Assessing SOC Estimations via Reverse-Time Kalman for Small Unmanned Aircraft
Abstract
:1. Introduction
2. Battery Model and Identification
- is the Open Circuit Voltage (OCV). During the normal usage of the battery, this quantity cannot be measured, because the load should be zero and a period of relaxation after the last use is needed. These conditions are not normally encountered in a mission. The relationship is a non-linear static map that can be obtained for a battery batch using laboratory tests on samples.
- is the battery terminal voltage. It can be easily measured even during use.
- is the voltage across the polarization capacitor. It cannot be measured. This makes SOC estimation more difficult.
- I is the electrical current entering the battery (negative during discharge). It can be measured during use, typically with less accuracy than voltage.
- represents the internal resistance of the battery. Its value is state-dependent.
- and are the resistance and capacitance due to polarization in the battery.
- is the nominal capacity of the battery ().
2.1. Identification of Model Parameters
2.2. SOC Estimation
3. Reverse-Time Kalman Filter
4. Experimental Study
- An electronic load where the battery power is dissipated, emulating the discharge. The load is programmable, so that discharging profiles can be setup to match those encountered during an aircraft mission.
- Voltage, current, and temperature sensors.
- Analog-to-digital conversion system with a maximum of 16 bits.
- Scada system based on a desktop computer for data gathering.
- A programmable voltage source to carry out battery charge after .
- An electrical load for battery testing.
Test Suite
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
A/D | Analog to Digital conversion |
KF | Kalman Filter |
LiFePO4 | Lithium Iron Phosphate |
OCV | Open Circuit Voltage |
RC | Resistive-Capacitive |
RTKF | Reverse-Time Kalman Filter |
SAR | Search And Rescue |
SOC | State Of Charge |
UAV | Unmanned Aerial Vehicle |
References
- Airsight. Drone Capabilities–Endurance and Range. Available online: https://www.airsight.com (accessed on 7 August 2024).
- Mukherjee, S.; Chowdhury, K. State of charge estimation techniques for battery management system used in electric vehicles: A review. Energy Syst. 2023, 1–44. [Google Scholar] [CrossRef]
- Dini, P.; Colicelli, A.; Saponara, S. Review on Modeling and SOC/SOH Estimation of Batteries for Automotive Applications. Batteries 2024, 10, 34. [Google Scholar] [CrossRef]
- Rivera-Barrera, J.; Muñoz-Galeano, N.; Sarmiento-Maldonado, H. SoC Estimation for Lithium-ion Batteries: Review and Future Challenges. Electronics 2017, 6, 102. [Google Scholar] [CrossRef]
- Liu, X.; Gao, Y.; Marma, K.; Miao, Y.; Liu, L. Advances in the Study of Techniques to Determine the Lithium-Ion Battery’s State of Charge. Energies 2024, 17, 1643. [Google Scholar] [CrossRef]
- Kolluri, S.; Aduru, S.V.; Pathak, M.; Braatz, R.D.; Subramanian, V.R. Real-time nonlinear model predictive control (NMPC) strategies using physics-based models for advanced lithium-ion battery management system (BMS). J. Electrochem. Soc. 2020, 167, 063505. [Google Scholar] [CrossRef]
- Agarwal, V.; Uthaichana, K.; DeCarlo, R.A.; Tsoukalas, L.H. Development and validation of a battery model useful for discharging and charging power control and lifetime estimation. IEEE Trans. Energy Convers. 2010, 25, 821–835. [Google Scholar] [CrossRef]
- Durán, M.J.; Barrero, F.; Toral, S.; Arahal, M.; Prieto, J. Improved techniques of restrained search predictive control for multiphase drives. In Proceedings of the 2009 IEEE International Electric Machines and Drives Conference, Miami, FL, USA, 3–6 May 2009; pp. 239–244. [Google Scholar]
- Kumar, R.R.; Bharatiraja, C.; Udhayakumar, K.; Devakirubakaran, S.; Sekar, S.; Mihet-Popa, L. Advances in batteries, battery modeling, battery management system, battery thermal management, SOC, SOH, and charge/discharge characteristics in EV applications. IEEE Access 2023, 11, 105761–105809. [Google Scholar] [CrossRef]
- Gómez, F.; Yebra, L.; Giménez, A.; Torres-Moreno, J. Modelling of batteries for application in light electric urban vehicles. Rev. Iberoam. Autom. Inform. Ind. 2019, 16, 459–466. [Google Scholar] [CrossRef]
- Martí-Florences, M.; Cecilia, A.; Costa-Castelló, R. Modelling and Estimation in Lithium-Ion Batteries: A Literature Review. Energies 2023, 16, 6846. [Google Scholar] [CrossRef]
- Piller, S.; Perrin, M.; Jossen, A. Methods for state-of-charge determination and their applications. J. Power Sources 2001, 96, 113–120. [Google Scholar] [CrossRef]
- Coleman, M.; Lee, C.K.; Zhu, C.; Hurley, W.G. State-of-charge determination from EMF voltage estimation: Using impedance, terminal voltage, and current for lead-acid and lithium-ion batteries. IEEE Trans. Ind. Electron. 2007, 54, 2550–2557. [Google Scholar] [CrossRef]
- Sun, J.; Tang, Y.; Ye, J.; Jiang, T.; Chen, S.; Qiu, S. A novel capacity and initial discharge electric quantity estimation method for LiFePO4 battery pack based on OCV curve partial reconstruction. Energy 2022, 243, 122882. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, J.; Sun, Z.; Wang, L.; Xu, R.; Li, M.; Chen, Z. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems. Renew. Sustain. Energy Rev. 2020, 131, 110015. [Google Scholar] [CrossRef]
- Yu, Q.; Dai, L.; Xiong, R.; Chen, Z.; Zhang, X.; Shen, W. Current sensor fault diagnosis method based on an improved equivalent circuit battery model. Appl. Energy 2022, 310, 118588. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, L.; Li, Q.; Wang, K. A comprehensive review on the state of charge estimation for lithium-ion battery based on neural network. Int. J. Energy Res. 2022, 46, 5423–5440. [Google Scholar] [CrossRef]
- Ghaeminezhad, N.; Ouyang, Q.; Wei, J.; Xue, Y.; Wang, Z. Review on state of charge estimation techniques of lithium-ion batteries: A control-oriented approach. J. Energy Storage 2023, 72, 108707. [Google Scholar] [CrossRef]
- Arahal, M.R.; Barrero, F.; Satué, M.G.; Bermúdez, M. Fast Finite-State Predictive Current Control of Electric Drives. IEEE Access 2023, 11, 12821–12828. [Google Scholar] [CrossRef]
- Hidalgo, H.; Huerta, H. Sliding mode control for an electrical vehicle with differential speed. Rev. Iberoam. Autom. Inform. Ind. 2021, 18, 115–124. [Google Scholar]
- Colodro, F.; Mora, J.L.; Barrero, F.; Arahal, M.R.; Martinez-Heredia, J.M. Analysis and simulation of a novel speed estimation method based on oversampling and noise shaping techniques. Results Eng. 2024, 21, 101670. [Google Scholar] [CrossRef]
- Salem, K.A.; Palaia, G.; Quarta, A.A. Review of hybrid-electric aircraft technologies and designs: Critical analysis and novel solutions. Prog. Aerosp. Sci. 2023, 141, 100924. [Google Scholar] [CrossRef]
- Altun, Y.E.; Kutlar, O.A. Energy Management Systems’ Modeling and Optimization in Hybrid Electric Vehicles. Energies 2024, 17, 1696. [Google Scholar] [CrossRef]
- Stoica, C.; Arahal, M.R.; Rivera, D.E.; Rodriguez-Ayerbe, P.; Dumur, D. Application of robustified model predictive control to a production-inventory system. In Proceedings of the 48th IEEE Conference on Decision and Control (CDC) and 28th Chinese Control Conference, Shanghai, China, 15–18 December 2009; pp. 3993–3998. [Google Scholar]
- Bermúdez, M.; Martín, C.; González-Prieto, I.; Durán, M.J.; Arahal, M.R.; Barrero, F. Predictive current control in electrical drives: An illustrated review with case examples using a five-phase induction motor drive with distributed windings. IET Electr. Power Appl. 2020, 14, 1291–1310. [Google Scholar] [CrossRef]
- Zhang, Q.; Ikram, M.; Xu, K. Online Optimization of Vehicle-to-Grid Scheduling to Mitigate Battery Aging. Energies 2024, 17, 1681. [Google Scholar] [CrossRef]
- Martínez-Vera, E.; Rosado-Muñoz, A.; Bañuelos-Sánchez, P. Lithium-ion Battery State of Charge Estimation with Neural Networks and FPGA-in-the-loop validation. Rev. Iberoam. Autom. Inform. Ind. 2024, 21, 243–251. [Google Scholar] [CrossRef]
- Clemente, A.; Montiel, M.; Barreras, F.; Lozano, A.; Costa-Castelló, R. Experimental validation of a vanadium redox flow battery model for state of charge and state of health estimation. Electrochim. Acta 2023, 449, 142117. [Google Scholar] [CrossRef]
- Soto-Marchena, D.; Barrero, F.; Colodro, F.; Arahal, M.R.; Mora, J.L. On-Site Calibration of an Electric Drive: A Case Study Using a Multiphase System. Sensors 2023, 23, 7317. [Google Scholar] [CrossRef]
- Eltoumi, F.; Badji, A.; Becherif, M.; Ramadan, H. Experimental identification using equivalent circuit model for lithium-ion battery. Int. J. Emerg. Electr. Power Syst. 2018, 19, 20170210. [Google Scholar] [CrossRef]
- Tian, N.; Fang, H.; Chen, J.; Wang, Y. Nonlinear double-capacitor model for rechargeable batteries: Modeling, identification, and validation. IEEE Trans. Control Syst. Technol. 2020, 29, 370–384. [Google Scholar] [CrossRef]
- Zhou, W.; Zheng, Y.; Pan, Z.; Lu, Q. Review on the battery model and SOC estimation method. Processes 2021, 9, 1685. [Google Scholar] [CrossRef]
- Arahal, M.R.; Berenguel, M.; Rodríguez, F. Técnicas de Predicción con Aplicaciones en Ingeniería; Universidad de Sevilla: Seville, Spain, 2006. [Google Scholar]
- Puleston, T.; Cecilia, A.; Costa-Castelló, R.; Serra, M. Vanadium redox flow batteries real-time State of Charge and State of Health estimation under electrolyte imbalance condition. J. Energy Storage 2023, 68, 107666. [Google Scholar] [CrossRef]
- How, D.N.; Hannan, M.; Lipu, M.H.; Ker, P.J. State of charge estimation for lithium-ion batteries using model-based and data-driven methods: A review. IEEE Access 2019, 7, 136116–136136. [Google Scholar] [CrossRef]
Case | (%) | (s) | Trajectory | (%) |
---|---|---|---|---|
(A) | 45 | 2.0 | T1 | 68.2 |
(B) | 95 | 2.0 | T1 | 68.2 |
(C) | 45 | 0.5 | T1 | 68.5 |
(D) | 95 | 0.5 | T1 | 68.6 |
(E) | 99 | 2.0 | T2 | 84.5 |
(F) | 10 | 2.0 | T2 | 84.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arahal, M.R.; Pérez Vega-Leal, A.; Satué, M.G.; Esteban, S. Assessing SOC Estimations via Reverse-Time Kalman for Small Unmanned Aircraft. Energies 2024, 17, 5161. https://doi.org/10.3390/en17205161
Arahal MR, Pérez Vega-Leal A, Satué MG, Esteban S. Assessing SOC Estimations via Reverse-Time Kalman for Small Unmanned Aircraft. Energies. 2024; 17(20):5161. https://doi.org/10.3390/en17205161
Chicago/Turabian StyleArahal, Manuel R., Alfredo Pérez Vega-Leal, Manuel G. Satué, and Sergio Esteban. 2024. "Assessing SOC Estimations via Reverse-Time Kalman for Small Unmanned Aircraft" Energies 17, no. 20: 5161. https://doi.org/10.3390/en17205161
APA StyleArahal, M. R., Pérez Vega-Leal, A., Satué, M. G., & Esteban, S. (2024). Assessing SOC Estimations via Reverse-Time Kalman for Small Unmanned Aircraft. Energies, 17(20), 5161. https://doi.org/10.3390/en17205161