3. Selection of LFAC System Installation Location Using Grid Partitioning Method
- Calculate the n × n similarity matrix S.
- Calculate the degree matrix D.
- Compute the normalized Laplacian matrix .
- .
- Calculate the eigenvalues of and obtain the first eigenvectors of the matrix as columns .
- Form the matrix , where .
- is the vector in the -th row of for .
- Normalize so that .
- Use the K-means algorithm to cluster the new sample points into clusters .
4. Optimal Power Flow Control for Minimizing Generation Costs
4.1. Optimal Power Flow Control for LFAC Multi-Port System
4.2. Optimal Power Control for LFAC Multiport Asynchronous Grid-Connected System
5. Simulation
5.1. Performance Verification of VFT Using MATLAB
5.2. Feasibility Evaluation of the LFAC Multiport Asynchronous Grid-Connected System Reference Model
5.2.1. Case 1—Diesel Generation in Region 1
5.2.2. Case 2—Diesel Generation in Region 2
5.2.3. Case 3—Diesel Generation in Region 3
5.3. Performance Evaluation of the LFAC Multi-Port Asynchronous Grid-Connected System Reference Model
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Iweh, C.D.; Gyamfi, S.; Tanyi, E.; Effah-Donyina, E. Distributed generation and renewable energy integration into the grid: Prerequisites, push factors, practical options, issues and merits. Energies 2021, 14, 5375. [Google Scholar] [CrossRef]
- Wu, Y.-K.; Hu, C.-Y.; Jhang, S.-M.; Hsieh, T.-Y.; Jan, B.-S. Identification of transmission bottlenecks before and after large scale renewable energy integration in Taiwan. In Proceedings of the IEEE International Conference on Applied System Innovation (ICASI), Sapporo, Japan, 13–17 May 2017; pp. 1879–1882. [Google Scholar]
- Mohammadi, F. Power Management and Protection in MT-HVDC Systems with the Integration of High-Voltage Charging Stations. Ph.D. Thesis, University of Windsor, Windsor, ON, Canada.
- Lin, W.; Jovcic, D. High reliability multiport multiphase DC hub. In Proceedings of the IEEE Industry Applications Society Annual Meeting, Lake Buena Vista, FL, USA, 6–11 October 2013; pp. 1–8. [Google Scholar]
- Yang, S.; Xiang, W.; Wen, J. An improved DC line fault detection scheme using zone partition for MTDC wind power integration systems. IEEE Trans. Power Deliv. 2022, 37, 1109–1119. [Google Scholar] [CrossRef]
- Bizzarri, F.; Di Giudice, D.; Linaro, D.; Brambilla, A. Partitioning-based unified power flow algorithm for mixed MTDC/AC power systems. IEEE Trans. Power Syst. 2021, 36, 3406–3415. [Google Scholar] [CrossRef]
- Kotur, D.; Stefanov, P. Optimal power flow control in the system with offshore wind power plants connected to the MTDC network. Int. J. Electr. Power 2019, 105, 142–150. [Google Scholar] [CrossRef]
- Canelhas, A.; Karamitsos, S.; Axelsson, U.; Olsen, E. A low frequency power collector alternative system for long cable offshore wind generation. In Proceedings of the IET International Conference on AC and DC Power Transmission, Birmingham, UK, 10–12 February 2015; pp. 1–6. [Google Scholar]
- Sehloff, D.; Roald, L.A. Low frequency AC transmission upgrades with optimal frequency selection. IEEE Trans. Power Syst. 2022, 37, 1437–1448. [Google Scholar] [CrossRef]
- Qin, N.; You, S.; Xu, Z.; Akhmatov, V. Offshore wind farm connection with low frequency AC transmission technology. In Proceedings of the IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 26–30 July 2009; pp. 1–8. [Google Scholar]
- Meng, Y.; Liu, Q.; Wu, H.; Zhang, J.; Wu, L. Comparative economic analysis of low frequency AC transmission system for the integration of large offshore wind farms. Renew. Energy 2021, 179, 1955–1968. [Google Scholar] [CrossRef]
- Piwko, R.J.; Larsen, E.V.; Wegner, C.A. Variable frequency transformer—A new alternative for asynchronous power transfer. In Proceedings of the Inaugural IEEE PES Conference and Exposition in Africa, Durban, South Africa, 11–15 July 2005; pp. 393–398. [Google Scholar]
- An, J.-D.; Park, J.-S.; Che, T.-H.; Kim, T.-S.; Park, T.-S. Asynchronous AC-DC hybrid power grid connection system using VFT. J. Korean Inst. Illumina. Electr. Install. Eng. 2023, 37, 54–62. [Google Scholar]
- Nadeau, D. A 100-MW variable frequency transformer (VFT) on the Hydro-Québec TransÉnergie network—The behavior during disturbance. In Proceedings of the IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 24–28 June 2007; pp. 1–5. [Google Scholar]
- Khan, M.M.; Nebhen, J.; Rahman, H. Research on variable frequency transformer: A smart power transmission technology. IEEE Access 2021, 9, 105588–105605. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, Y.; Wang, Q.; Liu, F.; Zhu, L. Fast power grid partition for voltage control with balanced-depth-based community detection algorithm. IEEE Trans. Power Syst. 2022, 37, 1612–1622. [Google Scholar] [CrossRef]
- Ganganath, N.; Wang, J.V.; Xu, X.; Cheng, C.-T.; Tse, C.K. Agglomerative clustering-based network partitioning for parallel power system restoration. IEEE Trans. Ind. Inform. 2018, 14, 3325–3333. [Google Scholar] [CrossRef]
- Xiaoying, D.; Xifan, W.; Yonghua, S.; Jian, G. The interior point branch and cut method for the optimal power flow. In Proceedings of the IEEE International Conference on Power System Technology, Kunming, China, 13–17 October 2002; pp. 651–655. [Google Scholar]
- Hörsch, J.; Ronellenfitsch, H.; Witthaut, D.; Brown, T. Linear optimal power flow using cycle flows. Electr. Power Syst. Res. 2018, 158, 126–135. [Google Scholar] [CrossRef]
- Korea Power Exchange. Electricity Statistics Information System (EPSIS). Available online: https://epsis.kpx.or.kr/ (accessed on 28 October 2024).
- Liu, S.; Wang, X.; Ning, L.; Wang, B.; Lu, M.; Shao, C. Integrating Offshore Wind Power via Fractional Frequency Transmission System. IEEE Trans. Power Syst. 2015, 30, 2107–2115. [Google Scholar] [CrossRef]
- Im, S.-W.; Park, J.-D.; Park, T.-S. Study on Economic Evaluation of Frequency Converter for LFAC. In Proceedings of the KIIEE Annual Conference, Jeju, Republic of Korea, 15 November 2023. [Google Scholar]
Component | Parameter |
---|---|
VFT (A side) | 100 MW 6, 22.9 kV |
Capacitor bank (A side) | 25 MVAR 6 |
Transformer (A side) | 300 MW, 22.9 kV/154 kV |
DC motor (A side) | 3000 HP 6 |
VFT (B side) | 100 MW 6, 22.9 kV |
Capacitor bank (B side) | 25 MVAR 6 |
Transformer (B side) | 300 MW, 22.9 kV/154 kV |
DC motor (B side) | 3000 HP 6 |
LFAC system circuit breakers | 30 kA |
LFAC transmission line | 154 kV, 0.047 Ω/km, |
Bus | Electrical Distance | Bus | Electrical Distance |
---|---|---|---|
1–2 | 2.2370 | 14–15 | 3.9052 |
1–39 | 1.7099 | 15–16 | 10.5872 |
2–3 | 6.1105 | 16–17 | 9.3774 |
2–25 | 63.1136 | 16–19 | 4.5170 |
2–30 | 2.5000 | 16–21 | 4.6583 |
3–4 | 2.9555 | 16–24 | 9.2128 |
3–18 | 6.5669 | 17–18 | 11.0252 |
4–5 | 4.9133 | 17–27 | 4.6383 |
4–14 | 4.8669 | 19–20 | 3.5983 |
5–6 | 29.8290 | 19–33 | 6.2514 |
5–8 | 6.3653 | 20–34 | 4.9842 |
6–7 | 7.0995 | 21–22 | 5.9826 |
6–11 | 10.5562 | 22–23 | 7.1177 |
6–31 | 6.6867 | 22–35 | 6.5000 |
7–8 | 18.6908 | 23–24 | 3.5124 |
8–9 | 1.8011 | 23–36 | 5.5797 |
9–39 | 1.7084 | 25–26 | 3.3809 |
10–11 | 22.1207 | 25–37 | 5.3967 |
10–13 | 22.1542 | 26–27 | 7.0132 |
10–32 | 6.5000 | 26–28 | 2.0947 |
11–12 | 0.8513 | 26–29 | 1.9152 |
12–13 | 0.8526 | 28–29 | 6.7071 |
13–14 | 8.9889 | 29–38 | 8.2671 |
Clustering | Bus |
---|---|
Region 1 | 1, 2, 3, 18, 25, 26, 27, 28, 29, 30, 37, 38, 39 |
Region 2 | 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 31, 32 |
Region 3 | 15, 16, 17, 19, 20, 21, 22, 23, 24, 33, 34, 35, 36 |
Power Generation Type | Cost |
---|---|
s1 (diesel generation) | 37,450,000 KRW/puMWhr |
s2 (wind turbine generation) | 12,660,000 KRW/puMWhr |
s3 (wind turbine generation) | 12,660,000 KRW/puMWhr |
Region | Generator Capacity [MWh] | Load [MWh] | |
---|---|---|---|
1 | max | 4292 | 2620 |
min | 1073 | ||
2 | max | 1920 | 1330 |
min | 300 | ||
3 | max | 3240 | 2350 |
min | 810 |
Parameter | Value |
---|---|
2020.00 | |
1840.00 | |
2440.00 | |
−300.00 | |
−300.00 | |
−210.00 | |
−3.1416 | |
−3.0376 | |
−3.0861 |
Component | Parameter |
---|---|
Grid A | 22.9 kV, 60 Hz |
Grid B | 22.9 kV, 20 Hz |
Load 1 | 0–5 MW |
Load 2 | 0–5 MW |
VFT | 100 MW, 22.9 kV |
Tr | 22.9 kV/500 V |
DC motor | 3000 HP |
Parameter | Case 1 | Case 2 | Case3 | |||
---|---|---|---|---|---|---|
HVAC | LFAC | HVAC | LFAC | HVAC | LFAC | |
2420.00 | 2020.00 | 2782.50 | 3107.50 | 2706.67 | 2880.00 | |
1500.00 | 1840.00 | 1130.00 | 730.00 | 1443.33 | 1670.00 | |
2380.00 | 2440.00 | 2387.50 | 2462.50 | 2150.00 | 1750.00 | |
−100.00 | −300.00 | 100.00 | 300.00 | −13.00 | −40.00 | |
−100.00 | −300.00 | 62.50 | 187.50 | 100.00 | 300.00 | |
−70.00 | −210.00 | 100.00 | 300.00 | −100.00 | −300.00 | |
−3.1416 | −3.1416 | −3.0376 | −3.0376 | −3.0861 | −3.0861 | |
−3.0376 | −3.0376 | −3.1416 | −3.1416 | −3.0723 | −3.0723 | |
−3.0861 | −3.0861 | −3.0723 | −3.0723 | −3.1416 | −3.1416 |
Component | Installation Costs (million KRW/MWh) | Total Cost (million KRW/MWh) | |
---|---|---|---|
LFAC multiport system | VFT | 313,447 | 372,025 |
38,298 | |||
20,280 | |||
HVDC multiport system | 608,400 | 619,289 | |
8081 | |||
2808 |
Parameter | HVAC Transmission Line (million KRW/MWh) | LFAC Multiport Line (million KRW/MWh) | Increase/Decrease Amount (million KRW/MWh) | Increase/Decrease Rate (%) |
---|---|---|---|---|
Generation cost | 12,074,383 | 11,217,640 | −856,742 | −7.1 |
Installation cost | - | 12,401 | 12,401 | - |
Total | 12,074,383 | 11,230,041 | −844,342 | −6.99 |
Parameter | HVAC Transmission Line (million KRW/MWh) | LFAC Multiport Line (million KRW/MWh) | Increase/Decrease Amount (million KRW/MWh) | Increase/Decrease Rate (%) |
---|---|---|---|---|
Generation cost | 9,311,388 | 8,454,646 | −856,742 | −9.2 |
Installation cost | - | 12,401 | 12,401 | - |
Total | 9,311,388 | 8,467,047 | −844,342 | −9.07 |
Parameter | HVAC Transmission Line (million KRW/MWh) | LFAC Multiport Line (million KRW/MWh) | Increase/Decrease Amount (million KRW/MWh) | Increase/Decrease Rate (%) |
---|---|---|---|---|
Generation cost | 11,496,082 | 10,639,339 | −856,742 | −7.45 |
Installation cost | 0 | 12,401 | 12,401 | - |
Total | 11,496,082 | 10,651,740 | −844,342 | −7.34 |
Parameter | HVAC | LFAC | ||||
---|---|---|---|---|---|---|
Case 1 | Case 2 | Case 3 | Case 1 | Case 2 | Case 3 | |
PG1 | 154 kV, 60 Hz | 154 kV, 20 Hz | ||||
PG2 | 154 kV, 60 Hz | 154 kV, 20 Hz | ||||
PG3 | 154 kV, 60 Hz | 154 kV, 20 Hz | ||||
Degree 1 | −180.00 | −174.04 | −176.82 | −180.00 | −174.04 | −176.82 |
Degree 2 | −174.04 | −180.00 | −176.03 | −174.04 | −180.00 | −176.03 |
Degree 3 | −176.82 | −176.03 | −180.00 | −176.82 | −176.03 | −180.00 |
Branch 1-2 | 60 Hz, 150 km | 20 Hz, 150 km | ||||
Branch 1-3 | 60 Hz, 80 km | 20 Hz, 80 km | ||||
Branch 3-2 | 60 Hz, 100 km | 20 Hz, 100 km |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-D.; Oh, J.-S.; Kim, T.-H.; An, B.-H.; Lee, S.-Y.; Park, T.-S. Low-Frequency AC Multiport Asynchronous Grid Connection System to Optimize Generation Costs and Mitigate Bottlenecks. Energies 2024, 17, 6317. https://doi.org/10.3390/en17246317
Park J-D, Oh J-S, Kim T-H, An B-H, Lee S-Y, Park T-S. Low-Frequency AC Multiport Asynchronous Grid Connection System to Optimize Generation Costs and Mitigate Bottlenecks. Energies. 2024; 17(24):6317. https://doi.org/10.3390/en17246317
Chicago/Turabian StylePark, Jae-Deok, Jeong-Sik Oh, Tae-Hun Kim, Byeong-Hyeon An, Seung-Yun Lee, and Tae-Sik Park. 2024. "Low-Frequency AC Multiport Asynchronous Grid Connection System to Optimize Generation Costs and Mitigate Bottlenecks" Energies 17, no. 24: 6317. https://doi.org/10.3390/en17246317
APA StylePark, J.-D., Oh, J.-S., Kim, T.-H., An, B.-H., Lee, S.-Y., & Park, T.-S. (2024). Low-Frequency AC Multiport Asynchronous Grid Connection System to Optimize Generation Costs and Mitigate Bottlenecks. Energies, 17(24), 6317. https://doi.org/10.3390/en17246317