Hydrothermal Synthesis of Hierarchical Cage-like Co9S8 Microspheres Composed of Nanosheets as High-Capacity Anode Materials
Abstract
1. Introduction
2. Experimental Section
2.1. Material Synthesis
2.2. Material Characterization
2.3. Electrochemical Performance
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meng, X.L.; Zhang, D.M.; Mo, J.S.; Liu, L.H.; Yang, T.R.; Fan, Q.X.; Zhao, Q.; Zhou, R.M.; Zhang, M.X.; Hou, W.Y.; et al. Room-temperature solid-state metallic lithium batteries based on high-content boron nitride nanosheet-modified polymer electrolytes. Appl. Surf. Sci. 2024, 648, 158962. [Google Scholar] [CrossRef]
- Goodenough, J.B. Energy storage materials: A perspective. Energy Storage Mater. 2015, 1, 158–161. [Google Scholar] [CrossRef]
- Khan, B.M.; Oh, W.C.; Nuengmatch, P.; Ullah, K. Role of graphene-based nanocomposites as anode material for lithium-ion batteries. Mater. Sci. Eng. B 2023, 287, 116141. [Google Scholar] [CrossRef]
- Liu, L.H.; Li, M.C.; Chu, L.H.; Jiang, B.; Lin, R.X.; Zhu, X.P.; Cao, G.Z. Layered ternary metal oxides: Performance degradation mechanisms as cathodes, and design strategies for high-performance batteries. Prog. Mater. Sci. 2020, 111, 100655. [Google Scholar] [CrossRef]
- Liu, L.H.; Lyu, J.; Mo, J.S.; Yan, H.J.; Xu, L.L.; Peng, P.; Li, J.R.; Jiang, B.; Chu, L.H.; Li, M.C. Comprehensively-upgraded polymer electrolytes by multifunctional aramid nanofibers for stable all-solid-state Li-ion batteries. Nano Energy 2020, 69, 104398. [Google Scholar] [CrossRef]
- Liang, M.H.; Zhi, L.J. Graphene-based electrode materials for rechargeable lithium batteries. J. Mater. Chem. 2009, 19, 5871–5878. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.; Wang, Y.; Li, H.; Peng, Y. The application of nanostructured transition metal sulfides as anodes for lithium ion batteries. J. Energy Chem. 2018, 27, 1536–1554. [Google Scholar] [CrossRef]
- Liu, X.; He, Q.; Yuan, H.; Yan, C.; Zhao, Y.; Xu, X.; Huang, J.Q.; Chu, Y.L.; Zhang, Q.; Mai, L. Interface enhanced well-dispersed Co9S8 nanocrystals as an efficient polysulfide host in lithium-sulfur batteries. J. Energy Chem. 2020, 48, 109–115. [Google Scholar] [CrossRef]
- Yu, X.Y.; Yu, L.; Lou, X.W.D. Metal sulfide hollow nanostructures for electrochemical energy storage. Adv. Energy Mater. 2016, 6, 1501333. [Google Scholar] [CrossRef]
- Yuan, H.; Kong, L.; Li, T.; Zhang, Q. A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion. Chin. Chem. Lett. 2017, 28, 2180–2194. [Google Scholar] [CrossRef]
- Li, N.N.; Sun, L.; Wang, K.; Xu, S.; Zhang, J.; Guo, X.G.; Liu, X.H. Sandwiched N-carbon@Co9S8@Graphene nanosheets as highcapacity anode for both half and full lithium-ion batteries. J. Energy Chem. 2020, 51, 62–71. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Tang, Y.; Lu, X.; Yang, C.; Qin, M.; Huang, F.; Li, X.; Zhang, X. Phase-controlled synthesis of cobalt sulfides for lithium ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 4246–4250. [Google Scholar] [CrossRef] [PubMed]
- AbdelHamid, A.A.; Mendoza-Garcia, A.; Ying, J.Y. Advances in and prospects of nanomaterials’ morphological control for lithium rechargeable batteries. Nano Energy 2022, 93, 106860. [Google Scholar] [CrossRef]
- Zhang, L.Q.; Zhu, C.; Yu, S.C.; Ge, D.H.; Zhou, H.S. Status and challenges facing representative anode materials for rechargeable lithium batteries. J. Energy Chem. 2022, 66, 260–294. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, G.; Shan, Z.; Zhang, T.; Tian, J. Hierarchically micro-/nanostructured TiO2/micron carbon fibers composites for long-life and fast-charging lithium-ion batteries. ChemElectroChem. 2018, 5, 540–545. [Google Scholar] [CrossRef]
- Liu, H.W.; Yang, Z. Hollow spheres constructed from CeVO4 nanoparticles for enhanced lithium storage performance. Mater. Sci. Eng. B 2021, 269, 115159. [Google Scholar] [CrossRef]
- Wang, D.D.; Liu, H.D.; Li, M.Q.; Wang, X.F.; Bai, S.; Shi, Y.; Tian, J.H.; Shan, Z.Q.; Meng, Y.S.; Liu, P.; et al. Nanosheet-assembled hierarchical Li4Ti5O12 microspheres for high-volumetric-density and high-rate Li-ion battery anode. Energy Storage Mater. 2019, 21, 361–371. [Google Scholar] [CrossRef]
- Liu, S.M.; Wang, J.X.; Wang, J.W.; Zhang, F.F.; Liang, F.; Wang, L.M. Controlled construction of hierarchical Co1−xS structures as high performance anode materials for lithium ion batteries. CrystEngComm 2014, 16, 814. [Google Scholar] [CrossRef]
- Zheng, Y.H.; You, H.P.; Liu, K.; Song, Y.H.; Jia, G.; Huang, Y.J.; Yang, M.; Zhang, L.H.; Ning, G. Facile selective synthesis and luminescence behavior of hierarchical NaY(WO4)2:Eu3+ and Y6WO12:Eu3+. CrystEngComm 2011, 13, 3001–3007. [Google Scholar] [CrossRef]
- Ma, D.K.; Huang, S.M.; Chen, W.X.; Hu, S.W.; Shi, F.F.; Fan, K.L. Self-assembled three-dimensional hierarchical umbilicate Bi2WO6 microspheres from nanoplates: Controlled synthesis, photocatalytic activities, and wettability. J. Phys. Chem. C 2009, 113, 4369–4374. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Ma, J.F.; Wang, Y.Q.; Tao, J.T.; Lin, B.T.; Ren, Y.; Jiang, X.H.; Liu, J. Morphology-controlled synthesis and characterization of bismuth sulfide crystallites via a hydrothermal method. Ceram. Int. 2008, 34, 249–251. [Google Scholar] [CrossRef]
- O’Connell, J.H.; Lee, M.E.; Yagoub, M.Y.A.; Swart, H.C.; Coetsee, E. Characterization of crystallite morphology for doped strontium fluoride nanophosphors by TEM and XRD. Phys. B 2016, 480, 169–173. [Google Scholar] [CrossRef]
- Cao, F.; Shi, W.D.; Zhao, L.J.; Song, S.Y.; Yang, J.H.; Lei, Y.Q.; Zhang, H.J. Hydrothermal synthesis and high photocatalytic activity of 3D wurtzite ZnSe hierarchical nanostructures. J. Phys. Chem. C 2008, 112, 17095–17101. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, H.Y.; Zhong, X.; Liu, C. Effects of non-polar solvent on the morphology and property of three-dimensional hierarchical TiO2 nanostructures by one-step solvothermal route. J. Nanopart. Res. 2014, 16, 2466. [Google Scholar] [CrossRef]
- Liu, Y.; Geng, H.; Ang, E.H.; Cao, X.; Zheng, J.; Gu, H. Hierarchical nanotubes constructed by Co9S8/MoS2 ultrathin nanosheets wrapped with reduced graphene oxide for advanced lithium storage. Chem. Asian J. 2019, 14, 170–176. [Google Scholar] [CrossRef]
- Zhang, P.C.; Tian, R.R.; Cao, M.J.; Feng, Y.; Yao, J.F. Embedding Co9S8 nanoparticles into porous carbon foam with high flexibility and enhanced lithium ion storage. J. Electroanal Chem. 2020, 863, 114062. [Google Scholar] [CrossRef]
- Wang, Y.H.; Wu, B.H.; He, X.Y.; Zhang, Y.Y.; Li, H.; Peng, Y.Y.; Wang, J.; Zhao, J.B. Synthesis of micro/nanostructured Co9S8 cubes and spheres as high performance anodes for lithium ion batteries. Electrochim. Acta 2017, 230, 299–307. [Google Scholar] [CrossRef]
- Hua, A.; Zhou, W.Y.; Li, Y.; Li, S.Z.; Cheng, R.F.; Yang, J.X.; Luan, J. A novel strategy for synthesizing the large size Co9S8@C nanosheets as anode for lithium-ion batteries with superior performance. J. Alloys Compd. 2022, 895, 162668. [Google Scholar] [CrossRef]
- Kong, X.; Zhu, T.; Cheng, F.; Zhu, M.; Cao, X.; Liang, S.; Cao, G.; Pan, A. Uniform MnCo2O4 porous dumbbells for lithium-ion batteries and oxygen evolution reactions. ACS Appl. Mater. Interfaces 2018, 10, 8730–8738. [Google Scholar] [CrossRef]
- Peng, L.L.; Fang, Z.W.; Zhu, Y.; Yan, C.S.; Yu, G.H. Holey 2D nanomaterials for electrochemical energy storage. Adv. Energy Mater. 2018, 8, 1702179. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Zhu, Q.; Tian, J.; Jiang, F.Y. TiO2 nanobelt@Co9S8 composites as promising anode materials for lithium and sodium ion batteries. Nanomaterials 2017, 7, 252. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.M.; Wang, J.X.; Wang, J.W.; Zhang, F.F.; Wang, L.M. Highly uniform Co9S8 nanoparticles grown on graphene nanosheets as advanced anode materials for improved Li-storage performance. App. Surf. Sci. 2016, 390, 86–91. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, R.Y.; Deng, Z.P.; Xin, Y.Y.; Zhang, X.F.; Huo, L.H.; Gao, S. Biomass-derived graphitic carbon/Co9S8 nanocomposite as anode for enhanced lithium storage. ACS Appl. Nano Mater. 2024, 7, 9218–9922. [Google Scholar]
- Li, Y.Y.; Bao, Y.J.; Han, B.; Zhuang, Y.; Li, H.; Chen, C.Y.; Ju, D.C. 3D-structured Co9S8@NSG prepared using deep eutectic solvents as high-performance anode material of lithium-ion batteries. FlatChem 2024, 45, 100635. [Google Scholar] [CrossRef]
Sample | Crystallite Size (nm) |
---|---|
50-EDTA | 17.03 |
40-EDTA | 15.41 |
No-EDTA | 14.72 |
Materials | Current Density (mA g−1) | Cycle Number | Remaining Capacity (mAh g−1) | Ref. |
---|---|---|---|---|
C-Co9S8 | 1090 | 300 | 277 | [27] |
Co9S8 nanoparticle | 1000 | 100 | 100 | [31] |
Co9S8 microsphere | 50 | 50 | 391 | [32] |
Co9S8 electrode | 1000 | 2000 | 132 | [33] |
Co9S8 | 2000 | 250 | 245 | [34] |
50-EDTA | 1000 | 1000 | 303.5 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Liu, L.; Ma, J.; Zhang, J.; Zhang, Q. Hydrothermal Synthesis of Hierarchical Cage-like Co9S8 Microspheres Composed of Nanosheets as High-Capacity Anode Materials. Energies 2024, 17, 5553. https://doi.org/10.3390/en17225553
Yang H, Liu L, Ma J, Zhang J, Zhang Q. Hydrothermal Synthesis of Hierarchical Cage-like Co9S8 Microspheres Composed of Nanosheets as High-Capacity Anode Materials. Energies. 2024; 17(22):5553. https://doi.org/10.3390/en17225553
Chicago/Turabian StyleYang, Haomiao, Lehao Liu, Junfeng Ma, Jinkui Zhang, and Qiaomu Zhang. 2024. "Hydrothermal Synthesis of Hierarchical Cage-like Co9S8 Microspheres Composed of Nanosheets as High-Capacity Anode Materials" Energies 17, no. 22: 5553. https://doi.org/10.3390/en17225553
APA StyleYang, H., Liu, L., Ma, J., Zhang, J., & Zhang, Q. (2024). Hydrothermal Synthesis of Hierarchical Cage-like Co9S8 Microspheres Composed of Nanosheets as High-Capacity Anode Materials. Energies, 17(22), 5553. https://doi.org/10.3390/en17225553