Green Hydrogen—Production and Storage Methods: Current Status and Future Directions
Abstract
1. Introduction
2. Economic Impact
3. Production
4. Storage Methods
5. Cost Impact
6. Future Perspectives for Green Hydrogen
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BloombergNEF | Bloomberg New Energy Finance |
CO2 emissions | Carbon dioxide emissions |
EFI | The Energy Futures Initiative |
KAPSARC | King Abdullah Petroleum Studies and Research Center |
H2 | Hydrogen |
HTE | High-temperature electrolysis |
HyCARE | Hydrogen Carrier for Renewable Energy Storage |
HyUnder | Hydrogen Underground Storage |
IEA | International Energy Agency |
IRENA | International Renewable Energy Agency |
LCOH | Levelized Cost of Hydrogen |
O2 | Oxygen |
PEM | Proton Exchange Membrane. electrolysis |
SOE | Solid oxide electrolyzer cell |
UK | United Kingdom |
US | United States |
References
- Sharma, A.; Priya, G.S.K.; Bandyopadhyay, S. Industrial decarbonization: A revolution ahead. Clean Technol. Environ. Policy 2023, 25, 2467–2468. [Google Scholar] [CrossRef]
- Manolache, A.I.; Chirosca, A.-M.; Rusu, L. Assessment of Wind and Wave Climate Dynamics in the Mediterranean and Black Seas for Renewable Energy Potential Analysis. In Trends in Clean Energy Research (Green Energy and Technology); Chen, L., Ed.; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Rusu, L. Climate Change Impact on the Future Sea State Conditions in the Black Sea. J. Coast. Res. 2024, 113, 200–204. [Google Scholar] [CrossRef]
- Chirosca, A.-M.; Rusu, L. Wind Climate Analysis at the Future Wind Farm Positions in the Mediterranean Sea. In Advances in Clean Energy Systems and Technologies (Green Energy and Technology); Chen, L., Ed.; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Manolache, A.I.; Andrei, G. A Comprehensive Review of Multi-Use Platforms for Renewable Energy and Aquaculture Integration. Energies 2024, 17, 4816. [Google Scholar] [CrossRef]
- Rusu, E.; Onea, F. The Expected Dynamics of the European Offshore Wind Sector in the Climate Change Context. J. Mar. Sci. Eng. 2023, 11, 1967. [Google Scholar] [CrossRef]
- Barbu, F.; Rusu, E.; Faitar, C. A review of the harvesting methods for offshore renewable energy—Advances and challenges. J. Mar. Technol. Environ. 2024, 2, 7–17. [Google Scholar] [CrossRef]
- IEA. Global Hydrogen Review 2024. Available online: https://www.iea.org/reports/global-hydrogen-review-2024/executive-summary (accessed on 10 August 2024).
- Mostafa, E.-S. Hydrogen production by water electrolysis technologies: A review. Results Eng. 2023, 20, 101426. [Google Scholar] [CrossRef]
- Kumar, S.S.; Hankwon, L. An overview of water electrolysis technologies for green hydrogen production. Energy Rep. 2022, 8, 13793–13813. [Google Scholar] [CrossRef]
- Awad, M.; Said, A.; Saad, M.H.; Farouk, A.; Mahmoud, M.M.; Alshammari, M.S.; Alghaythi, M.L.; Aleem, S.H.A.; Abdelaziz, A.Y.; Omar, A.I. A review of water electrolysis for green hydrogen generation considering PV/wind/hybrid/hydropower/geothermal/tidal and wave/biogas energy systems, economic analysis, and its application. Alex. Eng. J. 2024, 87, 213–239. [Google Scholar] [CrossRef]
- Islam, A.; Islam, T.; Mahmud, H.; Raihan, O.; Islam, S.; Marwani, H.M.; Rahman, M.M.; Asiri, A.M.; Hasan, M.; Hasan, N.; et al. Accelerating the green hydrogen revolution: A comprehensive analysis of technological advancements and policy interventions. Int. J. Hydrogen Energy 2024, 67, 458–486. [Google Scholar] [CrossRef]
- Reda, B.; Elzamar, A.A.; AlFazzani, S.; Ezzat, S.M. Green hydrogen as a source of renewable energy: A step towards sustainability, an overview. Environ. Dev. Sustain. 2024, 2, 1–21. [Google Scholar] [CrossRef]
- Oliveira, A.M.; Beswick, R.R.; Yan, Y. A green hydrogen economy for a renewable energy society. Curr. Opin. Chem. Eng. 2021, 33, 100701. [Google Scholar] [CrossRef]
- Hassan, Q.; Algburi, S.; Jaszczur, M.; Al-Jiboory, A.K.; Al Musawi, T.J.; Ali, B.M.; Viktor, P.; Fodor, M.; Ahsan, M.; Salman, H.M.; et al. Hydrogen role in energy transition: A comparative review. Process Saf. Environ. Prot. 2024, 184, 1069–1093. [Google Scholar] [CrossRef]
- Kovač, A.; Paranos, M.; Marciuš, D. Hydrogen in energy transition: A review. Int. J. Hydrogen Energy 2021, 46, 10016–10035. [Google Scholar] [CrossRef]
- Marouani, I.; Guesmi, T.; Alshammari, B.M.; Alqunun, K.; Alzamil, A.; Alturki, M.; Hadj Abdallah, H. Integration of Renewable-Energy-Based Green Hydrogen into the Energy Future. Processes 2023, 11, 2685. [Google Scholar] [CrossRef]
- IRENA. Green Hydrogen: A Guide to Policy Making, International Renewable Energy Agency; IRENA: Abu Dhabi, United Arab Emirates, 2020; Available online: https://www.irena.org/ (accessed on 10 August 2024).
- Falcone, P.M.; Hiete, M.; Sapio, A. Hydrogen economy and sustainable development goals: Review and policy insights. Curr. Opin. Green Sustain. Chem. 2021, 31, 100506. [Google Scholar] [CrossRef]
- Wang, L.; Liu, W.; Sun, H.; Yang, L.; Huang, L. Advancements and Policy Implications of Green Hydrogen Production from Renewable Sources. Energies 2024, 17, 3548. [Google Scholar] [CrossRef]
- Arimbrathodi, S.P.; Javed, M.A.; Hamouda, M.A.; Aly Hassan, A.; Ahmed, M.E. BioH2 Production Using Microalgae: Highlights on Recent Advancements from a Bibliometric Analysis. Water 2023, 15, 185. [Google Scholar] [CrossRef]
- Limongi, A.R.; Viviano, E.; De Luca, M.; Radice, R.P.; Bianco, G.; Martelli, G. Biohydrogen from Microalgae: Production and Applications. Appl. Sci. 2021, 11, 1616. [Google Scholar] [CrossRef]
- Amin, M.; Shah, H.H.; Fareed, A.G.; Khan, W.U.; Chung, E.; Zia, A.; Farooqi, Z.U.R.; Lee, C. Hydrogen production through renewable and non-renewable energy processes and their impact on climate change. Int. J. Hydrogen Energy 2022, 47, 33112–33134. [Google Scholar] [CrossRef]
- Hassan, Q.; Abdulateef, A.M.; Hafedh, S.A.; Al-Samari, A.; Abdulateef, J.; Sameen, A.Z.; Salman, H.M.; Al-Jiboory, A.K.; Wieteska, S.; Jaszczur, M. Renewable energy-to-green hydrogen: A review of main resources routes, processes, and evaluation. Int. J. Hydrogen Energy 2023, 48, 17383–17408. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J. Revolution in Renewables: Integration of Green Hydrogen for a Sustainable Future. Energies 2024, 17, 4148. [Google Scholar] [CrossRef]
- Hassan, Q.; Algburi, S.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. Green hydrogen: A pathway to a sustainable energy future. Int. J. Hydrogen Energy 2024, 50 Part B, 310–333. [Google Scholar] [CrossRef]
- Sadeq, A.M. Hydrogen: The Carrier of Future Energy, 1st ed.; 2023; Available online: https://www.academia.edu/124741873/Hydrogen_The_Carrier_of_Future_Energy (accessed on 30 August 2024). [CrossRef]
- Le, T.T.; Sharma, P.; Bora, B.J.; Tran, V.D.; Truong, T.H.; Le, H.C.; Nguyen, P.Q.P. Fueling the future: A comprehensive review of hydrogen energy systems and their challenges. Int. J. Hydrogen Energy 2024, 54, 791–816. [Google Scholar] [CrossRef]
- Hoelzen, J.; Silberhorn, D.; Zill, T.; Bensmann, B.; Hanke-Rauschenbach, R. Hydrogen-powered aviation and its reliance on green hydrogen infrastructure—Review and research gaps. Int. J. Hydrogen Energy 2022, 47, 3108–3130. [Google Scholar] [CrossRef]
- Baeyens, J.; Zhang, H.; Nie, J.; Appels, L.; Dewil, R.; Ansart, R.; Deng, Y. Revasiewing the potential of bio-hydrogen production by fermentation. Renew. Sustain. Energy Rev. 2020, 131, 110023. [Google Scholar] [CrossRef]
- Muñoz Díaz, M.T.; Chávez Oróstica, H.; Guajardo, J. Economic Analysis: Green Hydrogen Production Systems. Processes 2023, 11, 1390. [Google Scholar] [CrossRef]
- Boretti, A. There are hydrogen production pathways with better than green hydrogen economic and environmental costs. Int. J. Hydrogen Energy 2021, 46, 23988–23995. [Google Scholar] [CrossRef]
- Clark, W.W.; Rifkin, J. A green hydrogen economy. Energy Policy 2006, 34, 2630–2639. [Google Scholar] [CrossRef]
- Statista. Available online: https://www.statista.com (accessed on 20 August 2024).
- Zou, C.; Li, J.; Zhang, X.; Jin, X.; Xiong, B.; Yu, H.; Liu, X.; Wang, S.; Li, Y.; Zhang, L.; et al. Industrial status, technological progress, challenges, and prospects of hydrogen energy. Nat. Gas Ind. B 2022, 9, 427–447. [Google Scholar] [CrossRef]
- Zainal, B.S.; Ker, P.J.; Mohamed, H.; Ong, H.C.; Fattah, I.; Rahman, S.A.; Nghiem, L.D.; Mahlia, T.M.I. Recent advancement and assessment of green hydrogen production technologies. Renew. Sustain. Energy Rev. 2024, 189 Part A, 113941. [Google Scholar] [CrossRef]
- Rambhujun, N.; Salman, M.S.; Wang, T.; Pratthana, C.; Sapkota, P.; Costalin, M.; Lai, Q.; Aguey-Zinsou, K.-F. Renewable hydrogen for the chemical industry. MRS Energy Sustain. 2020, 7, E332020. [Google Scholar] [CrossRef]
- Nicita, A.; Maggio, G.; Andaloro, A.P.F.; Squadrito, G. Green hydrogen as feedstock: Financial analysis of a photovoltaic-powered electrolysis plant. Int. J. Hydrogen Energy 2020, 45, 11395–11408. [Google Scholar] [CrossRef]
- Lopez, G.A.A.; Keiner, D.; Fasihi, M.; Koiranen, T.; Breyer, C. From fossil to green chemicals: Sustainable pathways and new carbon feedstocks for the global chemical industry. Energy Environ. Sci. 2023, 16, 2879–2909. [Google Scholar] [CrossRef]
- Marocco, P.; Gandiglio, M.; Audisio, D.; Santarelli, M. Assessment of the role of hydrogen to produce high-temperature heat in the steel industry. J. Clean. Prod. 2023, 388, 135969. [Google Scholar] [CrossRef]
- Pimm, A.J.; Cockerill, T.T.; Gale, W.F. Reducing industrial hydrogen demand through preheating with very high temperature heat pumps. Appl. Energy 2023, 347, 121464. [Google Scholar] [CrossRef]
- Wallington, T.J.; Woody, M.; Lewis, G.M.; Keoleian, G.A.; Adler, E.J.; Martins, J.R.; Collette, M.D. Green hydrogen pathways, energy efficiencies, and intensities for ground, air, and marine transportation. Joule 2024, 8, 2190–2207. [Google Scholar] [CrossRef]
- Atilhan, S.; Park, S.; El-Halwagi, M.M.; Atilhan, M.; Moore, M.; Nielsen, R.B. Green hydrogen as an alternative fuel for the shipping industry. Curr. Opin. Chem. Eng. 2021, 31, 100668. [Google Scholar] [CrossRef]
- Saul, J. Shipping Sector Sets Course for Zero Carbon Vessels, Fuel by 2030. Reuters 2019. Available online: https://www.zawya.com/en/business/shipping-sector-sets-course-for-zero-carbon-vessels-fuel-by-2030-iz3tbren (accessed on 28 October 2024).
- McDonald, J.; Moore, A. Source and Scale are Biggest Challenges as Hydrogen Interest Grows. SP GLOBAL. 2019. Available online: https://www.spglobal.com/en/research-insights/articles/source-and-scale-are-biggest-challenges-as-hydrogen-interest-grows (accessed on 28 October 2024).
- Wang, T.; Cheng, P.; Zhen, L. Green development of the maritime industry: Overview, perspectives, and future research opportunities. Transp. Res. Part E Logist. Transp. Rev. 2023, 179, 103322. [Google Scholar] [CrossRef]
- Perna, A.; Jannelli, E.; Di Micco, S.; Romano, F.; Minutillo, M. Designing, sizing and economic feasibility of a green hydrogen supply chain for maritime transportation. Energy Convers. Manag. 2023, 278, 116702. [Google Scholar] [CrossRef]
- Vidović, T.; Šimunović, J.; Radica, G.; Penga, Ž. Systematic Overview of Newly Available Technologies in the Green Maritime Sector. Energies 2023, 16, 641. [Google Scholar] [CrossRef]
- Shi, J.; Zhu, Y.; Feng, Y.; Yang, J.; Xia, C. A Prompt Decarbonization Pathway for Shipping: Green Hydrogen, Ammonia, and Methanol Production and Utilization in Marine Engines. Atmosphere 2023, 14, 584. [Google Scholar] [CrossRef]
- Kountouris, I.; Bramstoft, R.; Madsen, T.; Gea-Bermúdez, J.; Münster, M.; Keles, D. A unified European hydrogen infrastructure planning to support the rapid scale-up of hydrogen production. Nat. Commun. 2024, 15, 5517. [Google Scholar] [CrossRef] [PubMed]
- Omar, F.; Jerzy, S.; Ubong, E. A critical review on the current technologies for the generation, storage, and transportation of hydrogen. Int. J. Hydrogen Energy 2022, 47, 13771–13802. [Google Scholar] [CrossRef]
- Li, H.; Cao, X.; Liu, Y.; Shao, Y.; Nan, Z.; Teng, L.; Peng, W.; Bian, J. Safety of hydrogen storage and transportation: An overview on mechanisms, techniques, and challenges. Energy Rep. 2022, 8, 6258–6269. [Google Scholar] [CrossRef]
- Frieden, F.; Leker, J. Future costs of hydrogen: A quantitative review. Sustain. Energy Fuels 2024, 8, 1806–1822. [Google Scholar] [CrossRef]
- Longden, T.; Jotzo, F.; Prasad, M.; Andrews, R. Green Hydrogen Production Costs in Australia: Implications of Renewable Energy and Electrolyser Costs, CCEP Working Paper. 20–27 August 2022. Available online: https://iceds.anu.edu.au/files/2020%2009%2001%20-%20ZCEAP%20-%20CCEP%20Working%20Paper%20-%20Green%20hydrogen%20production%20costs.pdf (accessed on 30 August 2024).
- Panchenko, V.; Daus, Y.; Kovalev, A.; Yudaev, I.; Litti, Y. Prospects for the production of green hydrogen: Review of countries with high potential. Int. J. Hydrogen Energy 2023, 48, 4551–4571. [Google Scholar] [CrossRef]
- IRENA (International Renewable Energy Agency). Green Hydrogen: A Global Overview; IRENA: Masdar City, United Arab Emirates, 2023; Available online: https://www.irena.org/ (accessed on 10 August 2024).
- Gandiglio, M.; Marocco, P. Mapping Hydrogen Initiatives in Italy: An Overview of Funding and Projects. Energies 2024, 17, 2614. [Google Scholar] [CrossRef]
- Singla, M.K.; Gupta, J.; Beryozkina, S.; Safaraliev, M.; Singh, M. The colorful economics of hydrogen: Assessing the costs and viability of different hydrogen production methods—A review. Int. J. Hydrogen Energy 2024, 61, 664–677. [Google Scholar] [CrossRef]
- Arcos, J.M.M.; Santos, D.M.F. The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production. Gases 2023, 3, 25–46. [Google Scholar] [CrossRef]
- Alves, C.; Castro, G.; Coelho, R.; Hocevar, L. Hydrogen Technologies: Recent Advances, New Perspectives, and Applications; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Miller, H.A. Green hydrogen from anion exchange membrane water electrolysis: A review of recent developments in critical materials and operating conditions. Sustain. Energy Fuels 2020, 4, 2114–2133. [Google Scholar] [CrossRef]
- Sebbahi, S.; Nabil, N.; Alaoui-Belghiti, A.; Laasri, S.; Rachidi, S.; Hajjaji, A. Assessment of the three most developed water electrolysis technologies: Alkaline Water Electrolysis, Proton Exchange Membrane and Solid-Oxide Electrolysis. Mater. Today Proc. 2022, 66 Part 1, 140–145. [Google Scholar] [CrossRef]
- Miller, H.A. Green hydrogen from anion exchange membrane water electrolysis. Curr. Opin. Electrochem. 2022, 36, 101122. [Google Scholar] [CrossRef]
- Panigrahy, B.; Narayan, K.; Rao, B.R. Green hydrogen production by water electrolysis: A renewable energy perspective. Mater. Today Proc. 2022, 67 Pt 8, 1310–1314. [Google Scholar] [CrossRef]
- Hu, K.; Fang, J.; Ai, X.; Huang, D.; Zhong, Z.; Yang, X.; Wang, L. Comparative study of alkaline water electrolysis, proton exchange membrane water electrolysis, and solid oxide electrolysis through multiphysics modeling. Appl. Energy 2022, 312, 118788. [Google Scholar] [CrossRef]
- Fallah Vostakola, M.; Ozcan, H.; El-Emam, R.S.; Amini Horri, B. Recent Advances in High-Temperature Steam Electrolysis with Solid Oxide Electrolysers for Green Hydrogen Production. Energies 2023, 16, 3327. [Google Scholar] [CrossRef]
- Baiguini, M.; Marcoberardino, G.D.; Iora, P.G. High-temperature electrolysis integrated with advanced power cycles for the combined production of green hydrogen, heat and power. Energy Convers. Manag. 2024, 322, 119121. [Google Scholar] [CrossRef]
- Bollman, J.; Pitchaimuthu, S.; Kuhnel, M.F. Challenges of industrial-scale testing infrastructure for green hydrogen technologies. Energies 2023, 16, 3604. [Google Scholar] [CrossRef]
- Ahmed, M.; Dincer, I. A review on photoelectrochemical hydrogen production systems: Challenges and future directions. Int. J. Hydrogen Energy 2019, 44, 2474–2507. [Google Scholar] [CrossRef]
- Akhlaghi, N.; Najafpour-Darzi, G. A comprehensive review on biological hydrogen production. Int. J. Hydrogen Energy 2020, 45, 22492–22512. [Google Scholar] [CrossRef]
- Rittmann, S.; Herwig, C. A comprehensive and quantitative review of dark fermentative biohydrogen production. Microb. Cell Fact. 2012, 11, 115. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, S.; Chatterjee, S.; Sarkar, O.; Mohan, S.V. Renewable hydrogen production by dark fermentation: Current status, challenges, and perspectives. Bioresour. Technol. 2021, 321, 124354. [Google Scholar] [CrossRef] [PubMed]
- Khetkorn, W.; Rastogi, R.P.; Incharoensakdi, A.; Lindblad, P.; Madamwar, D.; Pandey, A.; Larroche, C. Microalgal hydrogen production—A review. Bioresour. Technol. 2017, 243, 1194–1206. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekhar, K.; Lee, Y.-J.; Lee, D.-W. Biohydrogen Production: Strategies to Improve Process Efficiency through Microbial Routes. Int. J. Mol. Sci. 2015, 16, 8266–8293. [Google Scholar] [CrossRef]
- Dincer, I. Green methods for hydrogen production. Int. J. Hydrogen Energy 2012, 37, 1954–1971. [Google Scholar] [CrossRef]
- Ust’ak, S.; Havrland, B.; Muñoz, J.O.J.; Fernández, E.C.; Lachman, J. Experimental verification of various methods for biological hydrogen production. Int. J. Hydrogen Energy 2007, 32, 1736–1741. [Google Scholar] [CrossRef]
- Melis, A.; Melnicki, M.R. Integrated biological hydrogen production. Int. J. Hydrogen Energy 2006, 31, 1563–1573. [Google Scholar] [CrossRef]
- Hassan, N.S.; Jalil, A.A.; Rajendran, S.; Khusnun, N.F.; Bahari, M.B.; Johari, A.; Kamaruddin, M.J.; Ismail, M. Recent review and evaluation of green hydrogen production via water electrolysis for a sustainable and clean energy society. Int. J. Hydrogen Energy 2024, 52, 420–441. [Google Scholar] [CrossRef]
- Khan, M.H.A.; Sitaraman, T.; Haque, N.; Leslie, G.; Saydam, S.; Daiyan, R.; Amal, R.; Kara, S. Strategies for life cycle impact reduction of green hydrogen production—Influence of electrolyser value chain design. Int. J. Hydrogen Energy 2024, 62, 769–782. [Google Scholar] [CrossRef]
- Ma, N.; Zhao, W.; Wang, W.; Li, X.; Zhou, H. Large scale of green hydrogen storage: Opportunities and challenges. Int. J. Hydrogen Energy 2024, 50 Part B, 379–396. [Google Scholar] [CrossRef]
- Yadav, M.; Xu, Q. Liquid-phase chemical hydrogen storage materials. Energy Environ. Sci. 2012, 5, 9698–9725. [Google Scholar] [CrossRef]
- Alili, H.; Mahmoudimehr, J. Techno-economic assessment of integrating hydrogen energy storage technology with hybrid photovoltaic/pumped storage hydropower energy system. Energy Convers. Manag. 2023, 294, 117437. [Google Scholar] [CrossRef]
- Bosu, S.; Rajamohan, N. Recent advancements in hydrogen storage—Comparative review on methods, operating conditions, and challenges. Int. J. Hydrogen Energy 2024, 52 Pt C, 352–370. [Google Scholar] [CrossRef]
- Najjar, Y.S.H. Hydrogen safety: The road toward green technology. Int. J. Hydrogen Energy 2013, 38, 10716–10728. [Google Scholar] [CrossRef]
- Davies, E.; Ehrmann, A.; Schwenzfeier-Hellkamp, E. Safety of Hydrogen Storage Technologies. Processes 2024, 12, 2182. [Google Scholar] [CrossRef]
- Simon, J.; Ferriz, A.M.; Correas, L.C. HyUnder—Hydrogen Underground Storage at Large Scale: Case Study Spain. Energy Procedia 2015, 73, 136–144. [Google Scholar] [CrossRef]
- Baricco, M.; Dematteis, E.; Barale, J.; Costamagna, M.; Sgroi, M.; Palumbo, M.; Rizzi, P. Hydrogen storage and handling with hydrides. Pure Appl. Chem. 2024, 96, 511–524. [Google Scholar] [CrossRef]
- Kannaiyan, K.; Lekshmi, G.S.; Ramakrishna, S.; Kang, M.; Kumaravel, V. Perspectives for the green hydrogen energy-based economy. Energy 2023, 284, 129358. [Google Scholar] [CrossRef]
- Energy Futures Initiative (EFI); The King Abdullah Petroleum Studies and Research Center (KAPSARC). A Global Hydrogen Future (March 2023). Available online: https://energyfuturesinitiative.org/special/a-global-hydrogen-future-workshop-report/ (accessed on 20 August 2024).
- Patonia, A.; Poudineh, R. Cost-Competitive Green Hydrogen: How to Lower the Cost of Electrolysers? OIES Paper; Oxford Institute for Energy Studies: Oxford, UK, 2022; Volume 47, ISBN 978-1-78467-193-8. [Google Scholar]
- Franzmann, D.; Heinrichs, H.; Lippkau, F.; Addanki, T.; Winkler, C.; Buchenberg, P.; Hamacher, T.; Blesl, M.; Linßen, J.; Stolten, D. Green hydrogen cost-potentials for global trade. Int. J. Hydrogen Energy 2023, 48, 33062–33076. [Google Scholar] [CrossRef]
- Hydrogen Council; McKinsey & Company. Hydrogen for Net-Zero November 2021. Available online: www.hydrogencouncil.com (accessed on 30 August 2024).
- Tashie-Lewis, B.C.; Nnabuife, S.G. Distribution, Storage and Power Conversion in a Hydrogen Economy—A Technology Review. Chem. Eng. J. Adv. 2021, 8, 100172. [Google Scholar] [CrossRef]
- Peschel, A. Industrial Perspective on Hydrogen Purification, Compression, Storage, and Distribution. Fuel Cells 2020, 20, 385–393. [Google Scholar] [CrossRef]
- Kotowicz, J.; Uchman, W.; Jurczyk, M.; Sekret, R. Evaluation of the potential for distributed generation of green hydrogen using metal-hydride storage methods. Appl. Energy 2023, 344, 121269. [Google Scholar] [CrossRef]
- Moradi, R.; Groth, K.M. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. Int. J. Hydrogen Energy 2019, 44, 12254–12269. [Google Scholar] [CrossRef]
- Jordehi, A.R.; Tostado-Véliz, M.; Mansouri, S.A.; Ahmarinejad, A.; Ahmadi, A.; Safaraliev, M.; Sirjani, R.; Verayiah, R. A two-stage stochastic framework for hydrogen pricing in green hydrogen stations including high penetration of hydrogen storage systems. J. Energy Storage 2024, 100 Part A, 113567. [Google Scholar] [CrossRef]
- Tarkowski, R.; Uliasz-Misiak, B. Towards underground hydrogen storage: A review of barriers. Renewable and Sustainable Energy Rev. 2022, 162, 112451. [Google Scholar] [CrossRef]
- Abdin, Z.; Khalilpour, K.; Catchpole, K. Projecting the levelized cost of large scale hydrogen storage for stationary applications. Energy Convers. Manag. 2022, 270, 116241. [Google Scholar] [CrossRef]
- Karayel, G.K.; Javani, N.; Dincer, I. A comprehensive assessment of energy storage options for green hydrogen. Energy Convers. Manag. 2023, 291, 117311. [Google Scholar] [CrossRef]
- Department of Energy. Prices & Trends. Available online: https://www.energy.gov/prices-trends (accessed on 25 August 2024).
- Urs, R.R.; Chadly, A.; Sumaiti, A.A.; Mayyas, A. Techno-economic analysis of green hydrogen as an energy-storage medium for commercial buildings. Clean Energy 2023, 7, 84–98. [Google Scholar] [CrossRef]
- Younas, M.; Rezakazemi, M.; Arbab, M.S.; Shah, J.; Rehman, W.U. Green hydrogen storage and delivery: Utilizing highly active homogeneous and heterogeneous catalysts for formic acid dehydrogenation. Int. J. Hydrogen Energy 2022, 47, 11694–11724. [Google Scholar] [CrossRef]
- Zun, M.T.; McLellan, B.C. Cost Projection of Global Green Hydrogen Production Scenarios. Hydrogen 2023, 4, 932–960. [Google Scholar] [CrossRef]
- IEA. Global. Hydrogen Reviews 2021. Available online: https://iea.blob.core.windows.net/assets/5bd46d7b-906a-4429-abda-e9c507a62341/GlobalHydrogenReview2021.pdf (accessed on 30 August 2024).
- Halder, P.; Babaie, M.; Salek, F.; Haque, N.; Savage, R.; Stevanovic, S.; Bodisco, T.A.; Zare, A. Advancements in hydrogen production, storage, distribution and refuelling for a sustainable transport sector: Hydrogen fuel cell vehicles. Int. J. Hydrogen Energy 2024, 52 Pt D, 973–1004. [Google Scholar] [CrossRef]
- Lagioia, G.; Spinelli, M.P.; Amicarelli, V. Blue and green hydrogen energy to meet European Union decarbonisation objectives. An overview of perspectives and the current state of affairs. Int. J. Hydrogen Energy 2023, 48, 1304–1322. [Google Scholar] [CrossRef]
- IEA. Global. Electrolysers. Available online: https://www.iea.org/reports/electrolysers (accessed on 30 August 2024).
- Kirchem, S.; Schill, W.-P. Power sector effects of green hydrogen production in Germany. Energy Policy 2023, 182, 113738. [Google Scholar] [CrossRef]
- Garud, S.S.; Tsang, F.; Karimi, I.A.; Farooq, S. Green hydrogen from solar power for decarbonization: What will it cost? Energy Convers. Manag. 2023, 286, 117059. [Google Scholar] [CrossRef]
- Hai, T.; Ali, M.A.; Dhahad, H.A.; Alizadeh, A.; Sharma, A.; Almojil, S.F.; Almohana, A.I.; Alali, A.F.; Wang, D. Optimal design and transient simulation next to environmental consideration of net-zero energy buildings with green hydrogen production and energy storage system. Fuel 2023, 336, 127126. [Google Scholar] [CrossRef]
- Shin, H.; Jang, D.; Lee, S.; Cho, H.-S.; Kim, K.-H.; Kang, S. Techno-economic evaluation of green hydrogen production with low-temperature water electrolysis technologies directly coupled with renewable power sources. Energy Convers. Manag. 2023, 286, 117083. [Google Scholar] [CrossRef]
- Sedai, A.; Dhakal, R.; Gautam, S.; Sedhain, B.K.; Thapa, B.S.; Moussa, H.; Pol, S. Wind energy as a source of green hydrogen production in the USA. Clean Energy 2023, 7, 8–22. [Google Scholar] [CrossRef]
- Energy Information Administration, US Department of Energy. Electricity Generation, Capacity, and Sales in the United States. Available online: https://www.eia.gov/energyexplained/electricity/electricity-in-the-us-generation-capacity-and-sales.php (accessed on 30 August 2024).
- CEEESA, Argonne National Laboratory. Assessing Current, Near-Term, and Long-Term U.S. Hydrogen Markets. Available online: https://ceeesa.es.anl.gov/news/HydrogenMarkets.html (accessed on 30 August 2024).
- Armijo, J.; Philibert, C. Flexible production of green hydrogen and ammonia from variable solar and wind energy: Case study of Chile and Argentina. Int. J. Hydrogen Energy 2020, 45, 1541–1558. [Google Scholar] [CrossRef]
- Jang, D.; Kim, K.; Kim, K.-H.; Kang, S. Techno-economic analysis and Monte Carlo simulation for green hydrogen production using offshore wind power plant. Energy Convers. Manag. 2022, 263, 115695. [Google Scholar] [CrossRef]
- Ayodele, T.; Munda, J.L. Potential and economic viability of green hydrogen production by water electrolysis using wind energy resources in South Africa. Int. J. Hydrogen Energy 2019, 44, 17669–17687. [Google Scholar] [CrossRef]
- He, H.; Huang, Y.; Nakadomari, A.; Masrur, H.; Krishnan, N.; Hemeida, A.M.; Mikhaylov, A.; Senjyu, T. Potential and economic viability of green hydrogen production from seawater electrolysis using renewable energy in remote Japanese islands. Renew. Energy 2023, 202, 1436–1447. [Google Scholar] [CrossRef]
- Biggins, F.; Kataria, M.; Roberts, D.; Brown, S. Green hydrogen investments: Investigating the option to wait. Energy 2022, 241, 122842. [Google Scholar] [CrossRef]
- Zhu, L.; Hu, L.; Yüksel, S.; Dinçer, H.; Karakuş, H.; Ubay, G.G. Analysis of Strategic Directions in Sustainable Hydrogen Investment Decisions. Sustainability 2020, 12, 4581. [Google Scholar] [CrossRef]
- Kazi, M.-K.; Eljack, F.; El-Halwagi, M.M.; Haouari, M. Green hydrogen for industrial sector decarbonization: Costs and impacts on hydrogen economy in Qatar. Comput. Chem. Eng. 2021, 145, 107144. [Google Scholar] [CrossRef]
- Ahmad, S.; Ullah, A.; Samreen, A.; Qasim, M.; Nawaz, K.; Ahmad, W.; Alnaser, A.; Kannan, A.M.; Egilmez, M. Hydrogen production, storage, transportation and utilization for energy sector: A current status review. J. Energy Storage 2024, 101 Part A, 113733. [Google Scholar] [CrossRef]
- Hydrogen Council. A Sustainable Pathway for the Global Energy Transition. 19 June 2021. Available online: https://www.hydrogencouncil.com (accessed on 30 August 2024).
- IEA. The Future of Hydrogen. Seizing Today’s Opportunities. June 2019. Available online: https://iea.blob.core.windows.net/assets/9e3a3493-b9a6-4b7d-b499-7ca48e357561/The_Future_of_Hydrogen.pdf (accessed on 30 August 2024).
- Guan, D.; Wang, B.; Zhang, J.; Shi, R.; Jiao, K.; Li, L.; Wang, Y.; Xie, B.; Zhang, Q.; Yu, J.; et al. Hydrogen society: From present to future. Energy Environ. Sci. 2023, 16, 4926–4943. [Google Scholar] [CrossRef]
- Rasul, M.G.; Hazrat, M.A.; Sattar, M.A.; Jahirul, M.I.; Shearer, M.J. The future of hydrogen: Challenges on production, storage and applications. Energy Convers. Manag. 2022, 272, 116326. [Google Scholar] [CrossRef]
- Abdin, Z.; Tang, C.; Liu, Y.; Catchpole, K. Large-scale stationary hydrogen storage via liquid organic hydrogen carriers. iScience 2021, 24, 102966. [Google Scholar] [CrossRef]
- Hassan, I.A.; Ramadan, H.S.; Saleh, M.A.; Hissel, D. Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives. Renew. Sustain. Energy Rev. 2021, 149, 111311. [Google Scholar] [CrossRef]
- He, J.; Li, Z.; Zhang, X.; Wang, H.; Dong, W.; Du, E.; Chang, S.; Ou, X.; Guo, S.; Tian, Z.; et al. Towards carbon neutrality: A study on China’s long-term low-carbon transition pathways and strategies. Environ. Sci. Ecotechnol. 2022, 9, 100134. [Google Scholar] [CrossRef] [PubMed]
- Taghizadeh-Hesary, F.; Li, Y.; Rasoulinezhad, E.; Mortha, A.; Long, Y.; Lan, Y.; Zhang, Z.; Li, N.; Zhao, X.; Wang, Y. Green finance and the economic feasibility of hydrogen projects. Int. J. Hydrogen Energy 2022, 47, 24511–24522. [Google Scholar] [CrossRef]
- Qi, Y.; Stern, N.; He, J.-K.; Lu, J.-Q.; Liu, T.-L.; King, D.; Wu, T. The policy-driven peak and reduction of China’s carbon emissions. Adv. Clim. Chang. Res. 2020, 11, 65–71. [Google Scholar] [CrossRef]
- Pingkuo, L.; Junqing, G. Comparative analysis on the development potential of green hydrogen industry in China, the United States and the European Union. Int. J. Hydrogen Energy 2024, 84, 700–717. [Google Scholar] [CrossRef]
- Kourougianni, F.; Arsalis, A.; Olympios, A.V.; Yiasoumas, G.; Konstantinou, C.; Papanastasiou, O.; Georghiou, G.E. A comprehensive review of green hydrogen energy systems. Renew. Energy 2024, 231, 120911. [Google Scholar] [CrossRef]
- Yue, M.; Lambert, H.; Pahon, E.; Roche, R.; Jemei, S.; Hissel, D. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renew. Sustain. Energy Rev. 2021, 146, 111180. [Google Scholar] [CrossRef]
- Kopteva, A.; Kalimullin, L.; Tcvetkov, P.; Soares, A. Prospects and Obstacles for Green Hydrogen Production in Russia. Energies 2021, 14, 718. [Google Scholar] [CrossRef]
- Maka, A.O.M.; Mehmood, M. Green hydrogen energy production: Current status and potential. Clean Energy 2024, 8, 1–7. [Google Scholar] [CrossRef]
- Squadrito, G.; Maggio, G.; Nicita, A. The green hydrogen revolution. Renew. Energy 2023, 216, 119041. [Google Scholar] [CrossRef]
- Vives, A.M.V.; Wang, R.; Roy, S.; Smallbone, A. Techno-economic analysis of large-scale green hydrogen production and storage. Appl. Energy 2023, 346, 121333. [Google Scholar] [CrossRef]
- Ishmam, S.; Heinrichs, H.; Winkler, C.; Bayat, B.; Lahnaoui, A.; Agbo, S.; Sanchez, E.P.; Franzmann, D.; Oijeabou, N.; Koerner, C.; et al. Mapping local green hydrogen cost-potentials by a multidisciplinary approach. Int. J. Hydrogen Energy 2024, 87, 1155–1170. [Google Scholar] [CrossRef]
- Ho, W.S.; Hashim, H.; Lim, J.S.; Lee, C.T.; Sam, K.C.; Tan, S.T. Waste Management Pinch Analysis (WAMPA): Application of Pinch Analysis for greenhouse gas (GHG) emission reduction in municipal solid waste management. Appl. Energy 2017, 185 Pt 2, 1481–1489. [Google Scholar] [CrossRef]
- Sadik-Zada, E.R. Political Economy of Green Hydrogen Rollout: A Global Perspective. Sustainability 2021, 13, 13464. [Google Scholar] [CrossRef]
- Li, Y.; Taghizadeh-Hesary, F. The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China. Energy Policy 2022, 160, 112703. [Google Scholar] [CrossRef]
- Perez, R.J.; Brent, A.C.; Hinkley, J. Assessment of the Potential for Green Hydrogen Fuelling of Very Heavy Vehicles in New Zealand. Energies 2021, 14, 2636. [Google Scholar] [CrossRef]
- Hydrogen Council; McKinsey & Company. Global Hydrogen Flows—2023 Update. Available online: https://hydrogencouncil.com/wp-content/uploads/2023/11/Global-Hydrogen-Flows-2023-Update.pdf (accessed on 10 September 2024).
- Du, L.; Yang, Y.; Zhou, L.; Liu, M. Greenhouse Gas Reduction Potential and Economics of Green Hydrogen via Water Electrolysis: A Systematic Review of Value-Chain-Wide Decarbonization. Sustainability 2024, 16, 4602. [Google Scholar] [CrossRef]
- IEA. Could the Green Hydrogen Boom Lead to Additional Renewable Capacity by 2026? Available online: https://www.iea.org/articles/could-the-green-hydrogen-boom-lead-to-additional-renewable-capacity-by-2026 (accessed on 10 September 2024).
Stage | Advantages | Disadvantages | Overall Impact |
---|---|---|---|
Production | Uses renewable energy | High consumption of water and rare metals | Reduced |
Storage | Liquefaction is effective for high-volume | Energy consumption for pressurization and liquefaction | Moderate |
Distribution | Pipelines have low long-term emissions | Transportation is energy-consuming | Reduce to moderate |
Type of Electrolysis | Operating Cost | LCOH | Efficiency | Durability | Applicability |
---|---|---|---|---|---|
Alkaline | Average | 4–6 $/kg H2 | 60–70% | High | Industrial applications |
PEM | High | 6–8 $/kg H2 | 65–80% | Average | Renewable energy |
HTE | High | 8–10 $/kg H2 | 80–90% | Low | Industrial applications |
Production Methods | Efficiency | Advantages | Challenges |
---|---|---|---|
Dark fermentation | 90% | Uses of organic waste | Requires product treatment |
Microbial Electrolysis Cells | 49.8% | Wastewater treatment integration | Dependence on an external energy source |
Waste utilization | Positive net energy production | Reduced costs and waste management | Reactor complexity |
Production Methods | Energy Consumption | Efficiency | Cost |
---|---|---|---|
Electrolysis | High | 60–80% | 4–6 $/kg H2 |
PEC | Low | 10–20% | 10–15 $/kg H2 |
Biological | Very low | 5–15% | 10–25 $/kg H2 |
Storage Methods | Storage Cost | LCOH | Safety Protocols |
---|---|---|---|
Liquid | 3–6 $/kg H2 | 8–12 $/kg H2 |
|
Solid | 4–7 $/kg H2 | 9–14 $/kg H2 |
|
Gas | 1–2 $/kg H2 | 5–8 $/kg H2 |
|
Pumped | ≤1 $/kg H2 | 3–6 $/kg H2 |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chirosca, A.-M.; Rusu, E.; Minzu, V. Green Hydrogen—Production and Storage Methods: Current Status and Future Directions. Energies 2024, 17, 5820. https://doi.org/10.3390/en17235820
Chirosca A-M, Rusu E, Minzu V. Green Hydrogen—Production and Storage Methods: Current Status and Future Directions. Energies. 2024; 17(23):5820. https://doi.org/10.3390/en17235820
Chicago/Turabian StyleChirosca, Ana-Maria, Eugen Rusu, and Viorel Minzu. 2024. "Green Hydrogen—Production and Storage Methods: Current Status and Future Directions" Energies 17, no. 23: 5820. https://doi.org/10.3390/en17235820
APA StyleChirosca, A.-M., Rusu, E., & Minzu, V. (2024). Green Hydrogen—Production and Storage Methods: Current Status and Future Directions. Energies, 17(23), 5820. https://doi.org/10.3390/en17235820