Space–Time Forecasting of Heating & Cooling Energy Needs as an Energy Poverty Measure in Romania
Abstract
1. Introduction
2. Literature Background
2.1. Energy Poverty
2.2. Cooling Degree Days (CDD)
2.3. Heating Degree Days (HDD)
2.4. Measuring CDD, HDD and Energy Poverty
3. Research Methodology and Data Sets
- Step 1: Selecting the Input Data
- Step 2: Create the Space–time Cube (STC) for CDD and HDD
- Step 3: Identify the Forecast Equation
- Step 4: Generate the 2D Maps
- Step 5: Combine the CDD and HDD Results
4. Results
4.1. Cooling Degree Days (CDD) Forecast
4.2. Heating Degree Days Forecast
4.3. CDD and HDD Annual Need
5. Discussion
6. Conclusions
- -
- Regional differences in cooling and heating energy needs at the NUTS 3 level;
- -
- Five levels of intervention priority as a base for strategy design;
- -
- The expected values for the next nine years of CDD and HDD, identifying the hottest and the coldest regions;
- -
- Evolution curves and trends identification, offering information about the simplicity or complexity of the phenomenon, the direction, and the speed of evolution at the regional level;
- -
- By combining cooling and heating energy needs, the discrepancies are diminished, and the regions are grouped into three categories;
- -
- A base to be combined with other influence factors (income, energy price, natural resources, technologies, etc.) for multifactorial analysis.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guan, Y.; Yan, J.; Shan, Y.; Zhou, Y.; Hang, Y.; Li, R.; Liu, Y.; Liu, B.; Nie, Q.; Bruckner, B.; et al. Burden of the global energy price crisis on households. Nat. Energy 2023, 8, 304–316. [Google Scholar] [CrossRef]
- May, N.; Neuhoff, K. Financing power: Impacts of energy policies in changing regulatory environments. Energy J. 2021, 42, 131–152. [Google Scholar] [CrossRef]
- Shabalov, M.Y.; Zhukovskiy, Y.L.; Buldysko, A.D.; Gil, B.; Starshaia, V.V. The influence of technological changes in energy efficiency on the infrastructure deterioration in the energy sector. Energy Rep. 2021, 7, 2664–2680. [Google Scholar] [CrossRef]
- Atkinson, C.F.; Curnin, S.; Murphy-Gregory, H. Resilient and sustainable energy infrastructure. Soc. Sci. Protoc. 2022, 5, 1–13. [Google Scholar] [CrossRef]
- Taseska, V.; Markovska, N.; Callaway, J.M. Evaluation of climate change impacts on energy demand. Energy 2012, 48, 88–95. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelkareem, M.A. Renewable energy and climate change. Renew. Sustain. Energy Rev. 2022, 158, 112111. [Google Scholar] [CrossRef]
- Ciancio, V.; Salata, F.; Falasca, S.; Curci, G.; Golasi, I.; de Wilde, P. Energy demands of buildings in the framework of climate change: An investigation across Europe. Sustain. Cities Soc. 2020, 60, 102213. [Google Scholar] [CrossRef]
- US Energy Information Administration. Units and Calculators Explained, Retrieved at Degree-Days-U.S. Energy Information Administration (EIA). 2023. Available online: https://www.eia.gov/energyexplained/units-and-calculators/degree-days.php (accessed on 10 July 2024).
- Dubois, U.; Meier, H. Energy affordability and energy inequality in Europe: Implications for policymaking. Energy Res. Soc. Sci. 2016, 18, 21–35. [Google Scholar] [CrossRef]
- Larsen, M.A.; Petrović, S.; Radoszynski, A.M.; McKenna, R.; Balyk, O. Climate change impacts on trends and extremes in future heating and cooling demands over Europe. Energy Build. 2020, 226, 110397. [Google Scholar] [CrossRef]
- Spinoni, J.; Vogt, J.V.; Barbosa, P.; Dosio, A.; McCormick, N.; Bigano, A.; Füssel, H.M. Changes of heating and cooling degree-days in Europe from 1981 to 2100. Int. J. Clim. 2018, 38, e191–e208. [Google Scholar] [CrossRef]
- Igawa, M.; Managi, S. Energy poverty and income inequality: An economic analysis of 37 countries. Appl. Energy 2022, 306, 118076. [Google Scholar] [CrossRef]
- Pontzer, H.; Yamada, Y.; Sagayama, H.; Ainslie, P.N.; Andersen, L.F.; Anderson, L.J.; Arab, L.; Baddou, I.; Bedu-Addo, K.; Blaak, E.E.; et al. Daily energy expenditure through the human life course. Science 2021, 373, 808–812. [Google Scholar] [CrossRef] [PubMed]
- Paglialunga, E.; Coveri, A.; Zanfei, A. Climate change and within-country inequality: New evidence from a global perspective. World Dev. 2022, 159, 106030. [Google Scholar] [CrossRef]
- Mogos, R.I.; Negescuâ, M.D.; Burlacu, S.; Troaca, V.A. Climate change and health protection in European union. Eur. J. Sustain. Dev. 2021, 10, 97. [Google Scholar] [CrossRef]
- González-Eguino, M. Energy poverty: An overview. Renew. Sustain. Energy Rev. 2015, 47, 377–385. [Google Scholar] [CrossRef]
- Day, R.; Walker, G.; Simcock, N. Conceptualising energy use and energy poverty using a capabilities framework. Energy Policy 2016, 93, 255–264. [Google Scholar] [CrossRef]
- IEA. Renewable Energy Market Update: Outlook for 2023 and 2024; OECD Publishing: Paris, France, 2023. [Google Scholar] [CrossRef]
- Boardman, B. Fuel Poverty: From Cold Homes to Affordable Warmth; Belhaven Press: London, UK, 1991. [Google Scholar]
- Bouzarovski, S.; Petrova, S. A global perspective on domestic energy deprivation: Overcoming the energy poverty–fuel poverty binary. Energy Res. Soc. Sci. 2015, 10, 31–40. [Google Scholar] [CrossRef]
- Thomson, H.; Snell, C.; Bouzarovski, S. Health, well-being and energy poverty in Europe: A comparative study of 32 European countries. Int. J. Environ. Res. Public Health 2017, 14, 584. [Google Scholar] [CrossRef]
- Bouzarovski, S.; Petrova, S.; Sarlamanov, R. Energy poverty policies in the EU: A critical perspective. Energy Policy 2012, 49, 76–82. [Google Scholar] [CrossRef]
- Bouzarovski, S.; Tirado Herrero, S. The energy divide: Integrating energy transitions, regional inequalities and poverty trends in the European Union. Eur. Urban Reg. Stud. 2017, 24, 69–86. [Google Scholar] [CrossRef]
- Bouzarovski, S.; Tirado Herrero, S.; Petrova, S. Energy Vulnerability in Europe: New Perspectives on the Relationships Among Household Expenditure, Living Conditions and Deprivation; Energy vulnerability in Europe; DG Energy: Brussels, Belgium, 2014. [Google Scholar]
- Walker, R.; McKenzie, P.; Liddell, C.; Morris, C. Estimating fuel poverty at household level: An integrated approach. Energy Build. 2014, 80, 469–479. [Google Scholar] [CrossRef]
- Kahouli, S. An economic approach to the study of the relationship between housing hazards and health: The case of residential fuel poverty in France. Energy Econ. 2020, 85, 104592. [Google Scholar] [CrossRef]
- Davillas, A.; Burlinson, A.; Liu, H.H. Getting warmer: Fuel poverty, objective and subjective health and well-being. Energy Econ. 2022, 106, 105794. [Google Scholar] [CrossRef]
- Llorca, M.; Rodriguez-Alvarez, A.; Jamasb, T. Objective vs. subjective fuel poverty and self-assessed health. Energy Econ. 2020, 87, 104736. [Google Scholar] [CrossRef]
- Pan, L.; Biru, A.; Lettu, S. Energy poverty and public health: Global evidence. Energy Econ. 2021, 101, 105423. [Google Scholar] [CrossRef]
- Polimeni, J.M.; Simionescu, M.; Iorgulescu, R.I. Energy poverty and personal health in the EU. Int. J. Environ. Res. Public Health 2022, 19, 11459. [Google Scholar] [CrossRef]
- Moore, R. Definitions of fuel poverty: Implications for policy. Energy Policy 2012, 49, 19–26. [Google Scholar] [CrossRef]
- Robinson, C.; Bouzarovski, S.; Lindley, S. ‘Getting the measure of fuel poverty’: The geography of fuel poverty indicators in England. Energy Res. Soc. Sci. 2018, 36, 79–93. [Google Scholar] [CrossRef]
- Bouzarovski, S.; Simcock, N. Spatializing energy justice. Energy Policy 2017, 107, 640–648. [Google Scholar] [CrossRef]
- Fabbri, K. Building and fuel poverty, an index to measure fuel poverty: An Italian case study. Energy 2015, 89, 244–258. [Google Scholar] [CrossRef]
- European Commission. Clean Energy for All Europeans Package. 2019. Available online: https://energy.ec.europa.eu/topics/energy-strategy/clean-energy-all-europeans-package_en (accessed on 6 August 2024).
- Karpinska, L.; Śmiech, S.; Gouveia, J.P.; Palma, P. Mapping regional vulnerability to energy poverty in Poland. Sustainability 2021, 13, 10694. [Google Scholar] [CrossRef]
- Mulder, P.; Dalla Longa, F.; Straver, K. Energy poverty in the Netherlands at the national and local level: A multi-dimensional spatial analysis. Energy Res. Soc. Sci. 2023, 96, 102892. [Google Scholar] [CrossRef]
- Grossmann, K.; Jiglau, G.; Dubois, U.; Sinea, A.; Martín-Consuegra, F.; Dereniowska, M.; Franke, R.; Guyet, R.; Horta, A.; Katman, F.; et al. The critical role of trust in experiencing and coping with energy poverty: Evidence from across Europe. Energy Res. Soc. Sci. 2021, 76, 102064. [Google Scholar] [CrossRef]
- Sareen, S.; Thomson, H.; Herrero, S.T.; Gouveia, J.P.; Lippert, I.; Lis, A. European energy poverty metrics: Scales, prospects and limits. Glob. Transit. 2020, 2, 26–36. [Google Scholar] [CrossRef]
- Stojilovska, A.; Guyet, R.; Mahoney, K.; Gouveia, J.P.; Castaño-Rosa, R.; Živčič, L.; Barbosa, R.; Tkalec, T. Energy poverty and emerging debates: Beyond the traditional triangle of energy poverty drivers. Energy Policy 2022, 169, 113181. [Google Scholar] [CrossRef]
- Bednar, D.J.; Reames, T.G. Recognition of and response to energy poverty in the United States. Nat. Energy 2020, 5, 432–439. [Google Scholar] [CrossRef]
- Churchill, S.A.; Smyth, R.; Trinh, T.A. Energy poverty, temperature and climate change. Energy Econ. 2022, 114, 106306. [Google Scholar] [CrossRef]
- Li, X.; Smyth, R.; Xin, G.; Yao, Y. Warmer temperatures and energy poverty: Evidence from Chinese households. Energy Econ. 2023, 120, 106575. [Google Scholar] [CrossRef]
- Ortiz, L.; Gamarro, H.; Gonzalez, J.E.; McPhearson, T. Energy burden and air conditioning adoption in New York City under a warming climate. Sustain. Cities Soc. 2022, 76, 103465. [Google Scholar] [CrossRef]
- Koomson, I.; Danquah, M. Financial inclusion and energy poverty: Empirical evidence from Ghana. Energy Econ. 2021, 94, 105085. [Google Scholar] [CrossRef]
- Kool, R.; Lawrence, J.; Larsen, M.A.D.; Osborne, A.; Drews, M. Spatiotemporal aspects in coastal multi-risk climate change decision-making: Wait, protect, or retreat? Ocean. Coast. Manag. 2024, 258, 107385. [Google Scholar] [CrossRef]
- Biardeau, L.T.; Davis, L.W.; Gertler, P.; Wolfram, C. Heat exposure and global air conditioning. Nat. Sustain. 2020, 3, 25–28. [Google Scholar] [CrossRef]
- Pieper, H.; Kirs, T.; Krupenski, I.; Ledvanov, A.; Lepiksaar, K.; Volkova, A. Efficient use of heat from CHP distributed by district heating system in district cooling networks. Energy Rep. 2021, 7, 47–54. [Google Scholar] [CrossRef]
- Barrella, R.; Romero, J.C.; Linares, J.I.; Arenas, E.; Asín, M.; Centeno, E. The dark side of energy poverty: Who is underconsuming in Spain and why? Energy Res. Soc. Sci. 2022, 86, 102428. [Google Scholar] [CrossRef]
- Healy, J.D.; Clinch, J.P. Quantifying the severity of fuel poverty, its relationship with poor housing and reasons for non-investment in energy-saving measures in Ireland. Energy Policy 2004, 32, 207–220. [Google Scholar] [CrossRef]
- Samuelson, H.; Baniassadi, A.; Lin, A.; González, P.I.; Brawley, T.; Narula, T. Housing as a critical determinant of heat vulnerability and health. Sci. Total Environ. 2020, 720, 137296. [Google Scholar] [CrossRef]
- Vilches, A.; Padura, Á.B.; Huelva, M.M. Retrofitting of homes for people in fuel poverty: Approach based on household thermal comfort. Energy Policy 2017, 100, 283–291. [Google Scholar] [CrossRef]
- Aguilar, L.; Galindo, L.M. Energy Poverty and Its Impacts on Human Health and Well-being. Energy Econ. 2020, 89, 104–115. [Google Scholar]
- Castaño-Rosa, R.; Barrella, R.; Sánchez-Guevara, C.; Barbosa, R.; Kyprianou, I.; Paschalidou, E.; Thomaidis, N.S.; Dokupilova, D.; Gouveia, J.P.; Kádár, J.; et al. Cooling degree models and future energy demand in the residential sector. A seven-country case study. Sustainability 2021, 13, 2987. [Google Scholar] [CrossRef]
- Pérez-Fargallo, A.; Bienvenido-Huertas, D.; Rubio-Bellido, C.; Trebilcock, M. Energy poverty risk mapping methodology considering the user’s thermal adaptability: The case of Chile. Energy Sustain. Dev. 2020, 58, 63–77. [Google Scholar] [CrossRef]
- Fabbri, K.; Gaspari, J. Mapping the energy poverty: A case study based on the energy performance certificates in the city of Bologna. Energy Build. 2021, 234, 110718. [Google Scholar] [CrossRef]
- Bienvenido-Huertas, D.; Sánchez-García, D.; Rubio-Bellido, C. Analysing natural ventilation to reduce the cooling energy consumption and the fuel poverty of social dwellings in coastal zones. Appl. Energy 2020, 279, 115845. [Google Scholar] [CrossRef] [PubMed]
- Sokołowski, J.; Lewandowski, P.; Kiełczewska, A.; Bouzarovski, S. A multidimensional index to measure energy poverty: The Polish case. Energy Sources Part B Econ. Plan. Policy 2020, 15, 92–112. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, B. Can energy poverty be alleviated by targeting the low income? Constructing a multidimensional energy poverty index in China. Appl. Energy 2022, 321, 119374. [Google Scholar] [CrossRef]
- Kelly, J.A.; Clinch, J.P.; Kelleher, L.; Shahab, S. Enabling a just transition: A composite indicator for assessing home-heating energy-poverty risk and the impact of environmental policy measures. Energy Policy 2020, 146, 111791. [Google Scholar] [CrossRef]
- Singh, S.; Mall, R.K.; Singh, N. Changing spatio-temporal trends of heat wave and severe heat wave events over India: An emerging health hazard. Int. J. Climatol. 2021, 41, E1831–E1845. [Google Scholar] [CrossRef]
- Xia, S.; Yang, Y.; Qian, X.; Xu, X. Spatiotemporal interaction and socioeconomic determinants of rural energy poverty in China. Int. J. Environ. Res. Public Health 2022, 19, 10851. [Google Scholar] [CrossRef]
- Dong, Y.; Jin, G.; Deng, X.; Wu, F. Multidimensional measurement of poverty and its spatio-temporal dynamics in China from the perspective of development geography. J. Geogr. Sci. 2021, 31, 130–148. [Google Scholar] [CrossRef]
- Liu, M.; Ge, Y.; Hu, S.; Stein, A.; Ren, Z. The spatial–temporal variation of poverty determinants. Spat. Stat. 2022, 50, 100631. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, J.; Li, R.; Mikhaylov, A.; Moiseev, N. Does technical assistance alleviate energy poverty in sub-Saharan African countries? A new perspective on spatial spillover effects of technical assistance. Energy Strategy Rev. 2023, 45, 101047. [Google Scholar] [CrossRef]
- esri. ArcGIS Pro 3.1. How Curve Fit Forecast Works. pro.arcgis.com. 2023. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/space-time-pattern-mining/learnmorecurvefitforecast.htm#:~:text=The%20Curve%20Fit%20Forecast%20tool,the%20populations%20in%20upcoming%20years (accessed on 18 November 2023).
- EUROSTAT. Cooling and Heating Degree Days by Country—Annual Data. 2024. Available online: https://ec.europa.eu/eurostat/databrowser/product/page/NRG_CHDD_A (accessed on 4 March 2024).
- Dragota, I.M.; Semenescu, A.; Gherasim, A. Compulsory insurance for dwellings in Romania between mitigating the impacts of natural disasters and giving rise to social inequities. Afr. J. Bus. Manag. 2012, 6, 177. [Google Scholar]
- Pye, S.; Dobbins, A.; Baffert, C.; Brajković, J.; Grgurev, I.; Miglio, R.; Deane, P. Energy Poverty and Vulnerable Consumers in the Energy Sector across the EU: Analysis of Policies and Measures. 2015. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/INSIGHT_E_Energy%20Poverty%20-%20Main%20Report_FINAL.pdf (accessed on 14 September 2024).
- Sovacool, B.K.; Heffron, R.J.; McCauley, D.; Goldthau, A. Energy decisions reframed as justice and ethical concerns. Nat. Energy 2016, 1, 1–6. [Google Scholar] [CrossRef]
- Joița, D.; Panait, M.; Dobrotă, C.E.; Diniță, A.; Neacșa, A.; Naghi, L.E. The European dilemma—Energy security or green transition. Energies 2023, 16, 3849. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. 2021. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 14 September 2024).
STC Characteristics | CDD | HDD |
---|---|---|
Input feature time extent | 1979-01-01 00:00:00 | 1979-01-01 00:00:00 |
to 2023-01-01 00:00:00 | to 2023-01-01 00:00:00 | |
Number of time steps | 45 | 45 |
Time step interval | 1 year | 1 year |
Time step alignment | End | End |
First time step temporal bias | 100.00% | 100.00% |
First time step interval | after | after |
1978-01-01 00:00:00 | 1978-01-01 00:00:00 | |
to on or before | to on or before | |
1979-01-01 00:00:00 | 1979-01-01 00:00:00 | |
Last time step temporal bias | 0.00% | 0.00% |
Last time step interval | after | after |
2022-01-01 00:00:00 | 2022-01-01 00:00:00 | |
to on or before | to on or before | |
2023-01-01 00:00:00 | 2023-01-01 00:00:00 | |
Coordinate system | Stereo 70 | Stereo 70 |
Cube extent across space | (coordinates in meters) | (coordinates in meters) |
Min X | 134,105.0196 | 134,105.0196 |
Min Y | 235,538.6121 | 235,538.6121 |
Max X | 874,928.8607 | 874,928.8607 |
Max Y | 753,220.1398 | 753,220.1398 |
Locations | 42 | |
% of locations with estimated observations | 0.00 | |
- Total number | 0 | |
Total observations | 1890 | |
% of all observations that were estimated | 0.00 | |
Total number | 0 |
Overall Data Trend—COOLING_DEGREE_DAYS_N_SUM_ZEROS | |
Trend direction | Increasing |
Trend statistic | 5.2922 |
Trend p-value | 0 |
Overall Data Trend—TEMPORAL_AGGREGATION_COUNT | |
Trend direction | Not Significant |
Trend statistic | 0 |
Trend p-value | 1 |
Overall Data Trend—HEATING_DEGREE_DAYS_N_SUM_ZEROS | |
Trend direction | Decreasing |
Trend statistic | −4.9401 |
Trend p-value | 0 |
Overall Data Trend—TEMPORAL_AGGREGATION_COUNT | |
Trend direction | Not Significant |
Trend statistic | 0 |
Trend p-value | 1 |
Id_Loc _Short | NUTS Code | Nume | CDD | HDD | CDD and HDD | Id_Loc _Short | NUTS Code | Nume | CDD | HDD | CDD and HDD |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | RO111 | Bihor | 3 | 3 | 6 | 22 | RO224 | Galaţi | 4 | 2 | 6 |
2 | RO112 | Bistriţa-Năsăud | 1 | 5 | 6 | 23 | RO225 | Tulcea | 4 | 1 | 5 |
3 | RO113 | Cluj | 2 | 4 | 6 | 24 | RO226 | Vrancea | 3 | 2 | 5 |
4 | RO114 | Maramureş | 1 | 5 | 6 | 25 | RO311 | Argeş | 2 | 4 | 6 |
5 | RO115 | Satu Mare | 3 | 3 | 6 | 26 | RO312 | Călăraşi | 5 | 2 | 7 |
6 | RO116 | Sălaj | 2 | 4 | 6 | 27 | RO313 | Dâmboviţa | 3 | 3 | 6 |
7 | RO121 | Alba | 2 | 4 | 6 | 28 | RO314 | Giurgiu | 5 | 2 | 7 |
8 | RO122 | Braşov | 1 | 5 | 6 | 29 | RO315 | Ialomiţa | 5 | 2 | 7 |
9 | RO123 | Covasna | 1 | 4 | 5 | 30 | RO316 | Prahova | 3 | 3 | 6 |
10 | RO124 | Harghita | 1 | 5 | 6 | 31 | RO317 | Teleorman | 5 | 1 | 6 |
11 | RO125 | Mureş | 1 | 4 | 5 | 32 | RO321 | Bucureşti | 5 | 1 | 6 |
12 | RO126 | Sibiu | 1 | 4 | 5 | 33 | RO322 | Ilfov | 5 | 1 | 6 |
13 | RO211 | Bacău | 2 | 3 | 5 | 34 | RO411 | Dolj | 5 | 1 | 6 |
14 | RO212 | Botoşani | 3 | 3 | 6 | 35 | RO412 | Gorj | 3 | 3 | 6 |
15 | RO213 | Iaşi | 3 | 3 | 6 | 36 | RO413 | Mehedinţi | 4 | 2 | 6 |
16 | RO214 | Neamţ | 2 | 4 | 6 | 37 | RO414 | Olt | 5 | 1 | 6 |
17 | RO215 | Suceava | 1 | 5 | 6 | 38 | RO415 | Vâlcea | 3 | 3 | 6 |
18 | RO216 | Vaslui | 3 | 3 | 6 | 39 | RO421 | Arad | 3 | 3 | 6 |
19 | RO221 | Brăila | 5 | 2 | 7 | 40 | RO422 | Caraş-Severin | 3 | 3 | 6 |
20 | RO222 | Buzău | 4 | 2 | 6 | 41 | RO423 | Hunedoara | 2 | 4 | 6 |
21 | RO223 | Constanţa | 5 | 1 | 6 | 42 | RO424 | Timiş | 4 | 3 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigorescu, A.; Pirciog, C.S.; Lincaru, C. Space–Time Forecasting of Heating & Cooling Energy Needs as an Energy Poverty Measure in Romania. Energies 2024, 17, 5227. https://doi.org/10.3390/en17205227
Grigorescu A, Pirciog CS, Lincaru C. Space–Time Forecasting of Heating & Cooling Energy Needs as an Energy Poverty Measure in Romania. Energies. 2024; 17(20):5227. https://doi.org/10.3390/en17205227
Chicago/Turabian StyleGrigorescu, Adriana, Camelia Speranta Pirciog, and Cristina Lincaru. 2024. "Space–Time Forecasting of Heating & Cooling Energy Needs as an Energy Poverty Measure in Romania" Energies 17, no. 20: 5227. https://doi.org/10.3390/en17205227
APA StyleGrigorescu, A., Pirciog, C. S., & Lincaru, C. (2024). Space–Time Forecasting of Heating & Cooling Energy Needs as an Energy Poverty Measure in Romania. Energies, 17(20), 5227. https://doi.org/10.3390/en17205227