Recovery of Biogas and Other Valuable Bioproducts from Livestock Blood Waste: A Review
Abstract
:1. Introduction
2. Overview of Blood Waste from Livestock Slaughtering
3. Chemical Composition of Livestock Blood
4. Environmental Impact of Livestock Blood Waste
5. Recovery of Valuable Components (Other than Biogas) from Livestock Blood
5.1. Recovery of Bioactive Peptides
5.2. Extraction of VFAs
6. AD as a Sustainable Treatment Solution of Livestock Blood Waste
6.1. Mono-Digestion of Livestock Blood Waste
6.2. Co-Digestion of Livestock Blood Waste
7. Technological Innovations in Livestock Blood Waste AD
Innovations in AD of Livestock Blood Waste
8. Technological Advancements in Livestock Blood Waste Management
Enhancing the AD of Blood Waste
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ofori, J.A.; Hsieh, Y.H.P. Issues Related to the Use of Blood in Food and Animal Feed. Crit. Rev. Food Sci. Nutr. 2014, 54, 687–697. [Google Scholar] [CrossRef]
- Gupta, A.K.; Fadzlillah, N.A.; Sukri, S.J.M.; Adediran, O.A.; Rather, M.A.; Naik, B.; Kumar, V.; Bekhit, A.E.D.A.; Ramli, M.A.; Jha, A.K.; et al. Slaughterhouse Blood: A State-of-the-Art Review on Transforming by-Products into Valuable Nutritional Resources and the Role of Circular Economy. Food Biosci. 2024, 61, 104644. [Google Scholar] [CrossRef]
- Aniebo, A.O.; Wekhe, S.N.; Okoli, I.C. Abattoir Blood Waste Generation in Rivers State and Its Environmental Implications in the Niger Delta. Toxicol. Environ. Chem. 2009, 91, 619–625. [Google Scholar] [CrossRef]
- Ahmad, H.R.; Aziz, T.; Zia-ur-Rehman, M.; Sabir, M.; Khalid, H. Sources and Composition of Waste Water: Threats to Plants and Soil Health. In Soil Science: Agricultural and Environmental Prospectives; Springer: Cham, Switzerland, 2016; pp. 349–370. [Google Scholar] [CrossRef]
- Siddiki, S.Y.A.; Uddin, M.N.; Mofijur, M.; Fattah, I.M.R.; Ong, H.C.; Lam, S.S.; Kumar, P.S.; Ahmed, S.F. Theoretical Calculation of Biogas Production and Greenhouse Gas Emission Reduction Potential of Livestock, Poultry and Slaughterhouse Waste in Bangladesh. J. Environ. Chem. Eng. 2021, 9, 105204. [Google Scholar] [CrossRef]
- Zhao, S.; Thakur, N.; Salama, E.S.; Zhang, P.; Zhang, L.; Xing, X.; Yue, J.; Song, Z.; Nan, L.; Yujun, S.; et al. Potential Applications of Protein-Rich Waste: Progress in Energy Management and Material Recovery. Resour. Conserv. Recycl. 2022, 182, 106315. [Google Scholar] [CrossRef]
- Plácido, J.; Zhang, Y. Production of Volatile Fatty Acids from Slaughterhouse Blood by Mixed-Culture Fermentation. Biomass Convers. Biorefin. 2018, 8, 621–634. [Google Scholar] [CrossRef]
- Langone, M.; Ferrentino, R.; Freddi, F.; Andreottola, G. Anaerobic Digestion of Blood Serum Water Integrated in a Valorization Process of the Bovine Blood Treatment. Biomass Bioenergy 2019, 120, 1–8. [Google Scholar] [CrossRef]
- Adegbeye, M.J.; Salem, A.Z.M.; Reddy, P.R.K.; Elghandour, M.M.M.; Oyebamiji, K.J. Waste Recycling for the Eco-Friendly Input Use Efficiency in Agriculture and Livestock Feeding. In Resources Use Efficiency in Agriculture; Springer: Singapore, 2020; pp. 1–45. [Google Scholar] [CrossRef]
- Alao, B.O.; Falowo, A.B.; Chulayo, A.; Muchenje, V. The Potential of Animal By-Products in Food Systems: Production, Prospects and Challenges. Sustainability 2017, 9, 1089. [Google Scholar] [CrossRef]
- World Food and Agriculture—Statistical Yearbook 2020; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [CrossRef]
- World Food and Agriculture—Statistical Yearbook 2022; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022. [CrossRef]
- Osborne, R.C.; Harris, C.E.; Buhr, R.J.; Kiepper, B.H. Impact of Exsanguination Method on Blood Loss in Broilers. J. Appl. Poult. Res. 2023, 32, 100380. [Google Scholar] [CrossRef]
- Guillaumin, J. Blood and Blood Products. In Pharmacology in Veterinary Anesthesia and Analgesia; Wiley: Hoboken, NJ, USA, 2024; pp. 382–391. [Google Scholar] [CrossRef]
- Verma, A.K.; Umaraw, P.; Kumar, P.; Mehta, N.; Sazili, A.Q. Processing of Red Meat Carcasses. In Postharvest and Postmortem Processing of Raw Food Materials: Unit Operations and Processing Equipment in the Food Industry; Woodhead Publishing (Elsevier Inc.): Cambridge, UK, 2022; pp. 243–280. [Google Scholar] [CrossRef]
- Nauman, K.; Nauman, A.; Arshad, M. Slaughter Wastes-A Curse or Blessing: An Appraisal. In Climate Changes Mitigation and Sustainable Bioenergy Harvest Through Animal Waste; Springer: Cham, Switzerland, 2023; pp. 35–67. [Google Scholar] [CrossRef]
- Strashynskyi, I.; Pasichnyi, V.; Shevchenko, T.; Karapalov, A. Formation of Functional Indicators of Meat Slaughtered Animals. Grail Sci. 2021, 6, 125–129. [Google Scholar] [CrossRef]
- Abd El-Rahim, I.H.A.; Mashat, B.H.; Fat’hi, S.M. Effect of Halal and Stunning Slaughter Methods on Meat Quality: A Review. Int. Food Res. J. 2023, 30, 290–302. [Google Scholar] [CrossRef]
- Okpaga, F.O.; Adeolu, A.I.; Nwalo, F.N.; Okpe, A.O.; Ikpeama, C.C.; Ogwu, C.E. Safeguarding Ecosystems Using Innovative Approaches to Manage Animal Wastes. Bio-Res. 2024, 22, 2274–2291. [Google Scholar] [CrossRef]
- Al-Gheethi, A.; Ma, N.L.; Rupani, P.F.; Sultana, N.; Yaakob, M.A.; Mohamed, R.M.S.R.; Soon, C.F. Biowastes of Slaughterhouses and Wet Markets: An Overview of Waste Management for Disease Prevention. Environ. Sci. Pollut. Res. 2023, 30, 71780–71793. [Google Scholar] [CrossRef]
- Selormey, G.K.; Barnes, B.; Kemausuor, F.; Darkwah, L. A Review of Anaerobic Digestion of Slaughterhouse Waste: Effect of Selected Operational and Environmental Parameters on Anaerobic Biodegradability. Rev. Environ. Sci. Biotechnol. 2021, 20, 1073–1086. [Google Scholar] [CrossRef]
- Herdt, T.H.; Hoff, B. The Use of Blood Analysis to Evaluate Trace Mineral Status in Ruminant Livestock. Vet. Clin. N. Am. Food Anim. Pract. 2011, 27, 255–283. [Google Scholar] [CrossRef]
- Limeneh, D.Y.; Tesfaye, T.; Ayele, M.; Husien, N.M.; Ferede, E.; Haile, A.; Mengie, W.; Abuhay, A.; Gelebo, G.G.; Gibril, M.; et al. A Comprehensive Review on Utilization of Slaughterhouse By-Product: Current Status and Prospect. Sustainability 2022, 14, 6469. [Google Scholar] [CrossRef]
- Csurka, T.; Pásztor-Huszár, K.; Tóth, A.; Németh, C.; László Friedrich, F. Animal Blood, as a Safe and Valuable Resource. J. Hyg. Eng. Des. 2021, 35, 41–47. [Google Scholar]
- Kajal; Pathania, A.R. Chemistry behind Serum Albumin: A Review. E3S Web Conf. 2021, 309, 01086. [Google Scholar] [CrossRef]
- Kianfar, E. Protein Nanoparticles in Drug Delivery: Animal Protein, Plant Proteins and Protein Cages, Albumin Nanoparticles. J. Nanobiotechnol. 2021, 19, 159. [Google Scholar] [CrossRef] [PubMed]
- Linder, M.C. Ceruloplasmin and Other Copper Binding Components of Blood Plasma and Their Functions: An Update. Metallomics 2016, 8, 887–905. [Google Scholar] [CrossRef]
- Thangaraju, K.; Neerukonda, S.N.; Katneni, U.; Buehler, P.W. Extracellular Vesicles from Red Blood Cells and Their Evolving Roles in Health, Coagulopathy and Therapy. Int. J. Mol. Sci. 2021, 22, 153. [Google Scholar] [CrossRef]
- Siedlinski, M.; Jozefczuk, E.; Xu, X.; Teumer, A.; Evangelou, E.; Schnabel, R.B.; Welsh, P.; Maffia, P.; Erdmann, J.; Tomaszewski, M.; et al. White Blood Cells and Blood Pressure: A Mendelian Randomization Study. Circulation 2020, 141, 1307–1317. [Google Scholar] [CrossRef] [PubMed]
- Day, L.; Cakebread, J.A.; Loveday, S.M. Food Proteins from Animals and Plants: Differences in the Nutritional and Functional Properties. Trends Food Sci. Technol. 2022, 119, 428–442. [Google Scholar] [CrossRef]
- Eko, P.M.; Afolabi, K.D.; Mbaba, E.N.; Ekpo, U.E.; Idio, A.D. Effect of Keeping Durations Prior to Processing of Bovine Blood on Its Proximate, Gross Energy and Amino Acid Compositions. A. J. Res. Biosci. 2024, 6, 104–111. [Google Scholar]
- Zhang, H.; van der Wielen, N.; van der Hee, B.; Wang, J.; Hendriks, W.; Gilbert, M. Impact of Fermentable Protein, by Feeding High Protein Diets, on Microbial Composition, Microbial Catabolic Activity, Gut Health and beyond in Pigs. Microorganisms 2020, 8, 1735. [Google Scholar] [CrossRef]
- Saleh, A.A.; Amber, K.A.; Soliman, M.M.; Soliman, M.Y.; Morsy, W.A.; Shukry, M.; Alzawqari, M.H. Effect of Low Protein Diets with Amino Acids Supplementation on Growth Performance, Carcass Traits, Blood Parameters and Muscle Amino Acids Profile in Broiler Chickens under High Ambient Temperature. Agriculture 2021, 11, 185. [Google Scholar] [CrossRef]
- Hasan Rizvi, Z.; Goyal, B.; Misra, D.; Ruhela, M.; Singh Teotia, D.; Bhatnagar, V.; Pratap Singh, B.; Kumar, V.; Bhatnagar, S. Study of Effluent Treatment Plant at Slaughter House. Int. J. Civ. Eng. Technol. 2016, 7, 418–426. [Google Scholar]
- Enosi Tuipulotu, D.; Mathur, A.; Ngo, C.; Man, S.M. Bacillus Cereus: Epidemiology, Virulence Factors, and Host–Pathogen Interactions. Trends Microbiol. 2021, 29, 458–471. [Google Scholar] [CrossRef] [PubMed]
- González-Espinoza, G.; Arce-Gorvel, V.; Mémet, S.; Gorvel, J.P. Brucella: Reservoirs and Niches in Animals and Humans. Pathogens 2021, 10, 186. [Google Scholar] [CrossRef]
- Robinson, K.; Assumpcao, A.L.F.V.; Arsi, K.; Erf, G.F.; Donoghue, A.; Jesudhasan, P.R.R. Effect of Salmonella Typhimurium Colonization on Microbiota Maturation and Blood Leukocyte Populations in Broiler Chickens. Animals 2022, 12, 2867. [Google Scholar] [CrossRef] [PubMed]
- To, K.; Cao, R.; Yegiazaryan, A.; Owens, J.; Venketaraman, V. General Overview of Nontuberculous Mycobacteria Opportunistic Pathogens: Mycobacterium Avium and Mycobacterium Abscessus. J. Clin. Med. 2020, 9, 2541. [Google Scholar] [CrossRef]
- Banerjee, P.; Garai, P.; Saha, N.C.; Saha, S.; Sharma, P.; Maiti, A.K. A Critical Review on the Effect of Nitrate Pollution in Aquatic Invertebrates and Fish. Water Air Soil. Pollut. 2023, 234, 333. [Google Scholar] [CrossRef]
- Herdt, T.H.; Rumbeiha, W.; Braselton, W.E. The Use of Blood Analyses to Evaluate Mineral Status in Livestock. Vet. Clin. N. Am. Food Anim. Pract. 2000, 16, 423–444. [Google Scholar] [CrossRef] [PubMed]
- Bandaw, T.; Herago, T. Review on Abattoir Waste Management. Glob. Vet. 2017, 19, 517–524. [Google Scholar] [CrossRef]
- Aworh, M.K.; Abiodun-Adewusi, O.; Mba, N.; Helwigh, B.; Hendriksen, R.S. Prevalence and Risk Factors for Faecal Carriage of Multidrug Resistant Escherichia Coli among Slaughterhouse Workers. Sci. Rep. 2021, 11, 13362. [Google Scholar] [CrossRef] [PubMed]
- Daniel, O.; NJohn, U.; LYusuf, M.O.; Onyedikachukwu, N.B. Land Pollution Assessment from Slaughterhouses Waste Discharge in Port Harcourt. J. Eng. Res. Rep. 2021, 21, 10–28. [Google Scholar] [CrossRef]
- Boughou, N.; Qoutbane, A.; Hadji, M.; Cherkaoui, E.; Khamar, M.; Nounah, A. Treatment and Valorization of Slaughterhouse Wastewater in Agriculture. Ecol. Eng. Environ. Technol. 2024, 25, 389–398. [Google Scholar] [CrossRef]
- Izydorczyk, G.; Mikula, K.; Skrzypczak, D.; Witek-Krowiak, A.; Mironiuk, M.; Furman, K.; Gramza, M.; Moustakas, K.; Chojnacka, K. Valorization of Poultry Slaughterhouse Waste for Fertilizer Purposes as an Alternative for Thermal Utilization Methods. J. Hazard. Mater. 2022, 424, 127328. [Google Scholar] [CrossRef]
- Cui, G.; Bhat, S.A.; Li, W.; Ishiguro, Y.; Wei, Y.; Li, F. H2S, MeSH, and NH3 Emissions from Activated Sludge: An Insight towards Sludge Characteristics and Microbial Mechanisms. Int. Biodeterior. Biodegrad. 2022, 166, 105331. [Google Scholar] [CrossRef]
- Lynch, S.A.; Mullen, A.M.; O’Neill, E.E.; García, C.Á. Harnessing the Potential of Blood Proteins as Functional Ingredients: A Review of the State of the Art in Blood Processing. Compr. Rev. Food Sci. Food Saf. 2017, 16, 330–344. [Google Scholar] [CrossRef]
- Ungureanu, N.; Vlăduț, N.V.; Biriș, S.Ș.; Gheorghiță, N.E.; Ionescu, M.; Milea, O.E.; Dincă, M. Management of Waste and By-Products from Meat Industry. In Proceedings of the International Symposium Agricultural and Mechanical Engineering, Belgrade, Serbia, 19–21 October 2023; pp. 266–267. [Google Scholar]
- Zheng, H. Potential Food and Pharmaceutical Application of Livestock Blood Proteins. Highlights Sci. Eng. Technol. 2023, 55, 29–35. [Google Scholar] [CrossRef]
- Cheng, C.; Chen, L.; Zhang, D.; Yu, J.; Zhu, M.; Li, C.; Zheng, X.; Blecker, C.; Li, S. Value-Added Utilization of Hemoglobin and Its Hydrolysis Products from Livestock and Poultry Blood Processing by-Products: A Review. Trends Food Sci. Technol. 2024, 151, 104645. [Google Scholar] [CrossRef]
- Chiroque, R.G.S.; Cornelio-Santiago, H.P.; Espinoza-Espinoza, L.A.; Moreno-Quispe, L.A.; Pantoja-Tirado, L.R.; Nieva-Villegas, L.M.; Nieva-Villegas, M.A. A Review of Slaughterhouse Blood and Its Compounds, Processing and Application in the Formulation of Novel Non-Meat Products. Curr. Res. Nutr. Food Sci. 2023, 11, 534–548. [Google Scholar] [CrossRef]
- He, L.; Yang, F.; Liang, Y.; Zhang, M.; Liu, X.; Zhao, S.; Jin, G. Process Optimisation of Haemoglobin Hydrolysis by Complex Proteases to Produce Haem-enriched Peptides and Its Iron Uptake Property Evaluation by Caco-2 Cell Model. Int. J. Food Sci. Technol. 2020, 55, 3412–3423. [Google Scholar] [CrossRef]
- Mora, L.; Toldrá-Reig, F.; Reig, M.; Toldrá, F. Possible Uses of Processed Slaughter Byproducts. In Sustainable Meat Production and Processing; Elsevier: Amsterdam, The Netherlands, 2019; pp. 145–160. [Google Scholar]
- Przybylski, R.; Bazinet, L.; Firdaous, L.; Kouach, M.; Goossens, J.F.; Dhulster, P.; Nedjar, N. Harnessing Slaughterhouse By-Products: From Wastes to High-Added Value Natural Food Preservative. Food Chem. 2020, 304, 125448. [Google Scholar] [CrossRef]
- Berraquero-García, C.; Almécija, M.C.; Guadix, E.M.; Pérez-Gálvez, R. Valorisation of Blood Protein from Livestock to Produce Haem Iron-fortified Hydrolysates with Antioxidant Activity. Int. J. Food Sci. Technol. 2022, 57, 2479–2486. [Google Scholar] [CrossRef]
- Nikhita, R.; Sachindra, N.M. Optimization of Chemical and Enzymatic Hydrolysis for Production of Chicken Blood Protein Hydrolysate Rich in Angiotensin-I Converting Enzyme Inhibitory and Antioxidant Activity. Poult. Sci. 2021, 100, 101047. [Google Scholar] [CrossRef]
- Samaddar, A.; Kaviraj, A. Application of Fermentation Technology to Use Slaughterhouse Blood as Potential Protein Supplement in Fish Feed. Jordan J. Biol. Sci. 2015, 8, 23–30. [Google Scholar] [CrossRef]
- Jeon, Y.-W.; Kim, H.-J.; Shin, M.-S.; Pak, S.-H. Ultrasonic Treatment of Waste Livestock Blood for Enhancement of Solubilization. Environ. Eng. Res. 2016, 21, 22–28. [Google Scholar] [CrossRef]
- Yang, J.; Huang, J.; Dong, X.; Zhang, Y.; Zhou, X.; Huang, M.; Zhou, G. Purification and Identification of Antioxidant Peptides from Duck Plasma Proteins. Food Chem. 2020, 319, 126534. [Google Scholar] [CrossRef]
- Przybylski, R.; Firdaous, L.; Châtaigné, G.; Dhulster, P.; Nedjar, N. Production of an Antimicrobial Peptide Derived from Slaughterhouse By-Product and Its Potential Application on Meat as Preservative. Food Chem. 2016, 211, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Gao, M.; Zhang, H.; Kong, B.; Liu, Q. Stability of Oil-in-Water Emulsions Fortified with Enzymatic Hydrolysates from Porcine Plasma Protein. Eur. J. Lipid Sci. Technol. 2018, 120, 1700501. [Google Scholar] [CrossRef]
- Boudon, S.; Henry-Berger, J.; Cassar-Malek, I. Aggregation of Omic Data and Secretome Prediction Enable the Discovery of Candidate Plasma Biomarkers for Beef Tenderness. Int. J. Mol. Sci. 2020, 21, 664. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; de Roos, A.; Schouten, O.; Zheng, C.; Vink, C.; Vonk, B.; Kliphuis, A.; Schaap, A.; Edens, L. Properties of Hemoglobin Decolorized with a Histidine-Specific Protease. J. Food Sci. 2015, 80, 12809. [Google Scholar] [CrossRef]
- Álvarez-Castillo, E.; Guerrero, P.; de la Caba, K.; Bengoechea, C.; Guerrero, A. Biorefinery Concept in the Meat Industry: From Slaughterhouse Biowastes to Superaborbent Materials. Chem. Eng. J. 2023, 471, 144564. [Google Scholar] [CrossRef]
- Jeon, Y.-W.; Jeon, M.-J. Large-Scale Conversion of Livestock Blood into Amino Acid Liquid Fertilizer and Dry Protein Feedstuff: A Case Study. Processes 2024, 12, 1183. [Google Scholar] [CrossRef]
- Plácido, J.; Zhang, Y. Production and Extraction of Short Chain Carboxylic Acids from the Anaerobic-Mixed Culture Fermentation of Slaughterhouse Blood; UK AD & Biogas 2016, National Exhibition Centre (NEC): Birmingham, UK, 2016; pp. 37–41. [Google Scholar]
- Zhang, Y.; Banks, C.J. Co-Digestion of the Mechanically Recovered Organic Fraction of Municipal Solid Waste with Slaughterhouse Wastes. Biochem. Eng. J. 2012, 68, 129–137. [Google Scholar] [CrossRef]
- Plácido, J.; Zhang, Y. Evaluation of Esterification and Membrane Based Solvent Extraction as Methods for the Recovery of Short Chain Volatile Fatty Acids from Slaughterhouse Blood Anaerobic Mixed Fermentation. Waste Biomass Valor. 2018, 9, 1767–1777. [Google Scholar] [CrossRef]
- Habchi, S.; Pecha, J.; Šánek, L.; Karouach, F.; El Bari, H. Sustainable Valorization of Slaughterhouse Waste through Anaerobic Digestion: A Circular Economy Perspective. J. Environ. Manag. 2024, 366, 121920. [Google Scholar] [CrossRef]
- Ungureanu, N.; Vlăduț, N.-V.; Biriș, S.-Ș.; Gheorghiță, N.-E.; Ionescu, M.; Elena Milea, O.; Dincă, M. Management of Waste and By-Products from Meat Industry. Acta Tech. Corviniensis 2024, 17, 49–58. [Google Scholar]
- Guo, Z.; Usman, M.; Alsareii, S.A.; Harraz, F.A.; Al-Assiri, M.S.; Jalalah, M.; Li, X.; Salama, E.S. Synergistic Ammonia and Fatty Acids Inhibition of Microbial Communities during Slaughterhouse Waste Digestion for Biogas Production. Bioresour. Technol. 2021, 337, 125383. [Google Scholar] [CrossRef] [PubMed]
- Mansour, M.N.; Lendormi, T.; Drévillon, L.; Naji, A.; Louka, N.; Maroun, R.G.; Hobaika, Z.; Lanoisellé, J.L. Influence of Substrate/Inoculum Ratio, Inoculum Source and Ammonia Inhibition on Anaerobic Digestion of Poultry Waste. Environ. Technol. 2024, 45, 1894–1907. [Google Scholar] [CrossRef]
- Yellezuome, D.; Zhu, X.; Wang, Z.; Liu, R. Mitigation of Ammonia Inhibition in Anaerobic Digestion of Nitrogen-Rich Substrates for Biogas Production by Ammonia Stripping: A Review. Renew. Sustain. Energy Rev. 2022, 157, 112043. [Google Scholar] [CrossRef]
- Gálvez-Martos, J.L.; Greses, S.; Magdalena, J.A.; Iribarren, D.; Tomás-Pejó, E.; González-Fernández, C. Life Cycle Assessment of Volatile Fatty Acids Production from Protein- and Carbohydrate-Rich Organic Wastes. Bioresour. Technol. 2021, 321, 124528. [Google Scholar] [CrossRef] [PubMed]
- Ortner, M.; Leitzinger, K.; Skupien, S.; Bochmann, G.; Fuchs, W. Efficient Anaerobic Mono-Digestion of N-Rich Slaughterhouse Waste: Influence of Ammonia, Temperature and Trace Elements. Bioresour. Technol. 2014, 174, 222–232. [Google Scholar] [CrossRef]
- Hu, Y.; Zheng, X.; Zhang, S.; Ye, W.; Wu, J.; Poncin, S.; Li, H.Z. Investigation of Hydrodynamics in High Solid Anaerobic Digestion by Particle Image Velocimetry and Computational Fluid Dynamics: Role of Mixing on Flow Field and Dead Zone Reduction. Bioresour. Technol. 2021, 319, 124130. [Google Scholar] [CrossRef]
- Heyer, R.; Klang, J.; Hellwig, P.; Schallert, K.; Kress, P.; Huelsemann, B.; Theuerl, S.; Reichl, U.; Benndorf, D. Impact of Feeding and Stirring Regimes on the Internal Stratification of Microbial Communities in the Fermenter of Anaerobic Digestion Plants. Bioresour. Technol. 2020, 314, 123679. [Google Scholar] [CrossRef] [PubMed]
- Adou, K.E.; Alle, O.A.; Kouakou, A.R.; Adouby, K.; Drogui, P.; Tyagi, R.D. Anaerobic Mono-Digestion of Wastewater from the Main Slaughterhouse in Yamoussoukro (Côte d’Ivoire): Evaluation of Biogas Potential and Removal of Organic Pollution. J. Environ. Chem. Eng. 2020, 8, 103770. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, P.; Zhang, Y.; Wang, X.; Peng, X.; Li, L. Consecutive Batch Anaerobic Digestion under Ammonia Stress: Microbial Community Assembly and Process Performance. J. Environ. Chem. Eng. 2021, 9, 106061. [Google Scholar] [CrossRef]
- Bayr, S.; Pakarinen, O.; Korppoo, A.; Liuksia, S.; Väisänen, A.; Kaparaju, P.; Rintala, J. Effect of Additives on Process Stability of Mesophilic Anaerobic Monodigestion of Pig Slaughterhouse Waste. Bioresour. Technol. 2012, 120, 106–113. [Google Scholar] [CrossRef]
- Afazeli, H.; Jafari, A.; Rafiee, S.; Nosrati, M. An Investigation of Biogas Production Potential from Livestock and Slaughterhouse Wastes. Renew. Sustain. Energy Rev. 2014, 34, 380–386. [Google Scholar] [CrossRef]
- Nazifa, T.H.; Cata Saady, N.M.; Bazan, C.; Zendehboudi, S.; Aftab, A.; Albayati, T.M. Anaerobic Digestion of Blood from Slaughtered Livestock: A Review. Energies 2021, 14, 5666. [Google Scholar] [CrossRef]
- Kim, S.-H.; Oh, S.-Y.; Kim, C.-H.; Yoon, Y.-M. Correction Method of Anaerobic Organic Biodegradability by Batch Anaerobic Digestion. K. J. Soil. Sci. Fertil. 2012, 45, 1086–1093. [Google Scholar] [CrossRef]
- Yoon, Y.-M.; Kim, S.-H.; Oh, S.-Y.; Kim, C.-H. Potential of Anaerobic Digestion for Material Recovery and Energy Production in Waste Biomass from a Poultry Slaughterhouse. Waste Manag. 2014, 34, 204–209. [Google Scholar] [CrossRef]
- Kovács, E.; Wirth, R.; Maróti, G.; Bagi, Z.; Rákhely, G.; Kovács, K.L. Biogas Production from Protein-Rich Biomass: Fed-Batch Anaerobic Fermentation of Casein and of Pig Blood and Associated Changes in Microbial Community Composition. PLoS ONE 2013, 8, e77265. [Google Scholar] [CrossRef] [PubMed]
- Hejnfelt, A.; Angelidaki, I. Anaerobic Digestion of Slaughterhouse By-Products. Biomass Bioenergy 2009, 33, 1046–1054. [Google Scholar] [CrossRef]
- Otero, A.; Mendoza, M.; Carreras, R.; Fernández, B. Biogas Production from Slaughterhouse Waste: Effect of Blood Content and Fat Saponification. Waste Manag. 2021, 133, 119–126. [Google Scholar] [CrossRef]
- Wang, S.; Hawkins, G.L.; Kiepper, B.H.; Das, K.C. Treatment of Slaughterhouse Blood Waste Using Pilot Scale Two-Stage Anaerobic Digesters for Biogas Production. Renew. Energy 2018, 126, 552–562. [Google Scholar] [CrossRef]
- Bastidas-Oyanedel, J.-R.; Sowunmi, A.; Schmidt, J.E. Valorization of Arid Region Abattoir Animal Waste: Determination of Biomethane Potential. Waste Biomass Valorization 2018, 9, 2327–2335. [Google Scholar] [CrossRef]
- Cuetos, M.J.; Morán, A.; Otero, M.; Gómez, X. Anaerobic Co-digestion of Poultry Blood with OFMSW: FTIR and TG–DTG Study of Process Stabilization. Environ. Technol. 2009, 30, 571–582. [Google Scholar] [CrossRef]
- Cuetos, M.J.; Gómez, X.; Martínez, E.J.; Fierro, J.; Otero, M. Feasibility of Anaerobic Co-Digestion of Poultry Blood with Maize Residues. Bioresour. Technol. 2013, 144, 513–520. [Google Scholar] [CrossRef]
- Tenci, N.A.; Ammam, F.; Huang, W.E.; Thompson, I.P. Anaerobic Co-Digestion of Euphorbia Tirucalli with Pig Blood for Volatile Fatty Acid Production. Bioresour. Technol. Rep. 2023, 21, 101333. [Google Scholar] [CrossRef]
- Mozhiarasi, V.; Speier, C.J.; Rose, P.M.B.; Weichgrebe, D.; Venkatachalam, S.S. Influence of Pre-Treatments and Anaerobic Co-Digestion of Slaughterhouse Waste with Vegetable, Fruit and Flower Market Wastes for Enhanced Methane Production. Biomass Convers. Biorefin. 2023, 13, 7079–7096. [Google Scholar] [CrossRef]
- Miramontes-Martínez, L.R.; Rivas-García, P.; Albalate-Ramírez, A.; Botello-Álvarez, J.E.; Escamilla-Alvarado, C.; Gomez-Gonzalez, R.; Alcalá-Rodríguez, M.M.; Valencia-Vázquez, R.; Santos-López, I.A. Anaerobic Co-Digestion of Fruit and Vegetable Waste: Synergy and Process Stability Analysis. J. Air Waste Manag. Assoc. 2021, 71, 620–632. [Google Scholar] [CrossRef]
- Meneses-Quelal, W.O.; Velázquez-Martí, B.; Gaibor-Chávez, J.; Niño-Ruiz, Z.; Ferrer-Gisbert, A. Anaerobic Co-Digestion of Slaughter Residues with Agricultural Waste of Amaranth Quinoa and Wheat. Bioenergy Res. 2022, 15, 1649–1663. [Google Scholar] [CrossRef]
- Jo, S.; Kadam, R.; Jang, H.; Seo, D.; Park, J. Elucidating Synergetic Effects of Anaerobic Co-Digestion of Slaughterhouse Waste with Livestock Manures. Energies 2024, 17, 3027. [Google Scholar] [CrossRef]
- Muhammad Nasir, I.; Mohd Ghazi, T.I.; Omar, R. Production of Biogas from Solid Organic Wastes through Anaerobic Digestion: A Review. Appl. Microbiol. Biotechnol. 2012, 95, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, B. Evaluation of Biogas Production Yields of Different Waste Materials. Earth Sci. Res. 2012, 2, 165–174. [Google Scholar] [CrossRef]
- López, I.; Passeggi, M.; Borzacconi, L. Co-Digestion of Ruminal Content and Blood from Slaughterhouse Industries: Influence of Solid Concentration and Ammonium Generation. Water Sci. Technol. 2006, 54, 231–236. [Google Scholar] [CrossRef]
- Banks, C.; Zhang, Y. Optimising Inputs and Outputs from Anaerobic Digestion Processes; DEFRA: London, UK, 2010. [Google Scholar]
- Salminen, E.; Rintala, J.; Lokshina, L.Y.; Vavilin, V.A. Anaerobic Batch Degradation of Solid Poultry Slaughterhouse Waste. Water Sci. Technol. 2000, 41, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Cuetos, M.J.; Martinez, E.J.; Moreno, R.; Gonzalez, R.; Otero, M.; Gomez, X. Enhancing Anaerobic Digestion of Poultry Blood Using Activated Carbon. J. Adv. Res. 2017, 8, 297–307. [Google Scholar] [CrossRef]
- Palatsi, J.; Viñas, M.; Guivernau, M.; Fernandez, B.; Flotats, X. Anaerobic Digestion of Slaughterhouse Waste: Main Process Limitations and Microbial Community Interactions. Bioresour. Technol. 2011, 102, 2219–2227. [Google Scholar] [CrossRef]
- Wang, S.; Jena, U.; Das, K.C. Long Term Performance of Pilot Methanogenic Digester Filled with Seashell Wastes Treating Slaughterhouse Wastes: Biogas Production and Environmental Impact. Biochem. Eng. J. 2022, 187, 108651. [Google Scholar] [CrossRef]
- Zhang, Y.; Kusch-Brandt, S.; Heaven, S.; Banks, C.J. Effect of Pasteurisation on Methane Yield from Food Waste and Other Substrates in Anaerobic Digestion. Processes 2020, 8, 1351. [Google Scholar] [CrossRef]
- Loganath, R.; Senophiyah-Mary, J. Critical Review on the Necessity of Bioelectricity Generation from Slaughterhouse Industry Waste and Wastewater Using Different Anaerobic Digestion Reactors. Renew. Sustain. Energy Rev. 2020, 134, 110360. [Google Scholar] [CrossRef]
- Habchi, S.; Lahboubi, N.; Sallek, B.; El Bari, H. Response Surface Methodology for Anaerobic Digestion of Waste from Poultry Slaughterhouse: Optimization of Load and Hydraulic Retention Time. Results Eng. 2023, 18, 101215. [Google Scholar] [CrossRef]
- Méndez-Contreras, J.M.; Atenodoro-Alonso, J.; López-Escobar, L.A.; Nava-Valente, N. Enhanced Biogas Production from Thermophilic Anaerobic Digestion of Poultry Slaughterhouse Sludge: Effect of Thermal Pretreatment and Micronutrients Supplementation. Waste Biomass Valorization 2024, 15, 2201–2214. [Google Scholar] [CrossRef]
- Loganath, R.; Mazumder, D. Performance Study on Enlarged-Clarifier Hybrid Upflow Anaerobic Sludge Blanket Reactor for Treating the Slaughterhouse Wastewater. Water Environ. J. 2020, 34, 516–528. [Google Scholar] [CrossRef]
- Musa, M.A.; Idrus, S.; Harun, M.R.; Marzuki, T.F.T.M.; Wahab, A.M.A. A Comparative Study of Biogas Production from Cattle Slaughterhouse Wastewater Using Conventional and Modified Upflow Anaerobic Sludge Blanket (UASB) Reactors. Int. J. Environ. Res. Public Health 2019, 17, 283. [Google Scholar] [CrossRef] [PubMed]
- Marzuki, T.N.T.M.; Idrus, S.; Musa, M.A.; Wahab, A.M.A.; Jamali, N.S.; Man, H.C.; Ng, S.N.M. Enhancement of Bioreactor Performance Using Acclimatised Seed Sludge in Anaerobic Treatment of Chicken Slaughterhouse Wastewater: Laboratory Achievement, Energy Recovery, and Its Commercial-Scale Potential. Animals 2021, 11, 3313. [Google Scholar] [CrossRef]
- Hernández-Fydrych, V.C.; del Carmen Fajardo-Ortíz, M.; Salazar-Peláez, M.L. Performance Evaluation and Kinetics Modeling of a Hybrid UASB Reactor Treating Bovine Slaughterhouse Wastewater. Environ. Sci. Pollut. Res. 2022, 29, 80994–81005. [Google Scholar] [CrossRef]
- Tran Thi Viet, N.; Vu, D.C.; Duong, T.H. Effect of Hydraulic Retention Time on Performance of Anaerobic Membrane Bioreactor Treating Slaughterhouse Wastewater. Environ. Res. 2023, 233, 116522. [Google Scholar] [CrossRef] [PubMed]
- Dlamini, D.N.; Basitere, M.; Njoya, M.; Ntwampe, S.K.O.; Kaskote, E. Performance Evaluation of a Biological Pre-Treatment Coupled with the Down-Flow Expanded Granular Bed Reactor (DEGBR) for Treatment of Poultry Slaughterhouse Wastewater. Appl. Sci. 2021, 11, 6536. [Google Scholar] [CrossRef]
- Salminen, E.; Rintala, J. Anaerobic Digestion of Organic Solid Poultry Slaughterhouse Waste—A Review. Bioresour. Technol. 2002, 83, 13–26. [Google Scholar] [CrossRef]
- Cuetos, M.J.; Gómez, X.; Otero, M.; Morán, A. Anaerobic Digestion of Solid Slaughterhouse Waste: Study of Biological Stabilization by Fourier Transform Infrared Spectroscopy and Thermogravimetry Combined with Mass Spectrometry. Biodegradation 2010, 21, 543–556. [Google Scholar] [CrossRef] [PubMed]
- Banks, C.J.; Chesshire, M.; Heaven, S.; Arnold, R. Anaerobic Digestion of Source-Segregated Domestic Food Waste: Performance Assessment by Mass and Energy Balance. Bioresour. Technol. 2011, 102, 612–620. [Google Scholar] [CrossRef]
- Silvestre, G.; Fernández, B.; Bonmatí, A. Addition of Crude Glycerine as Strategy to Balance the C/N Ratio on Sewage Sludge Thermophilic and Mesophilic Anaerobic Co-Digestion. Bioresour. Technol. 2015, 193, 377–385. [Google Scholar] [CrossRef]
- García-Gen, S.; Sousbie, P.; Rangaraj, G.; Lema, J.M.; Rodríguez, J.; Steyer, J.P.; Torrijos, M. Kinetic Modelling of Anaerobic Hydrolysis of Solid Wastes, Including Disintegration Processes. Waste Manag. 2015, 35, 96–104. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of Anaerobic Digestion Process: A Review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef]
Substrates | Operational Conditions (Reactor Type, Temperature, OLR, Time of Experiment) | Biogas/Methane Yield | References |
---|---|---|---|
Blood liquid | Dry mass of 18% | 0.3–0.6 m3/kg TS; 60% methane | [81] |
Blood water (diluted blood) | Batch reactor (working volume 420 mL); 35 °C; OLR 0.6 g VS/L | 0.45 m3/kg protein 0.733 m3/kg VS 0.117 m3 CH4/kg VS | [82] |
Pig blood | Batch reactor (0.5 L); 38 °C; 76 days | 0.443 m3 CH4/kg VS | [83] |
Poultry blood | Batch reactor (5 L); 38 °C; OLR 2.31 g VS/L | 0.25 m3 CH4/kg VS | [84] |
Precipitated blood protein | Batch reactor (5 L); 37 °C; blood loading 20 g organic dry matter; 56 days | 0.447 m3 CH4/kg organic dry matter | [85] |
Pig blood | Batch reactor at a 5% blood concentration with 60% inoculum; 55 °C | 0.561 m3 CH4/kg blood | [86] |
Blood | Batch reactor (working volume 500 mL); 37 °C; 5 g COD/L | 0.288–0.321 m3 CH4/kg COD | [87] |
Blood of pig and cattle | Continuous stirred tank reactors (7 L); OLR 2.5 kg VS/(m3·d); 37 °C; HRT 16–30 days | 0.285 m3 CH4/kg COD | [75] |
Poultry blood | OLR 0.4 kg COD/(m3·d) (low) and 0.7 kg COD/(m3·d) (high); 26 °C; bamboo biocarriers to immobilize the microflora and increase cell residence time in the digesters; COD removal 32.4% (high OLR) and 68.5% (low OLR) | 0.192 m3 CH4/kg COD added at the high OLR, 0.384 m3 CH4/kg COD added at the low OLR | [88] |
Mixed blood waste (camel, sheep, goat, cattle) | Thermally pretreated (120 °C for 30 min); batch reactor (0.2 L); OLR 5 g VS/L; 37 °C | 0.442 m3 CH4/kg VS | [89] |
Substrates | Conditions | Biogas/Methane Yield | References |
---|---|---|---|
Cattle and swine manure, rumen and blood, food-vegetable wastes | Semi-continuous reactor (2 L); 35 °C; OLR 0.3–1.3 kg VS/(m3·d); HRT 30 d | 0.3 m3/kg VS; 54–56% CH4 | [97] |
Cattle blood/cattle manure/water (30:20:50 mass ratio) | Semi-continuous stirred digester (3.6 m3); 35 °C; HRT 18 d; 34% COD removal | 0.64 L/(m3·min) | [98] |
Blood (2% by weight) and rendering plant waste condensate (98% by weight) | Upflow anaerobic sludge blanket reactor; 35 °C; OLR 1.0 kg COD/(m3·d); HRT 15.6 d | 0.14 m3/m3 | [82] |
Poultry blood (10% by dry weight) with ruminal content (90%) | Pilot reactor (3.5 m3); 37 °C; TS 3–4%; HRT 20 d | 1.0 m3/(m3·d) | [99] |
Beef manure (10% by weight), bovine ruminal content (20% by weight), bovine blood and water (70% by weight) | Batch reactor; 39 °C; 6 days | 0.507 m3/kg of the substrate mixture | [82] |
Sheep blood with biodegradable municipal waste | 0.357 m3 CH4/kg VS | [100] | |
Poultry blood and maize residues (15–70% by mass of VS) | Batch reactor Semi-continuous stirred reactor | 0.130–0.188 m3 CH4/kg VS 0.165 m3 CH4/kg VS | [91] |
Blood and maize leaves (ground 3 mm) (2:3, VS/VS) | CSTR (3 L), 34 °C; OLR 3.1 kg VS/(m3·d); HRT 36 d | 0.6 m3 CH4/(m3·d) | [91] |
Poultry blood with the organic fraction of municipal solid waste | Semi-continuous anaerobic digester; 32 °C; OLR 1.5 kg VSS/(m3·d); HRT 36 d; increasing the OLR to 2.0 kg VSS/(m3·d) destabilized the process in a short time and lowered the specific CH4 yield to 0.20 m3/kg VSS. | 0.33 m3 CH4/kg VSS 0.5 m3 CH4/(m3·d) 60% CH4 in biogas | [90] |
Poultry blood, meat, and bone trimmings | 0.5–0.7 m3 CH4/kg VS | [101] | |
Cattle and lamb paunch contents, blood, and process wastewater | OLR 0.36 kg COD/(m3·d); HRT 43 d | 0.18 m3 CH4/kg COD | [82] |
Poultry blood with granular and powdered activated carbon (4.5:1.0, 4.5:1.5, 4.5:3.0 by g TS) | Semi-continuous reactor; 37 °C; OLR 1.15 kg VS/(m3·d) | 0.216–0.250 m3 CH4/kg VS | [102] |
Pig/cattle slaughterhouse waste | Batch reactor (1 L); 35 °C; OLR 5 g COD/L | 0.301 m3 CH4/kg | [103] |
Strategy/Technology | Description | Advantages | Limitations | References |
---|---|---|---|---|
Co-Digestion with Other Substrates | Mixing blood waste with carbon-rich materials (e.g., manure, food waste) to balance the carbon-to-nitrogen ratio (C/N) | - Improves nutrient balance - Enhances biogas yield - Reduces ammonia inhibition | - Requires additional substrate sourcing - Potential for process complexity | [115] |
Thermal Pretreatment | Heating blood waste to high temperatures before digestion to enhance solubilization of organic matter. | - Increases biodegradability - Enhances pathogen reduction - Improves methane yield | - Energy-intensive - Potential formation of inhibitory compounds due to Maillard reactions | [116] |
Chemical Pretreatment | Using chemicals like alkalis to solubilize proteins in blood waste before digestion. | - Enhances hydrolysis of proteins - Increases biogas production | - Chemical costs - Requires neutralization - Potential inhibitory effects | [117] |
Enzymatic Pretreatment | Applying proteolytic enzymes to break down proteins in blood waste before digestion. | - Enhances protein degradation - Increases methane yield - Operates under mild conditions | - High enzyme costs - Enzyme stability issues | [118] |
Bioaugmentation | Adding specific microbial strains to enhance the breakdown of proteins in blood waste. | - Improves process stability - Enhances degradation of specific compounds - Reduces lag phase | - Maintenance of added cultures - Potential microbial competition | [119] |
Two-Stage AD | Separating the digestion process into two stages, acidogenesis and methanogenesis, to optimize conditions for each phase. | - Reduces ammonia inhibition - Enhances overall digestion efficiency - Increases methane yield | - More complex system - Higher capital and operational costs | [86] |
pH Control and Alkalinity Adjustment | Maintaining optimal pH levels to prevent ammonia inhibition during digestion of nitrogen-rich blood waste. | - Stabilizes process - Enhances microbial activity - Reduces risk of process failure | - Requires continuous monitoring - Chemical addition costs | [120] |
Activated Carbon Addition | Adding activated carbon to the anaerobic digester to adsorb inhibitory compounds like ammonia and enhance microbial activity. | - Reduces ammonia inhibition - Enhances microbial growth and activity - Increases biogas yield - Improves process stability | - Additional material costs - Potential need for regeneration or disposal of spent activated carbon - Requires optimization of dosage | [102] |
Use of Biocarriers | Incorporating biocarriers into the anaerobic digester to provide surfaces for microbial attachment and biofilm formation. | - Increases microbial biomass and retention time - Enhances process stability - Improves degradation efficiency and biogas production | - Additional costs for biocarrier materials - Potential for clogging or channeling - Requires optimization of carrier type and loading rates | [88] |
Shell Waste as pH Buffer | Using shell waste (e.g., oyster shells, mussel shells, eggshells) rich in calcium carbonate as a natural pH buffer in the AD process. | - Maintains optimal pH levels - Reduces acidification risk - Enhances microbial activity - Utilizes waste material, promoting sustainability | - Requires collection and processing of shell waste - Limited solubility may slow buffering effect - Potential for accumulation of inert solids | [104] |
Pasteurization Pretreatment | Heating blood waste to moderate temperatures (typically around 70 °C) for a specific time to reduce pathogen load and enhance biodegradability before digestion. | - Reduces pathogenic microorganisms - Improves safety of digestate - May enhance biodegradability and methane yield | - Energy consumption - May not significantly improve biodegradability compared to other thermal treatments - Requires additional equipment | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bułkowska, K.; Zielińska, M. Recovery of Biogas and Other Valuable Bioproducts from Livestock Blood Waste: A Review. Energies 2024, 17, 5873. https://doi.org/10.3390/en17235873
Bułkowska K, Zielińska M. Recovery of Biogas and Other Valuable Bioproducts from Livestock Blood Waste: A Review. Energies. 2024; 17(23):5873. https://doi.org/10.3390/en17235873
Chicago/Turabian StyleBułkowska, Katarzyna, and Magdalena Zielińska. 2024. "Recovery of Biogas and Other Valuable Bioproducts from Livestock Blood Waste: A Review" Energies 17, no. 23: 5873. https://doi.org/10.3390/en17235873
APA StyleBułkowska, K., & Zielińska, M. (2024). Recovery of Biogas and Other Valuable Bioproducts from Livestock Blood Waste: A Review. Energies, 17(23), 5873. https://doi.org/10.3390/en17235873