Space–Time Forecasting of Heating & Cooling Energy Needs as an Energy Poverty Measure in Romania
Abstract
:1. Introduction
2. Literature Background
2.1. Energy Poverty
2.2. Cooling Degree Days (CDD)
2.3. Heating Degree Days (HDD)
2.4. Measuring CDD, HDD and Energy Poverty
3. Research Methodology and Data Sets
- Step 1: Selecting the Input Data
- Step 2: Create the Space–time Cube (STC) for CDD and HDD
- Step 3: Identify the Forecast Equation
- Step 4: Generate the 2D Maps
- Step 5: Combine the CDD and HDD Results
4. Results
4.1. Cooling Degree Days (CDD) Forecast
4.2. Heating Degree Days Forecast
4.3. CDD and HDD Annual Need
5. Discussion
6. Conclusions
- -
- Regional differences in cooling and heating energy needs at the NUTS 3 level;
- -
- Five levels of intervention priority as a base for strategy design;
- -
- The expected values for the next nine years of CDD and HDD, identifying the hottest and the coldest regions;
- -
- Evolution curves and trends identification, offering information about the simplicity or complexity of the phenomenon, the direction, and the speed of evolution at the regional level;
- -
- By combining cooling and heating energy needs, the discrepancies are diminished, and the regions are grouped into three categories;
- -
- A base to be combined with other influence factors (income, energy price, natural resources, technologies, etc.) for multifactorial analysis.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guan, Y.; Yan, J.; Shan, Y.; Zhou, Y.; Hang, Y.; Li, R.; Liu, Y.; Liu, B.; Nie, Q.; Bruckner, B.; et al. Burden of the global energy price crisis on households. Nat. Energy 2023, 8, 304–316. [Google Scholar] [CrossRef]
- May, N.; Neuhoff, K. Financing power: Impacts of energy policies in changing regulatory environments. Energy J. 2021, 42, 131–152. [Google Scholar] [CrossRef]
- Shabalov, M.Y.; Zhukovskiy, Y.L.; Buldysko, A.D.; Gil, B.; Starshaia, V.V. The influence of technological changes in energy efficiency on the infrastructure deterioration in the energy sector. Energy Rep. 2021, 7, 2664–2680. [Google Scholar] [CrossRef]
- Atkinson, C.F.; Curnin, S.; Murphy-Gregory, H. Resilient and sustainable energy infrastructure. Soc. Sci. Protoc. 2022, 5, 1–13. [Google Scholar] [CrossRef]
- Taseska, V.; Markovska, N.; Callaway, J.M. Evaluation of climate change impacts on energy demand. Energy 2012, 48, 88–95. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelkareem, M.A. Renewable energy and climate change. Renew. Sustain. Energy Rev. 2022, 158, 112111. [Google Scholar] [CrossRef]
- Ciancio, V.; Salata, F.; Falasca, S.; Curci, G.; Golasi, I.; de Wilde, P. Energy demands of buildings in the framework of climate change: An investigation across Europe. Sustain. Cities Soc. 2020, 60, 102213. [Google Scholar] [CrossRef]
- US Energy Information Administration. Units and Calculators Explained, Retrieved at Degree-Days-U.S. Energy Information Administration (EIA). 2023. Available online: https://www.eia.gov/energyexplained/units-and-calculators/degree-days.php (accessed on 10 July 2024).
- Dubois, U.; Meier, H. Energy affordability and energy inequality in Europe: Implications for policymaking. Energy Res. Soc. Sci. 2016, 18, 21–35. [Google Scholar] [CrossRef]
- Larsen, M.A.; Petrović, S.; Radoszynski, A.M.; McKenna, R.; Balyk, O. Climate change impacts on trends and extremes in future heating and cooling demands over Europe. Energy Build. 2020, 226, 110397. [Google Scholar] [CrossRef]
- Spinoni, J.; Vogt, J.V.; Barbosa, P.; Dosio, A.; McCormick, N.; Bigano, A.; Füssel, H.M. Changes of heating and cooling degree-days in Europe from 1981 to 2100. Int. J. Clim. 2018, 38, e191–e208. [Google Scholar] [CrossRef]
- Igawa, M.; Managi, S. Energy poverty and income inequality: An economic analysis of 37 countries. Appl. Energy 2022, 306, 118076. [Google Scholar] [CrossRef]
- Pontzer, H.; Yamada, Y.; Sagayama, H.; Ainslie, P.N.; Andersen, L.F.; Anderson, L.J.; Arab, L.; Baddou, I.; Bedu-Addo, K.; Blaak, E.E.; et al. Daily energy expenditure through the human life course. Science 2021, 373, 808–812. [Google Scholar] [CrossRef] [PubMed]
- Paglialunga, E.; Coveri, A.; Zanfei, A. Climate change and within-country inequality: New evidence from a global perspective. World Dev. 2022, 159, 106030. [Google Scholar] [CrossRef]
- Mogos, R.I.; Negescuâ, M.D.; Burlacu, S.; Troaca, V.A. Climate change and health protection in European union. Eur. J. Sustain. Dev. 2021, 10, 97. [Google Scholar] [CrossRef]
- González-Eguino, M. Energy poverty: An overview. Renew. Sustain. Energy Rev. 2015, 47, 377–385. [Google Scholar] [CrossRef]
- Day, R.; Walker, G.; Simcock, N. Conceptualising energy use and energy poverty using a capabilities framework. Energy Policy 2016, 93, 255–264. [Google Scholar] [CrossRef]
- IEA. Renewable Energy Market Update: Outlook for 2023 and 2024; OECD Publishing: Paris, France, 2023. [Google Scholar] [CrossRef]
- Boardman, B. Fuel Poverty: From Cold Homes to Affordable Warmth; Belhaven Press: London, UK, 1991. [Google Scholar]
- Bouzarovski, S.; Petrova, S. A global perspective on domestic energy deprivation: Overcoming the energy poverty–fuel poverty binary. Energy Res. Soc. Sci. 2015, 10, 31–40. [Google Scholar] [CrossRef]
- Thomson, H.; Snell, C.; Bouzarovski, S. Health, well-being and energy poverty in Europe: A comparative study of 32 European countries. Int. J. Environ. Res. Public Health 2017, 14, 584. [Google Scholar] [CrossRef]
- Bouzarovski, S.; Petrova, S.; Sarlamanov, R. Energy poverty policies in the EU: A critical perspective. Energy Policy 2012, 49, 76–82. [Google Scholar] [CrossRef]
- Bouzarovski, S.; Tirado Herrero, S. The energy divide: Integrating energy transitions, regional inequalities and poverty trends in the European Union. Eur. Urban Reg. Stud. 2017, 24, 69–86. [Google Scholar] [CrossRef]
- Bouzarovski, S.; Tirado Herrero, S.; Petrova, S. Energy Vulnerability in Europe: New Perspectives on the Relationships Among Household Expenditure, Living Conditions and Deprivation; Energy vulnerability in Europe; DG Energy: Brussels, Belgium, 2014. [Google Scholar]
- Walker, R.; McKenzie, P.; Liddell, C.; Morris, C. Estimating fuel poverty at household level: An integrated approach. Energy Build. 2014, 80, 469–479. [Google Scholar] [CrossRef]
- Kahouli, S. An economic approach to the study of the relationship between housing hazards and health: The case of residential fuel poverty in France. Energy Econ. 2020, 85, 104592. [Google Scholar] [CrossRef]
- Davillas, A.; Burlinson, A.; Liu, H.H. Getting warmer: Fuel poverty, objective and subjective health and well-being. Energy Econ. 2022, 106, 105794. [Google Scholar] [CrossRef]
- Llorca, M.; Rodriguez-Alvarez, A.; Jamasb, T. Objective vs. subjective fuel poverty and self-assessed health. Energy Econ. 2020, 87, 104736. [Google Scholar] [CrossRef]
- Pan, L.; Biru, A.; Lettu, S. Energy poverty and public health: Global evidence. Energy Econ. 2021, 101, 105423. [Google Scholar] [CrossRef]
- Polimeni, J.M.; Simionescu, M.; Iorgulescu, R.I. Energy poverty and personal health in the EU. Int. J. Environ. Res. Public Health 2022, 19, 11459. [Google Scholar] [CrossRef]
- Moore, R. Definitions of fuel poverty: Implications for policy. Energy Policy 2012, 49, 19–26. [Google Scholar] [CrossRef]
- Robinson, C.; Bouzarovski, S.; Lindley, S. ‘Getting the measure of fuel poverty’: The geography of fuel poverty indicators in England. Energy Res. Soc. Sci. 2018, 36, 79–93. [Google Scholar] [CrossRef]
- Bouzarovski, S.; Simcock, N. Spatializing energy justice. Energy Policy 2017, 107, 640–648. [Google Scholar] [CrossRef]
- Fabbri, K. Building and fuel poverty, an index to measure fuel poverty: An Italian case study. Energy 2015, 89, 244–258. [Google Scholar] [CrossRef]
- European Commission. Clean Energy for All Europeans Package. 2019. Available online: https://energy.ec.europa.eu/topics/energy-strategy/clean-energy-all-europeans-package_en (accessed on 6 August 2024).
- Karpinska, L.; Śmiech, S.; Gouveia, J.P.; Palma, P. Mapping regional vulnerability to energy poverty in Poland. Sustainability 2021, 13, 10694. [Google Scholar] [CrossRef]
- Mulder, P.; Dalla Longa, F.; Straver, K. Energy poverty in the Netherlands at the national and local level: A multi-dimensional spatial analysis. Energy Res. Soc. Sci. 2023, 96, 102892. [Google Scholar] [CrossRef]
- Grossmann, K.; Jiglau, G.; Dubois, U.; Sinea, A.; Martín-Consuegra, F.; Dereniowska, M.; Franke, R.; Guyet, R.; Horta, A.; Katman, F.; et al. The critical role of trust in experiencing and coping with energy poverty: Evidence from across Europe. Energy Res. Soc. Sci. 2021, 76, 102064. [Google Scholar] [CrossRef]
- Sareen, S.; Thomson, H.; Herrero, S.T.; Gouveia, J.P.; Lippert, I.; Lis, A. European energy poverty metrics: Scales, prospects and limits. Glob. Transit. 2020, 2, 26–36. [Google Scholar] [CrossRef]
- Stojilovska, A.; Guyet, R.; Mahoney, K.; Gouveia, J.P.; Castaño-Rosa, R.; Živčič, L.; Barbosa, R.; Tkalec, T. Energy poverty and emerging debates: Beyond the traditional triangle of energy poverty drivers. Energy Policy 2022, 169, 113181. [Google Scholar] [CrossRef]
- Bednar, D.J.; Reames, T.G. Recognition of and response to energy poverty in the United States. Nat. Energy 2020, 5, 432–439. [Google Scholar] [CrossRef]
- Churchill, S.A.; Smyth, R.; Trinh, T.A. Energy poverty, temperature and climate change. Energy Econ. 2022, 114, 106306. [Google Scholar] [CrossRef]
- Li, X.; Smyth, R.; Xin, G.; Yao, Y. Warmer temperatures and energy poverty: Evidence from Chinese households. Energy Econ. 2023, 120, 106575. [Google Scholar] [CrossRef]
- Ortiz, L.; Gamarro, H.; Gonzalez, J.E.; McPhearson, T. Energy burden and air conditioning adoption in New York City under a warming climate. Sustain. Cities Soc. 2022, 76, 103465. [Google Scholar] [CrossRef]
- Koomson, I.; Danquah, M. Financial inclusion and energy poverty: Empirical evidence from Ghana. Energy Econ. 2021, 94, 105085. [Google Scholar] [CrossRef]
- Kool, R.; Lawrence, J.; Larsen, M.A.D.; Osborne, A.; Drews, M. Spatiotemporal aspects in coastal multi-risk climate change decision-making: Wait, protect, or retreat? Ocean. Coast. Manag. 2024, 258, 107385. [Google Scholar] [CrossRef]
- Biardeau, L.T.; Davis, L.W.; Gertler, P.; Wolfram, C. Heat exposure and global air conditioning. Nat. Sustain. 2020, 3, 25–28. [Google Scholar] [CrossRef]
- Pieper, H.; Kirs, T.; Krupenski, I.; Ledvanov, A.; Lepiksaar, K.; Volkova, A. Efficient use of heat from CHP distributed by district heating system in district cooling networks. Energy Rep. 2021, 7, 47–54. [Google Scholar] [CrossRef]
- Barrella, R.; Romero, J.C.; Linares, J.I.; Arenas, E.; Asín, M.; Centeno, E. The dark side of energy poverty: Who is underconsuming in Spain and why? Energy Res. Soc. Sci. 2022, 86, 102428. [Google Scholar] [CrossRef]
- Healy, J.D.; Clinch, J.P. Quantifying the severity of fuel poverty, its relationship with poor housing and reasons for non-investment in energy-saving measures in Ireland. Energy Policy 2004, 32, 207–220. [Google Scholar] [CrossRef]
- Samuelson, H.; Baniassadi, A.; Lin, A.; González, P.I.; Brawley, T.; Narula, T. Housing as a critical determinant of heat vulnerability and health. Sci. Total Environ. 2020, 720, 137296. [Google Scholar] [CrossRef]
- Vilches, A.; Padura, Á.B.; Huelva, M.M. Retrofitting of homes for people in fuel poverty: Approach based on household thermal comfort. Energy Policy 2017, 100, 283–291. [Google Scholar] [CrossRef]
- Aguilar, L.; Galindo, L.M. Energy Poverty and Its Impacts on Human Health and Well-being. Energy Econ. 2020, 89, 104–115. [Google Scholar]
- Castaño-Rosa, R.; Barrella, R.; Sánchez-Guevara, C.; Barbosa, R.; Kyprianou, I.; Paschalidou, E.; Thomaidis, N.S.; Dokupilova, D.; Gouveia, J.P.; Kádár, J.; et al. Cooling degree models and future energy demand in the residential sector. A seven-country case study. Sustainability 2021, 13, 2987. [Google Scholar] [CrossRef]
- Pérez-Fargallo, A.; Bienvenido-Huertas, D.; Rubio-Bellido, C.; Trebilcock, M. Energy poverty risk mapping methodology considering the user’s thermal adaptability: The case of Chile. Energy Sustain. Dev. 2020, 58, 63–77. [Google Scholar] [CrossRef]
- Fabbri, K.; Gaspari, J. Mapping the energy poverty: A case study based on the energy performance certificates in the city of Bologna. Energy Build. 2021, 234, 110718. [Google Scholar] [CrossRef]
- Bienvenido-Huertas, D.; Sánchez-García, D.; Rubio-Bellido, C. Analysing natural ventilation to reduce the cooling energy consumption and the fuel poverty of social dwellings in coastal zones. Appl. Energy 2020, 279, 115845. [Google Scholar] [CrossRef] [PubMed]
- Sokołowski, J.; Lewandowski, P.; Kiełczewska, A.; Bouzarovski, S. A multidimensional index to measure energy poverty: The Polish case. Energy Sources Part B Econ. Plan. Policy 2020, 15, 92–112. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, B. Can energy poverty be alleviated by targeting the low income? Constructing a multidimensional energy poverty index in China. Appl. Energy 2022, 321, 119374. [Google Scholar] [CrossRef]
- Kelly, J.A.; Clinch, J.P.; Kelleher, L.; Shahab, S. Enabling a just transition: A composite indicator for assessing home-heating energy-poverty risk and the impact of environmental policy measures. Energy Policy 2020, 146, 111791. [Google Scholar] [CrossRef]
- Singh, S.; Mall, R.K.; Singh, N. Changing spatio-temporal trends of heat wave and severe heat wave events over India: An emerging health hazard. Int. J. Climatol. 2021, 41, E1831–E1845. [Google Scholar] [CrossRef]
- Xia, S.; Yang, Y.; Qian, X.; Xu, X. Spatiotemporal interaction and socioeconomic determinants of rural energy poverty in China. Int. J. Environ. Res. Public Health 2022, 19, 10851. [Google Scholar] [CrossRef]
- Dong, Y.; Jin, G.; Deng, X.; Wu, F. Multidimensional measurement of poverty and its spatio-temporal dynamics in China from the perspective of development geography. J. Geogr. Sci. 2021, 31, 130–148. [Google Scholar] [CrossRef]
- Liu, M.; Ge, Y.; Hu, S.; Stein, A.; Ren, Z. The spatial–temporal variation of poverty determinants. Spat. Stat. 2022, 50, 100631. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, J.; Li, R.; Mikhaylov, A.; Moiseev, N. Does technical assistance alleviate energy poverty in sub-Saharan African countries? A new perspective on spatial spillover effects of technical assistance. Energy Strategy Rev. 2023, 45, 101047. [Google Scholar] [CrossRef]
- esri. ArcGIS Pro 3.1. How Curve Fit Forecast Works. pro.arcgis.com. 2023. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/space-time-pattern-mining/learnmorecurvefitforecast.htm#:~:text=The%20Curve%20Fit%20Forecast%20tool,the%20populations%20in%20upcoming%20years (accessed on 18 November 2023).
- EUROSTAT. Cooling and Heating Degree Days by Country—Annual Data. 2024. Available online: https://ec.europa.eu/eurostat/databrowser/product/page/NRG_CHDD_A (accessed on 4 March 2024).
- Dragota, I.M.; Semenescu, A.; Gherasim, A. Compulsory insurance for dwellings in Romania between mitigating the impacts of natural disasters and giving rise to social inequities. Afr. J. Bus. Manag. 2012, 6, 177. [Google Scholar]
- Pye, S.; Dobbins, A.; Baffert, C.; Brajković, J.; Grgurev, I.; Miglio, R.; Deane, P. Energy Poverty and Vulnerable Consumers in the Energy Sector across the EU: Analysis of Policies and Measures. 2015. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/INSIGHT_E_Energy%20Poverty%20-%20Main%20Report_FINAL.pdf (accessed on 14 September 2024).
- Sovacool, B.K.; Heffron, R.J.; McCauley, D.; Goldthau, A. Energy decisions reframed as justice and ethical concerns. Nat. Energy 2016, 1, 1–6. [Google Scholar] [CrossRef]
- Joița, D.; Panait, M.; Dobrotă, C.E.; Diniță, A.; Neacșa, A.; Naghi, L.E. The European dilemma—Energy security or green transition. Energies 2023, 16, 3849. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. 2021. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 14 September 2024).
STC Characteristics | CDD | HDD |
---|---|---|
Input feature time extent | 1979-01-01 00:00:00 | 1979-01-01 00:00:00 |
to 2023-01-01 00:00:00 | to 2023-01-01 00:00:00 | |
Number of time steps | 45 | 45 |
Time step interval | 1 year | 1 year |
Time step alignment | End | End |
First time step temporal bias | 100.00% | 100.00% |
First time step interval | after | after |
1978-01-01 00:00:00 | 1978-01-01 00:00:00 | |
to on or before | to on or before | |
1979-01-01 00:00:00 | 1979-01-01 00:00:00 | |
Last time step temporal bias | 0.00% | 0.00% |
Last time step interval | after | after |
2022-01-01 00:00:00 | 2022-01-01 00:00:00 | |
to on or before | to on or before | |
2023-01-01 00:00:00 | 2023-01-01 00:00:00 | |
Coordinate system | Stereo 70 | Stereo 70 |
Cube extent across space | (coordinates in meters) | (coordinates in meters) |
Min X | 134,105.0196 | 134,105.0196 |
Min Y | 235,538.6121 | 235,538.6121 |
Max X | 874,928.8607 | 874,928.8607 |
Max Y | 753,220.1398 | 753,220.1398 |
Locations | 42 | |
% of locations with estimated observations | 0.00 | |
- Total number | 0 | |
Total observations | 1890 | |
% of all observations that were estimated | 0.00 | |
Total number | 0 |
Overall Data Trend—COOLING_DEGREE_DAYS_N_SUM_ZEROS | |
Trend direction | Increasing |
Trend statistic | 5.2922 |
Trend p-value | 0 |
Overall Data Trend—TEMPORAL_AGGREGATION_COUNT | |
Trend direction | Not Significant |
Trend statistic | 0 |
Trend p-value | 1 |
Overall Data Trend—HEATING_DEGREE_DAYS_N_SUM_ZEROS | |
Trend direction | Decreasing |
Trend statistic | −4.9401 |
Trend p-value | 0 |
Overall Data Trend—TEMPORAL_AGGREGATION_COUNT | |
Trend direction | Not Significant |
Trend statistic | 0 |
Trend p-value | 1 |
Id_Loc _Short | NUTS Code | Nume | CDD | HDD | CDD and HDD | Id_Loc _Short | NUTS Code | Nume | CDD | HDD | CDD and HDD |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | RO111 | Bihor | 3 | 3 | 6 | 22 | RO224 | Galaţi | 4 | 2 | 6 |
2 | RO112 | Bistriţa-Năsăud | 1 | 5 | 6 | 23 | RO225 | Tulcea | 4 | 1 | 5 |
3 | RO113 | Cluj | 2 | 4 | 6 | 24 | RO226 | Vrancea | 3 | 2 | 5 |
4 | RO114 | Maramureş | 1 | 5 | 6 | 25 | RO311 | Argeş | 2 | 4 | 6 |
5 | RO115 | Satu Mare | 3 | 3 | 6 | 26 | RO312 | Călăraşi | 5 | 2 | 7 |
6 | RO116 | Sălaj | 2 | 4 | 6 | 27 | RO313 | Dâmboviţa | 3 | 3 | 6 |
7 | RO121 | Alba | 2 | 4 | 6 | 28 | RO314 | Giurgiu | 5 | 2 | 7 |
8 | RO122 | Braşov | 1 | 5 | 6 | 29 | RO315 | Ialomiţa | 5 | 2 | 7 |
9 | RO123 | Covasna | 1 | 4 | 5 | 30 | RO316 | Prahova | 3 | 3 | 6 |
10 | RO124 | Harghita | 1 | 5 | 6 | 31 | RO317 | Teleorman | 5 | 1 | 6 |
11 | RO125 | Mureş | 1 | 4 | 5 | 32 | RO321 | Bucureşti | 5 | 1 | 6 |
12 | RO126 | Sibiu | 1 | 4 | 5 | 33 | RO322 | Ilfov | 5 | 1 | 6 |
13 | RO211 | Bacău | 2 | 3 | 5 | 34 | RO411 | Dolj | 5 | 1 | 6 |
14 | RO212 | Botoşani | 3 | 3 | 6 | 35 | RO412 | Gorj | 3 | 3 | 6 |
15 | RO213 | Iaşi | 3 | 3 | 6 | 36 | RO413 | Mehedinţi | 4 | 2 | 6 |
16 | RO214 | Neamţ | 2 | 4 | 6 | 37 | RO414 | Olt | 5 | 1 | 6 |
17 | RO215 | Suceava | 1 | 5 | 6 | 38 | RO415 | Vâlcea | 3 | 3 | 6 |
18 | RO216 | Vaslui | 3 | 3 | 6 | 39 | RO421 | Arad | 3 | 3 | 6 |
19 | RO221 | Brăila | 5 | 2 | 7 | 40 | RO422 | Caraş-Severin | 3 | 3 | 6 |
20 | RO222 | Buzău | 4 | 2 | 6 | 41 | RO423 | Hunedoara | 2 | 4 | 6 |
21 | RO223 | Constanţa | 5 | 1 | 6 | 42 | RO424 | Timiş | 4 | 3 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigorescu, A.; Pirciog, C.S.; Lincaru, C. Space–Time Forecasting of Heating & Cooling Energy Needs as an Energy Poverty Measure in Romania. Energies 2024, 17, 5227. https://doi.org/10.3390/en17205227
Grigorescu A, Pirciog CS, Lincaru C. Space–Time Forecasting of Heating & Cooling Energy Needs as an Energy Poverty Measure in Romania. Energies. 2024; 17(20):5227. https://doi.org/10.3390/en17205227
Chicago/Turabian StyleGrigorescu, Adriana, Camelia Speranta Pirciog, and Cristina Lincaru. 2024. "Space–Time Forecasting of Heating & Cooling Energy Needs as an Energy Poverty Measure in Romania" Energies 17, no. 20: 5227. https://doi.org/10.3390/en17205227
APA StyleGrigorescu, A., Pirciog, C. S., & Lincaru, C. (2024). Space–Time Forecasting of Heating & Cooling Energy Needs as an Energy Poverty Measure in Romania. Energies, 17(20), 5227. https://doi.org/10.3390/en17205227