Dynamic Relationship Between Environmental Policy and Technological Innovation: Evidence from Firms in Korean Emission Trading Scheme
Abstract
:1. Introduction
2. Literature Review
3. Data and Methodology
3.1. Data
3.2. Model
+ β5(lnDeb tratio)it + β6(lnR&D_profit)it + β7(lnR&D_profit)it−1 + β8(lnR&D_profitit*Phase1)
+ β9(lnR&D_profitit*Phase2) + β10(lnR&D_profitit*Phase3) + β11(lnR&D_profitit−1*Phase1) + β12(lnR&D_profitit−1*Phase2)
+ β13(lnR&D_profitit−1*Phase3) + β14(lnAge)it + μi + ηt + εit.
+ β4(∆lnCapital intensity)it + β5(∆lnDeb tratio)it + β6(∆lnR&D_profit)it + β7(∆lnR&D_profit)it−1 + β8(∆lnR&D_profitit*Phase1)
+ β9(∆lnR&D_profitit*Phase2) + β10(∆lnR&D_profitit*Phase3) + β11(∆lnR&D_profitit−1*Phase1) + β12(∆lnR&D_profitit−1*Phase2)
+ β13(∆lnR&D_profitit−1*Phase3) + β14(∆lnAge)it + ∆μi +∆ηt +∆εit.
4. Empirical Results
4.1. System GMM Analysis—The Whole Industry
4.2. System GMM Estimation for Carbon-Intensive Industries
5. Conclusions and Policy Implication
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ehrhart, K.; Song, S.; Hoppe, C.; Seifert, S. Strategic Aspects of Co2-Emissions Trading: Theoretical Concepts and Empirical Findings. Energy Environ. 2003, 14, 11679. [Google Scholar] [CrossRef]
- Sepehriar, A.; Eslamipoor, R. An economical single-vendor single-buyer framework for carbon emission policies. J. Bus. Econ. 2024, 94, 927–945. [Google Scholar] [CrossRef]
- Ren, S.; Yang, X.; Hu, Y.; Chevallier, J. Emission trading, induced innovation and firm performance. Energy Econ. 2022, 112, 106157. [Google Scholar] [CrossRef]
- Mo, J. Technological innovation and its impact on carbon emissions: Evidence from Korea manufacturing firms participating emission trading scheme. Technol. Anal. Strateg. Manag. 2022, 34, 47–57. [Google Scholar] [CrossRef]
- Lantz, J.; Sahut, J. R&D Investment and the Financial Performance of Technological Firms. Int. J. Bus. 2005, 10, 252–270. [Google Scholar]
- Lee, K.; Min, B. Green R&D for eco-innovation and its impact on carbon emissions and firm performance. J. Clean. Prod. 2005, 108, 534–542. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, H.; Mbanyele, W.; Wei, Z.; Li, X. How does green industrial policy affect corporate green innovation? Evidence from the green factory identification in China. Energy Econ. 2024, 141, 108047. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, Y.; Huang, J. ESG Performance, R&D Investment and Financial Performance: A Case Study of Special Equipment Manufacturing Enterprises. Asian J. Econ. Bus. Account. 2024, 24, 470–488. [Google Scholar] [CrossRef]
- Zhu, Z.; Huang, F. The Effect of R&D Investment on Firms’ Financial Performance: Evidence from the Chinese Listed IT Firms. Mod. Econ. 2012, 3, 915–919. [Google Scholar] [CrossRef]
- Bushnell, J.; Chong, H.; Mansur, E. Profiting from Regulation: Evidence from the European Carbon Market. Am. Econ. Assoc. 2013, 5, 78–106. [Google Scholar] [CrossRef]
- Delmas, M.; Nairn-Birch, N.; Lim, J. Dynamics of Environmental and Financial Performance: The Case of Greenhouse Gas Emissions. Organ. Environ. 2015, 28, 374–393. [Google Scholar] [CrossRef]
- Flori, A.; Borghesi, S.; Marin, G. The environmental-financial performance nexus of EU ETS firms: A quantile regression approach. Energy Econ. 2024, 131, 107328. [Google Scholar] [CrossRef]
- Yu, P.; Hao, R.; Cai, Z.; Sun, Y.; Zhang, X. Does emission trading system achieve the win-win of carbon emission reduction and financial performance improvement?—Evidence from Chinese A-share listed firms in industrial sector. J. Clean. Prod. 2022, 333, 130121. [Google Scholar] [CrossRef]
- Wolfe, J. The Tobin Q as a Company Performance Indicator. Dev. Bus. Simul. Exp. Learn. 2003, 30, 155–159. [Google Scholar]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data models. J. Econom. 1998, 87, 115–143. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef]
- Iwata, H.; Okada, K. How does environmental performance affect financial performance? Evidence from Japanese manufacturing firms. Ecol. Econ. 2011, 70, 1691–1700. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J. Does carbon emissions trading affect the financial performance of high energy-consuming firms in China? Nat. Hazard 2019, 95, 91–111. [Google Scholar] [CrossRef]
- Karlina, A.I.; Karlina, Y.I.; Gladkikh, V.A. Analysis of Experience in the Use of Micro- and Nanoadditives from Silicon Production Waste in Concrete Technologies. Minerals 2023, 13, 1525. [Google Scholar] [CrossRef]
Mean | Std. Dev. | Min | Max | Skewness | Kutosis | |
---|---|---|---|---|---|---|
lnROE | 1.981 | 1.212 | −6.119 | 13.192 | −0.384 | 7.687 |
lnROA | 1.243 | 1.197 | −7.243 | 5.824 | −1.048 | 5.632 |
lnTobins_q | −0.467 | 0.747 | −8.873 | 2.552 | −1.451 | 12.585 |
lnCarbon intensity | −11.694 | 1.942 | −24.549 | −1.828 | 0.096 | 4.675 |
lnLabor | 6.026 | 1.682 | 0.000 | 11.704 | 0.294 | 3.155 |
lnCapital intensity | −0.516 | 1.046 | −8.066 | 10.640 | 0.646 | 14.756 |
lnDebt ratio | 2.439 | 1.474 | −3.090 | 11.455 | 0.539 | 4.201 |
lnR&D_profit | −5.785 | 2.060 | −16.539 | 2.096 | −0.976 | 4.658 |
lnFirm’s age | 2.974 | 0.957 | 0.000 | 4.522 | −0.963 | 3.597 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
---|---|---|---|---|---|---|---|---|---|
lnROE (1) | 1.000 | ||||||||
lnROA (2) | 0.911 * | 1.000 | |||||||
lnTobins_q (3) | 0.090 * | −0.085 * | 1.000 | ||||||
lnCarbon intensity (4) | −0.451 * | −0.537 * | −0.113 * | 1.000 | |||||
lnLabor (5) | −0.073 * | −0.016 | 0.300 * | −0.435 | 1.000 | ||||
lnCapital intensity (6) | −0.273 * | −0.013 | −0.237 * | −0.163 | −0.036 * | 1.000 | |||
lnDebt ratio (7) | −0.714 * | −0.913 * | 0.293 * | 0.520 | 0.031 * | −0.209 * | 1.000 | ||
lnR&D_profit (8) | 0.060 * | 0.056 * | 0.147 * | −0.088 | 0.176 * | 0.113 * | −0.052 * | 1.000 | |
lnFirm’s age (9) | −0.109 * | −0.009 | 0.091 * | −0.108 | 0.262 * | 0.049 * | −0.053 * | −0.045 * | 1.000 |
Data | LLC | IPS | Fisher-ADF | Fisher-PP |
---|---|---|---|---|
lnROA | −59.419 *** | −20.228 *** | 2105.52 *** | 2416.49 *** |
lnROE | −63.235 *** | −25.478 *** | 2415.57 *** | 2777.00 *** |
lnTobins_q | −44.325 *** | −11.732 *** | 1639.28 *** | 1943.37 *** |
∆ lnROA | −118.395 *** | −55.515 *** | 4337.79 *** | 5839.68 *** |
∆ lnROE | −102.883 *** | −58.351 *** | 4578.74 *** | 6334.97 *** |
∆ lnTobins_q | −80.742 *** | −43.329 *** | 3498.72 *** | 4236.87 *** |
Data | Depen.var | Hansen Test | Arellano–Bond Test | |
---|---|---|---|---|
Null hypothesis: The instruments are valid | Null hypothesis: No autocorrelation of order 1 | Null hypothesis: No autocorrelation of order 2 | ||
All industries | lnROE | 44.86 Prob > chi2 = 0.679 | −4.17 Pr > z = 0.000 | −1.50 Pr > z = 0.134 |
lnROA | 170.46 Prob > chi2 = 1.000 | −3.98 Pr > z = 0.000 | −1.84 Pr > z = 0.065 | |
lnTobins_q | 178.37 Prob > chi2 = 1.000 | −3.52 Pr > z = 0.000 | −1.79 Pr > z = 0.074 | |
Carbon intensive industries | lnROE | 41.11 Prob > chi2 = 0.810 | −2.73 Pr > z = 0.006 | −0.83 Pr > z = 0.405 |
lnROA | 41.07 Prob > chi2 = 1.000 | −1.48 Pr > z = 0.138 | −1.60 Pr > z = 0.110 | |
lnTobins_q | 51.22 Prob > chi2 = 0.995 | −3.41 Pr > z = 0.001 | 0.61 Pr > z = 0.544 |
Depen.var: ∆lnROE | Depen.var: ∆lnROA | Depen.var: ∆lnTobins_q | |
---|---|---|---|
∆lnFPit−1 | 0.064 *** (3.03) | −0.015 *** (−7.86) | 0.832 *** (171.64) |
∆lnCarbon intensityit | −0.105 *** (−5.58) | −0.050 *** (−19.36) | −0.028 *** (−16.30) |
∆lnLaborit | −0.097 *** (−3.96) | −0.032 *** (−9.95) | 0.003 (1.63) |
∆lnCapital intensityit | −0.347 *** (−4.63) | −0.320 *** (−54.23) | −0.003 (−0.68) |
∆lnDebt ratioit | −0.611 *** (−23.39) | −0.801 *** (−189.28) | 0.053 *** (23.43) |
∆lnR&D_profitit | 0.472 ** (2.19) | 0.052 *** (7.29) | 0.001 (0.22) |
∆lnR&D_profitit−1 | −0.442 ** (−2.07) | −0.025 *** (−3.87) | 0.034 *** (6.11) |
∆lnR&D_profitit*Phase1 | −0.538 ** (−2.17) | −0.020 ** (−2.34) | −0.019 *** (−2.97) |
∆lnR&D_profitit*Phase2 | −0.617 ** (−2.34) | −0.055 *** (−6.17) | −0.017 ** (−2.5) |
∆lnR&D_profitit*Phase3 | −0.671 * (−1.93) | −0.081 *** (−6.00) | −0.057 *** (−4.69) |
∆lnR&D_profitit−1*Phase1 | 0.567 ** (2.28) | 0.035 *** (3.81) | 0.027 *** (3.62) |
∆lnR&D_profitit−1*Phase2 | 0.584 ** (2.23) | 0.036 *** (4.13) | −0.020 ** (−2.55) |
∆lnR&D_profitit−1*Phase3 | 0.706 * (1.96) | 0.065 *** (4.94) | 0.004 (0.31) |
∆lnAgeit | −0.241 * (−1.95) | 0.008 (0.68) | −0.008 (−0.94) |
constant | 3.137 *** (6.8) | 2.728 *** (46.26) | −0.592 *** (−13.57) |
Year effect | Y | Y | Y |
Industry effect | Y | Y | Y |
Short Run | Long Run | |||||
---|---|---|---|---|---|---|
Depen.var: lnROE | Depen.var: lnROA | Depen.var: Tobins_q | Depen.var: lnROE | Depen.var: lnROA | Depen.var: Tobins_q | |
Direct R&D elasticity | 0.472 | 0.052 | 0.001 | 0.032 | 0.026 | 0.206 |
Indirect R&D elasticity (Phase 1) | −0.538 | −0.020 | −0.019 | 0.031 | 0.015 | 0.049 |
Indirect R&D elasticity (Phase 2) | −0.617 | −0.055 | −0.017 | −0.035 | −0.019 | −0.225 |
Indirect R&D elasticity (Phase 3) | −0.671 | −0.081 | −0.057 | 0.037 | −0.015 | −0.312 |
Depen.var: lnROE | Depen.var: lnROA | Depen.var: Tobins_q | |
---|---|---|---|
lnFPit−1 | 0.022 * (1.95) | −0.020 * (−1.9) | 0.897 *** (47.52) |
lnCarbon intensityit | −0.051 *** (−3.73) | −0.099 *** (−5.61) | −0.029 *** (−5.35) |
lnLaborit | −0.054 ** (−2.54) | −0.356 *** (−14.79) | −0.017 ** (−2.61) |
lnCapital intensityit | −0.461 *** (−8.36) | 0.074 *** (3.46) | 0.001 (0.13) |
lnDebt ratioit | −0.708 * (−37.83) | −0.826 *** (−52.64) | 0.051 *** (6.44) |
lnR&D_profitit | −0.145 * (−1.71) | −0.028 (−1.26) | −0.040 *** (−3.88) |
lnR&D_profitit−1 | 0.191 ** (2.36) | 0.008 (0.47) | 0.068 *** (6.55) |
lnR&D_profitit*Phase1 | 0.250** (2.2) | 0.069 *** (2.95) | 0.023 (1.07) |
lnR&D_profitit*Phase2 | 0.282 *** (2.95) | 0.155 *** (4.15) | −0.147 *** (−4.64) |
lnR&D_profitit*Phase3 | 0.137 (1.56) | 0.026 (0.99) | 0.018 (0.94) |
lnR&D_profitit−1*Phase1 | −0.224 * (−1.92) | −0.056 ** (−2.62) | 0.027 (1.25) |
lnR&D_profitit−1*Phase2 | −0.296 *** (−2.89) | −0.129 *** (−3.96) | 0.162 *** (5.18) |
lnR&D_profitit−1*Phase3 | −0.136 (−1.44) | 0.010 (0.39) | −0.095 *** (−5.51) |
lnAgeit | −0.170 *** (−3.06) | −0.075 * (−1.8) | −0.083 *** (−4.96) |
constant | 3.666 *** (21.04) | 2.145 *** (5.58) | −0.009 (−0.07) |
Year effect | Y | Y | Y |
Industry effect | Y | Y | Y |
Short Run | Long Run | |||||
---|---|---|---|---|---|---|
Depen.var: lnROE | Depen.var: lnROA | Depen.var: Tobins_q | Depen.var: lnROE | Depen.var: lnROA | Depen.var: Tobins_q | |
Direct R&D elasticity | −0.145 | −0.028 | −0.040 | 0.047 | −0.020 | 0.271 |
Indirect R&D elasticity (Phase 1) | 0.250 | 0.069 | 0.013 | 0.026 | 0.023 | 0.481 |
Indirect R&D elasticity (Phase 2) | 0.282 | 0.155 | 0.026 | −0.015 | −0.147 | 0.143 |
Indirect R&D elasticity (Phase 3) | 0.137 | 0.026 | 0.036 | 0.001 | 0.018 | −0.751 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, J.Y.; Jeon, W. Dynamic Relationship Between Environmental Policy and Technological Innovation: Evidence from Firms in Korean Emission Trading Scheme. Energies 2024, 17, 6049. https://doi.org/10.3390/en17236049
Mo JY, Jeon W. Dynamic Relationship Between Environmental Policy and Technological Innovation: Evidence from Firms in Korean Emission Trading Scheme. Energies. 2024; 17(23):6049. https://doi.org/10.3390/en17236049
Chicago/Turabian StyleMo, Jung Youn, and Wooyoung Jeon. 2024. "Dynamic Relationship Between Environmental Policy and Technological Innovation: Evidence from Firms in Korean Emission Trading Scheme" Energies 17, no. 23: 6049. https://doi.org/10.3390/en17236049
APA StyleMo, J. Y., & Jeon, W. (2024). Dynamic Relationship Between Environmental Policy and Technological Innovation: Evidence from Firms in Korean Emission Trading Scheme. Energies, 17(23), 6049. https://doi.org/10.3390/en17236049