Trends for Stirling Engines in Households: A Systematic Literature Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Quantitative Analysis
RQ | Retrieved Records | Retrieved Full Papers | Time Series Range | Document Type in Selection |
---|---|---|---|---|
RQ1 | 3997 | n/a | 1960–2023 | 1978 articles, 1948 conference papers, 71 review |
RQ2 | 41 | 34 | 2001–2022 | 24 * articles, 15 conference papers, 1 review |
RQ3 | 8 | 8 | 2009–2017 | 5 articles, 2 conference papers, 1 review |
3.2. Qualitative Analysis—Tendencies of Stirling Engine Biomass Co-Generation Use
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 Establishing the Framework for Achieving Climate Neutrality and Amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’). 2021. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32021R1119 (accessed on 15 November 2023).
- Regulation (EU) 2023/955 of the European Parliament and of the Council of 10 May 2023 Establishing a Social Climate Fund and Amending Regulation (EU) 2021/1060. 2023. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32023R0955&qid=1700076804119 (accessed on 15 November 2023).
- Indrawan, N.; Kumar, A.; Moliere, M.; Sallam, K.A.; Huhnke, R.L. Distributed power generation via gasification of biomass and municipal solid waste: A review. J. Energy Inst. 2020, 93, 2293–2313. [Google Scholar] [CrossRef]
- European Committee of the Regions; Spatial Foresight; ÖIR; t33. Implementing the European Green Deal: Handbook for Local and Regional Governments. LU: Publications Office. 2022. Available online: https://data.europa.eu/doi/10.2863/359336 (accessed on 10 November 2023).
- Jithin, K.; Haridev, P.P.; Mayadevi, N.; Harikumar, R.P.; Mini, V.P. A Review on Challenges in DC Microgrid Planning and Implementation. J. Mod. Power Syst. Clean Energy 2023, 11, 1375–1395. [Google Scholar] [CrossRef]
- Kubli, M.; Ulli-Beer, S. Decentralisation dynamics in energy systems: A generic simulation of network effects. Energy Res. Soc. Sci. 2016, 13, 71–83. [Google Scholar] [CrossRef]
- Oreski, G.; Stein, J.S.; Eder, G.C.; Berger, K.; Bruckman, L.; French, R.; Vedde, J.; A Weiß, K. Motivation, benefits, and challenges for new photovoltaic material & module developments. Prog. Energy 2022, 4, 032003. [Google Scholar] [CrossRef]
- Aliabadi, A.A.; Thomson, M.J.; Wallace, J.S.; Tzanetakis, T.; Lamont, W.; Di Carlo, J. Efficiency and Emissions Measurement of a Stirling-Engine-Based Residential Microcogeneration System Run on Diesel and Biodiesel. Energy Fuels 2009, 23, 1032–1039. [Google Scholar] [CrossRef]
- Chmielewski, A.; Gumiński, R.; Mączak, J.; Radkowski, S.; Szulim, P. Aspects of balanced development of RES and distributed micro-cogeneration use in Poland: Case study of a µCHP with Stirling engine. Renew. Sustain. Energy Rev. 2016, 60, 930–952. [Google Scholar] [CrossRef]
- Pakere, I.; Kacare, M.; Murauskaite, L.; Huang, P.; Volkova, A. Comparison of Suitable Business Models for the 5 th Generation District Heating System Implementation through Game Theory Approach. Environ. Clim. Technol. 2023, 27, 1–15. [Google Scholar] [CrossRef]
- Asere, L.; Blumberga, A. Energy Efficiency—Indoor Air Quality Dilemma in Educational Buildings: A Possible Solution. Environ. Clim. Technol. 2020, 24, 357–367. [Google Scholar] [CrossRef]
- Auñón-Hidalgo, J.A.; Sidrach-De-Cardona, M.; Auñón-Rodríguez, F. Performance and CO2 emissions assessment of a novel combined solar photovoltaic and thermal, with a Stirling engine micro-CHP system for domestic environments. Energy Convers. Manag. 2021, 230, 113793. [Google Scholar] [CrossRef]
- Vlad, A.-V.; Tirnovan, R.-A.; Sabou, D.; Maris, I.; Blidar, O.-C.; Muresan, A. A review of residential micro–Combined Heat and Power systems based on renewable energy. In Proceedings of the 2021 9th International Conference on Modern Power Systems (MPS), Cluj-Napoca, Romania, 16–17 June 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Badea, N.; Vlad, C.; Stolan, A. Comparative study of energy performance for two mCCHP systems used in domestic residence. In Proceedings of the 2010 3rd International Symposium on Electrical and Electronics Engineering (ISEEE), Galati, Romania, 16–18 September 2010; pp. 321–326. [Google Scholar] [CrossRef]
- Brandoni, C.; Arteconi, A.; Ciriachi, G.; Polonara, F. Assessing the impact of micro-generation technologies on local sustainability. Energy Convers. Manag. 2014, 87, 1281–1290. [Google Scholar] [CrossRef]
- İncili, V.; Dolgun, G.K.; Georgiev, A.; Keçebaş, A.; Çetin, N.S. Performance evaluation of novel photovoltaic and Stirling assisted hybrid micro combined heat and power system. Renew. Energy 2022, 189, 129–138. [Google Scholar] [CrossRef]
- Surdacki, P.; Holuk, M.; Banka, K.; Gawkowski, K. Investigation of the CHP generation system with the stirling engine. In Proceedings of the 2017 International Conference on Electromagnetic Devices and Processes in Environment Protection with Seminar Applications of Superconductors (ELMECO & AoS), Naleczow, Poland, 3–6 December 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Alanne, K. Sustainable small-scale CHP technologies for buildings: The basis for multi-perspective decision-making. Renew. Sustain. Energy Rev. 2004, 8, 401–431. [Google Scholar] [CrossRef]
- Abuelyamen, A.; Ben-Mansour, R. Energy efficiency comparison of Stirling engine types (α, β, and γ) using detailed CFD modeling. Int. J. Therm. Sci. 2018, 132, 411–423. [Google Scholar] [CrossRef]
- Tauveron, N.; Colasson, S.; Gruss, J.-A. Available Systems for the Conversion of Waste Heat to Electricity. In Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, Montreal, QC, Canada, 14–20 November 2014; Volume 6A: Energy. [Google Scholar] [CrossRef]
- Secundo, G.; Ndou, V.; Del Vecchio, P.; De Pascale, G. Sustainable development, intellectual capital and technology policies: A structured literature review and future research agenda. Technol. Forecast. Soc. Change 2020, 153, 119917. [Google Scholar] [CrossRef]
- Jung, W.; Jazizadeh, F. Human-in-the-loop HVAC operations: A quantitative review on occupancy, comfort, and energy-efficiency dimensions. Appl. Energy 2019, 239, 1471–1508. [Google Scholar] [CrossRef]
- Loonen, R.C.G.M.; Trčka, M.; Cóstola, D.; Hensen, J.L.M. Climate adaptive building shells: State-of-the-art and future challenges. Renew. Sustain. Energy Rev. 2013, 25, 483–493. [Google Scholar] [CrossRef]
- Dorrell, J.; Lee, K. The Cost of Wind: Negative Economic Effects of Global Wind Energy Development. Energies 2020, 13, 3667. [Google Scholar] [CrossRef]
- Pires, A.L.G.; Junior, P.R.; Morioka, S.N.; Rocha, L.C.S.; Bolis, I. Main Trends and Criteria Adopted in Economic Feasibility Studies of Offshore Wind Energy: A Systematic Literature Review. Energies 2021, 15, 12. [Google Scholar] [CrossRef]
- Kojonsaari, A.-R.; Palm, J. The development of social science research on smart grids: A semi-structured literature review. Energ. Sustain. Soc. 2023, 13, 1. [Google Scholar] [CrossRef]
- Malik, M.Z.; Shaikh, P.H.; Zhang, S.; Lashari, A.A.; Leghari, Z.H.; Baloch, M.H.; Memon, Z.A.; Caiming, C. A review on design parameters and specifications of parabolic solar dish Stirling systems and their applications. Energy Rep. 2022, 8, 4128–4154. [Google Scholar] [CrossRef]
- Massaro, M.; Dumay, J.; Guthrie, J. On the shoulders of giants: Undertaking a structured literature review in accounting. Account. Audit. Account. J. 2016, 29, 767–801. [Google Scholar] [CrossRef]
- Dolge, K.; Blumberga, D. What are the Linkages between Climate and Economy? Bibliometric Analysis. Environ. Clim. Technol. 2022, 26, 616–629. [Google Scholar] [CrossRef]
- Petticrew, M.; Roberts, H. Systematic Reviews in the Social Sciences: A Practical Guide; Blackwell Publishing: Oxford, UK, 2006. [Google Scholar]
- Baker, M.J. Writing a literature review. Mark. Rev. 2000, 1, 219–247. [Google Scholar] [CrossRef]
- Nolting, L.; Kies, A.; Schönegge, M.; Robinius, M.; Praktiknjo, A. Locating experts and carving out the state of the art: A systematic review on Industry 4.0 and energy system analysis. Int. J. Energy Res. 2019, 43, 3981–4002. [Google Scholar] [CrossRef]
- Scimago Journal Rank. Available online: https://www.scimagojr.com/ (accessed on 16 November 2023).
- Davis, S.R.; Henein, N.A. Comparative Analysis of Stirling and Other Combustion Engines. In Proceedings of the 1973 International Automotive Engineering Congress and Exposition, Detroit, MI, USA, 8 January 1973. [Google Scholar] [CrossRef]
- Durcansky, P.; Nosek, R.; Jandacka, J. Use of Stirling Engine for Waste Heat Recovery. Energies 2020, 13, 4133. [Google Scholar] [CrossRef]
- Cardozo, E.; Erlich, C.; Malmquist, A.; Alejo, L. Integration of a wood pellet burner and a Stirling engine to produce residential heat and power. Appl. Therm. Eng. 2014, 73, 671–680. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. VOSviewer Manual, version 1.6.19.; Centre for Science and Technology Studies, Leiden University: Leiden, The Netherlands, 23 January 2023. [Google Scholar]
- Pantaleo, A.M.; Ciliberti, P.; Camporeale, S.; Shah, N. Thermo-economic Assessment of Small Scale Biomass CHP: Steam Turbines vs ORC in Different Energy Demand Segments. Energy Procedia 2015, 75, 1609–1617. [Google Scholar] [CrossRef]
- Renzi, M.; Brandoni, C. Study and application of a regenerative Stirling cogeneration device based on biomass combustion. Appl. Therm. Eng. 2014, 67, 341–351. [Google Scholar] [CrossRef]
- Cardozo, E.; Malmquist, A. Performance comparison between the use of wood and sugarcane bagasse pellets in a Stirling engine micro-CHP system. Appl. Therm. Eng. 2019, 159, 113945. [Google Scholar] [CrossRef]
- Damirchi, H.; Najafi, G.; Alizadehnia, S.; Ghobadian, B.; Yusaf, T.; Mamat, R. Design, Fabrication and Evaluation of Gamma-Type Stirling Engine to Produce Electricity from Biomass for the Micro-CHP System. Energy Procedia 2015, 75, 137–143. [Google Scholar] [CrossRef]
- Najafi, G.; Hoseini, S.; De Goey, L.; Yusaf, T. Optimization of combustion in micro combined heat and power (mCHP) system with the biomass-Stirling engine using SiO2 and Al2O3 nanofluids. Appl. Therm. Eng. 2020, 169, 114936. [Google Scholar] [CrossRef]
- Commission for Environmental Cooperation. Commission for Environmental Cooperation. Available online: http://www.cec.org/ (accessed on 20 November 2023).
- Kramens, J.; Vīgants, E.; Liepiņš, I.; Vērnieks, L.; Terjanika, V. Research of a Biomass Boiler with Stirling Engine Microgeneration Unit. Environ. Clim. Technol. 2021, 25, 587–599. [Google Scholar] [CrossRef]
- Lombardi, S.; Bizon, K.; Marra, F.S.; Continillo, G. Effect of Coupling Parameters on the Performance of Fluidized Bed Combustor—Stirling Engine for a Micro CHP System. Energy Procedia 2015, 75, 834–839. [Google Scholar] [CrossRef]
- García, D.; Suárez, M.-J.; Blanco, E.; Prieto, J.-I. Experimental and Numerical Characterisation of a Non-Tubular Stirling Engine Heater for Biomass Applications. Sustainability 2022, 14, 16488. [Google Scholar] [CrossRef]
- Takeuchi, M.; Suzuki, S.; Abe, Y. Development of a low-temperature-difference indirect-heating kinematic Stirling engine. Energy 2021, 229, 120577. [Google Scholar] [CrossRef]
- Ulloa, C.; Míguez, J.L.; Porteiro, J.; Eguía, P.; Cacabelos, A. Development of a Transient Model of a Stirling-Based CHP System. Energies 2013, 6, 3115–3133. [Google Scholar] [CrossRef]
- Voronca, S.-D.; Siroux, M.; Darie, G.; Kallio, S. Simulating ON-OFF Regimes on a Micro-CHP Using Biomass. IOP Conf. Ser. Earth Environ. Sci. 2022, 1050, 012010. [Google Scholar] [CrossRef]
- Miccio, F. On the integration between fluidized bed and Stirling engine for micro-generation. Appl. Therm. Eng. 2013, 52, 46–53. [Google Scholar] [CrossRef]
- Marra, F.S.; Miccio, F.; Solimene, R.; Chirone, R.; Urciuolo, M.; Miccio, M. Coupling a Stirling engine with a fluidized bed combustor for biomass. Int. J. Energy Res. 2020, 44, 12572–12582. [Google Scholar] [CrossRef]
- Borisov, I.; Khalatov, A.; Paschenko, D. The biomass fueled micro-scale CHP unit with stirling engine and two-stage vortex combustion chamber. Heat Mass Transf. 2022, 58, 1091–1103. [Google Scholar] [CrossRef]
- Crema, L.; Alberti, F.; Bertaso, A.; Bozzoli, A. Development of a pellet boiler with Stirling engine for m-CHP domestic application. Energ. Sustain. Soc. 2011, 1, 5. [Google Scholar] [CrossRef]
- Voronca, S.-D.; Siroux, M.; Darie, G. Experimental Characterization of Transitory Functioning Regimes of a Biomass Stirling Micro-CHP. Energies 2022, 15, 5547. [Google Scholar] [CrossRef]
- Arashnia, I.; Najafi, G.; Ghobadian, B.; Yusaf, T.; Mamat, R.; Kettner, M. Development of Micro-scale Biomass-fuelled CHP System Using Stirling Engine. Energy Procedia 2015, 75, 1108–1113. [Google Scholar] [CrossRef]
- Qian, X.; Lee, S.; Chandrasekaran, R.; Yang, Y.; Caballes, M.; Alamu, O.; Chen, G. Electricity Evaluation and Emission Characteristics of Poultry Litter Co-Combustion Process. Appl. Sci. 2019, 9, 4116. [Google Scholar] [CrossRef]
- Damirchi, H.; Najafi, G.; Alizadehnia, S.; Mamat, R.; Azwadi, C.S.N.; Azmi, W.; Noor, M. Micro Combined Heat and Power to provide heat and electrical power using biomass and Gamma-type Stirling engine. Appl. Therm. Eng. 2016, 103, 1460–1469. [Google Scholar] [CrossRef]
- Katona, B.; Laza, T. The technical applicability of Stirling engines in a Hungarian village. Chem. Pap. 2018, 72, 3093–3103. [Google Scholar] [CrossRef]
- Uzuneanu, K.; Scarpete, D.; Badea, N. Technical assessment and thermodynamic analysis of a prime mover Stirling engine in a micro CCHP biomass system for an isolated residence in South-East region of Romania. Wseas Trans. Environ. Dev. 2010, 6, 509–518. [Google Scholar]
- Huang, Y.; Wang, Y.; Chen, H.; Zhang, X.; Mondol, J.; Shah, N.; Hewitt, N. Performance analysis of biofuel fired trigeneration systems with energy storage for remote households. Appl. Energy 2017, 186, 530–538. [Google Scholar] [CrossRef]
- Gravelsins, A.; Atvare, E.; Kudurs, E.; Kubule, A.; Blumberga, D. System Dynamics Model of Decentralized Household Electricity Storage Implementation: Case Study of Latvia. Smart Cities 2023, 6, 2553–2573. [Google Scholar] [CrossRef]
- Soares, J.; Oliveira, A.C. Numerical simulation of a hybrid concentrated solar power/biomass mini power plant. Appl. Therm. Eng. 2017, 111, 1378–1386. [Google Scholar] [CrossRef]
- Ferreira, A.C.; Silva, J.; Teixeira, S.; Teixeira, J.C.; Nebra, S.A. Assessment of the Stirling engine performance comparing two renewable energy sources: Solar energy and biomass. Renew. Energy 2020, 154, 581–597. [Google Scholar] [CrossRef]
- Ranieri, S.; Prado, G.A.O.; MacDonald, B.D. Efficiency Reduction in Stirling Engines Resulting from Sinusoidal Motion. Energies 2018, 11, 2887. [Google Scholar] [CrossRef]
- Paraschiv, I.; Badea, N.; Voncila, I.; Gaiceanu, M.; Nicolau, V. Theoretical and experimental research on the methodology of designing a system of trigeneration with renewable energy. In Proceedings of the 2013 8th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 23–25 May 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Maraver, D.; Sin, A.; Royo, J.; Sebastián, F. Assessment of CCHP systems based on biomass combustion for small-scale applications through a review of the technology and analysis of energy efficiency parameters. Appl. Energy 2013, 102, 1303–1313. [Google Scholar] [CrossRef]
- Dahiru, A.T.; Daud, D.; Tan, C.W.; Jagun, Z.T.; Samsudin, S.; Dobi, A.M. A comprehensive review of demand side management in distributed grids based on real estate perspectives. Env. Sci. Pollut. Res. 2023, 30, 81984–82013. [Google Scholar] [CrossRef]
- Rad, M.A.V.; Kasaeian, A.; Niu, X.; Zhang, K.; Mahian, O. Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions. Renew. Energy 2023, 212, 538–560. [Google Scholar] [CrossRef]
- Staffell, I.; Baker, P.; Barton, J.P.; Bergman, N.; Blanchard, R.; Brandon, N.P.; Brett, D.J.L.; Hawkes, A.; Infield, D.; Jardine, C.N.; et al. UK microgeneration. Part II: Technology overviews. Proc. Inst. Civ. Eng. Energy 2010, 163, 143–165. [Google Scholar] [CrossRef]
- Thrän, D. (Ed.) Smart Bioenergy: Technologies and Concepts for a More Flexible Bioenergy Provision in Future Energy Systems; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Alanne, K.; Jokisalo, J. Energy analysis of a novel domestic scale integrated wooden pellet-fueled micro-cogeneration concept. Energy Build. 2014, 80, 290–301. [Google Scholar] [CrossRef]
- Balcombe, P.; Rigby, D.; Azapagic, A. Energy self-sufficiency, grid demand variability and consumer costs: Integrating solar PV, Stirling engine CHP and battery storage. Appl. Energy 2015, 155, 393–408. [Google Scholar] [CrossRef]
- Rosato, A.; Sibilio, S.; Angrisani, G.; Canelli, M.; Roselli, C.; Sasso, M.; Tariello, F. The micro-cogeneration and emission control and related utilization field. In Energy Solutions to Combat Global Warming; Springer: Cham, Switzerland, 2017; Volume 33, pp. 795–834. [Google Scholar]
- Elmer, T.; Worall, M.; Wu, S.; Riffat, S.B. Fuel cell technology for domestic built environment applications: State of-the-art review. Renew. Sustain. Energy Rev. 2015, 42, 913–931. [Google Scholar] [CrossRef]
- Mazhar, A.R.; Khan, H.Z.; Khan, M.K.; Ahmed, A.; Yousaf, M.H. Development and Analysis of a Liquid Piston Stirling Engine. Eng. Proc. 2022, 23, 34. [Google Scholar] [CrossRef]
- Khadse, P.N.; Khadse, N.M. Design of off grid trigeneration system using renewable energy sources for residential purpose in India. In Proceedings of the 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), Chennai, India, 21–22 September 2017; pp. 1959–1965. [Google Scholar] [CrossRef]
- Gaun, A.; Schmautzer, E. Biomass-Fuelled Stirling Micro Combined Heat and Power Plants. In Proceedings of the 2007 International Conference on Clean Electrical Power, Capri, Italy, 21–23 May 2007; pp. 429–432. [Google Scholar] [CrossRef]
- Chen, W.-L.; Huang, C.-W.; Li, Y.-H.; Kao, C.-C.; Cong, H.T. Biosyngas-fueled platinum reactor applied in micro combined heat and power system with a thermophotovoltaic array and stirling engine. Energy 2020, 194, 116862. [Google Scholar] [CrossRef]
- Ma, D.G.; Jiang, X.B.; Zhang, X.; Ma, Y. Experimental Analysis of Micro-CHP Based on Biomass Direct-Fired Stirling Engine. Appl. Mech. Mater. 2012, 151, 36–40. [Google Scholar] [CrossRef]
- Kramens, J.; Vigants, E.; Liepins, I. Experimental study of factors influencing the efficiency of Stirling engine biomass microcogeneration unit. In Proceedings of the 2021 IEEE 62nd International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 15–17 November 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Stouffs, P. Hot air engines. J. Appl. Fluid Mech. 2011, 4, 1–8. [Google Scholar]
- Kallio, S.; Siroux, M. Hybrid renewable energy systems based on micro-cogeneration. Energy Rep. 2022, 8, 762–769. [Google Scholar] [CrossRef]
- Gliński, M.; Bojesen, C.; Rybiński, W.; Bykuć, S. Modelling of the Biomass mCHP Unit for Power Peak Shaving in the Local Electrical Grid. Energies 2019, 12, 458. [Google Scholar] [CrossRef]
- Badea, N.; Ion, I.V.; Cazacu, N.; Paraschiv, L.; Paraschiv, S.; Caraman, S. Renewable Energy Sources for the mCCHP-SE-RES Systems. In Design for Micro-Combined Cooling, Heating and Power Systems; Badea, N., Ed.; Green Energy and Technology; Springer: London, UK, 2015; pp. 91–131. [Google Scholar] [CrossRef]
- Kramens, J.; Vīgants, E.; Liepiņš, I.; Terjanika, V. Research of biomass micro-cogeneration system integration with a solar pv panels in zero-energy family building. ETR 2021, 1, 132–138. [Google Scholar] [CrossRef]
- Ferrari, M.L.; Pascenti, M.; Traverso, A.; Rivarolo, M. Smart Polygeneration Grid: A New Experimental Facility. In Volume 3: Cycle Innovations; Education; Electric Power; Fans and Blowers; Industrial and Cogeneration; American Society of Mechanical Engineers: Copenhagen, Denmark, 2012; pp. 119–131. [Google Scholar] [CrossRef]
- Scarpete, D.; Uzuneanu, K.; Badea, N. Stirling engine in residential systems based on renewable energy. In Proceedings of the 4th WSEAS International Conference on Energy Planning, Energy Saving, Environmental Education, EPESE’10, 4th WSEAS International Conference on Renewable Energy Sources, RES ’10, Sousse, Tunisia, 3 May 2010; pp. 124–129. [Google Scholar]
- Scarpete, D.; Uzuneanu, K. Stirling engines in generating heat and electricity for micro—CHP systems. In Proceedings of the 11th WSEAS International Conference on Robotics, Control and Manufacturing Technology, ROCOM’11, 11th WSEAS International Conference on Multimedia Systems and Signal Processing, MUSP’11, Venice, Italy, 8–10 March 2011; pp. 149–154. [Google Scholar]
- Ferreira, A.C.; Silva, J.; Teixeira, S.; Teixeira, J.C.; Nebra, S. Analysis of the different renewable energy sources in the performance of a Stirling engine. In Proceedings of the 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Wrocław, Poland, 23–28 June 2019; pp. 2369–2381. [Google Scholar]
- Kallio, S.; Siroux, M.; Voronca, S.-D. Energy and exergy analysis of biomass-fuelled micro-CHP unit. In Proceedings of the ECOS 2021—34th International Conference on Efficency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Taormina, Italy, 27 June–2 July 2021; pp. 86–97. [Google Scholar]
- Janowski, T.; Holuk, M. Renewable energy sources to supply home power plants; [Odnawialne źródła energii w elektrociepłowniach domowych]. Prz. Elektrotechniczny 2012, 88, 151–154. [Google Scholar]
- Voncila, I.; Badea, N.; Cazacu, N.; Paraschiv, I. Set of rules in order to develop control systems bases of domestic policies using renewable energy. In Proceedings of the 6th WSEAS International Conference on Dynamical Systems and Control, CONTROL ’10, Sousse, Tunisia, 3–6 May 2010; pp. 123–128. [Google Scholar]
- Gailfuß, M. Special biomass. Innovative technologies. Electricity generation from timber; [Special biomasse. Innovative technologien. Stromerzeugung aus holz]. BWK—Energ.-Fachmag. 2001, 53, 3–9. [Google Scholar]
- Paraschiv, S.; Paraschiv, L.S.; Serban, A. Increasing the energy efficiency of a building by thermal insulation to reduce the thermal load of the micro-combined cooling, heating and power system. Energy Rep. 2021, 7, 286–298. [Google Scholar] [CrossRef]
Research Question | Search Criteria | |
---|---|---|
Search String | Description | |
RQ1 | TITLE-ABS-KEY (“stirling engine”) AND PUBYEAR > 1959 AND PUBYEAR < 2024 AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “cp”) OR LIMIT-TO (DOCTYPE, “re”)) | All available time series data, limited to Article, Conference Paper, Review Time series until November 2023 |
RQ2 | (TITLE-ABS-KEY (“stirling engine”) AND TITLE-ABS-KEY (“residential” OR “household” OR “micro combined heat and power” OR “micro cogeneration” OR “micro-CHP” OR “micro-cogeneration” OR “micro-combined heat and power” OR “microcogeneration” OR “micro-generation”) AND TITLE-ABS-KEY (“biomass”)) AND PUBYEAR > 1959 AND PUBYEAR < 2024 AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “cp”) OR LIMIT-TO (DOCTYPE, “re”)) | Constraints applied in RQ1 plus keywords to select publications concerning household scale technologies and biomass-fueled technologies |
RQ3 | (TITLE-ABS-KEY (“stirling engine”) AND TITLE-ABS-KEY (“energy secur*” OR “energy independ*”)) AND PUBYEAR > 1959 AND PUBYEAR < 2024 AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “cp”) OR LIMIT-TO (DOCTYPE, “re”)) | Constraints applied in RQ1 plus keywords to select publications concerning energy security and energy independence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubule, A.; Kramens, J.; Bimbere, M.; Pedišius, N.; Blumberga, D. Trends for Stirling Engines in Households: A Systematic Literature Review. Energies 2024, 17, 383. https://doi.org/10.3390/en17020383
Kubule A, Kramens J, Bimbere M, Pedišius N, Blumberga D. Trends for Stirling Engines in Households: A Systematic Literature Review. Energies. 2024; 17(2):383. https://doi.org/10.3390/en17020383
Chicago/Turabian StyleKubule, Anna, Jānis Kramens, Madara Bimbere, Nerijus Pedišius, and Dagnija Blumberga. 2024. "Trends for Stirling Engines in Households: A Systematic Literature Review" Energies 17, no. 2: 383. https://doi.org/10.3390/en17020383
APA StyleKubule, A., Kramens, J., Bimbere, M., Pedišius, N., & Blumberga, D. (2024). Trends for Stirling Engines in Households: A Systematic Literature Review. Energies, 17(2), 383. https://doi.org/10.3390/en17020383