Evaluation of Nitrogen Oxide (NO) and Particulate Matter (PM) Emissions from Waste Biodiesel Combustion
Abstract
:1. Introduction
- Insoluble organic fraction (IOF), i.e., carbon in the form of soot and products of incomplete combustion of fuel additives and oil;
- Insoluble inorganic fraction (INSINOF), which consists of ash, sulfates, trace amounts of elements such as iron, phosphorus, calcium, chromium, etc., and mechanical impurities from the environment;
- Soluble organic fraction (SOF), i.e., organic substances absorbed on soot particles (mainly hydrocarbons formed from the incomplete combustion of fuel and oil);
- Soluble inorganic fraction (SINOF), resulting mainly from the presence of sulfur in the fuel, from which sulfuric acid is formed following combustion, and the presence of water vapor.
2. Materials and Methods
2.1. Characteristics of the Fuels Used
2.2. Engine Test Stand and Procedure
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the Fuels Used
3.2. Results of Emission Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gołębiowski, W.; Zając, G.; Sarkan, B. Evaluation of the Impact of Tractor Field Works on Changes in Selected Elements of Engine Oils. Agric. Eng. 2022, 26, 1–12. [Google Scholar] [CrossRef]
- Goel, S.; Sharma, R.; Rathore, A.K. A Review on Barrier and Challenges of Electric Vehicle in India and Vehicle to Grid Optimisation. Transp. Eng. 2021, 4, 100057. [Google Scholar] [CrossRef]
- Gulzari, A.; Wang, Y.; Prybutok, V. A Green Experience with Eco-Friendly Cars: A Young Consumer Electric Vehicle Rental Behavioral Model. J. Retail. Consum. Serv. 2022, 65, 102877. [Google Scholar] [CrossRef]
- Caban, J. The Investigation of Eco-Driving Possibilities in Passenger Car Used in Urban Traffic. Transp. Res. Procedia 2021, 55, 212–219. [Google Scholar] [CrossRef]
- Cao, W.; Wu, Y.; Chang, Y.; Liu, Z.; Lin, C.; Song, Q.; Szumanowski, A. Speed Synchronization Control for Integrated Automotive Motor-Transmission Powertrains Over CAN Through a Co-Design Methodology. IEEE Access 2018, 6, 14106–14117. [Google Scholar] [CrossRef]
- Merkisz-Guranowska, A.; Merkisz, J.; Kozak, M.; Jacyna, M. Development of a Sustainable Road Transport System. WIT Trans. Built Environ. 2013, 13, 507–517. [Google Scholar]
- Mrozik, M.; Merkisz-Guranowska, A. Environmental Assessment of the Vehicle Operation Process. Energies 2020, 14, 76. [Google Scholar] [CrossRef]
- Asgarian, F. Investigating the Impact of Government Policies to Develop Sustainable Transportation and Promote Electric Cars, Considering Fossil Fuel Subsidies Elimination: A Case of Norway. Appl. Energy 2023, 347, 121434. [Google Scholar] [CrossRef]
- Andrych-Zalewska, M.; Chlopek, Z.; Pielecha, J.; Merkisz, J. Influence of the In-Cylinder Catalyst on the Aftertreatment Efficiency of a Diesel Engine. Energies 2023, 16, 2826. [Google Scholar] [CrossRef]
- Golimowski, W.; Krzaczek, P.; Marcinkowski, D.; Gracz, W.; Wałowski, G. Impact of Biogas and Waste Fats Methyl Esters on NO, NO2, CO, and PM Emission by Dual Fuel Diesel Engine. Sustainability 2019, 11, 1799. [Google Scholar] [CrossRef]
- Pyszczek, R.; Hahn, J.; Priesching, P.; Teodorczyk, A. Numerical Modeling of Spark Ignition in Internal Combustion Engines. J. Energy Resour. Technol. 2020, 142, 022202. [Google Scholar] [CrossRef]
- Gudyka, S.; Grzybek, G.; Gryboś, J.; Indyka, P.; Leszczyński, B.; Kotarba, A.; Sojka, Z. Enhancing the deN2O Activity of the Supported Co3O4|α-Al2O3 Catalyst by Glycerol-Assisted Shape Engineering of the Active Phase at the Nanoscale. Appl. Catal. B Environ. 2017, 201, 339–347. [Google Scholar] [CrossRef]
- Kohse-Höinghaus, K. Combustion in the Future: The Importance of Chemistry. Proc. Combust. Inst. 2021, 38, 1–56. [Google Scholar] [CrossRef] [PubMed]
- Hunicz, J.; Krzaczek, P.; Gęca, M.; Rybak, A.; Mikulski, M. Comparative Study of Combustion and Emissions of Diesel Engine Fuelled with FAME and HVO. Combust. Engines 2021, 184, 72–78. [Google Scholar] [CrossRef]
- Lamb, W.F.; Wiedmann, T.; Pongratz, J.; Andrew, R.; Crippa, M.; Olivier, J.G.J.; Wiedenhofer, D.; Mattioli, G.; Khourdajie, A.A.; House, J.; et al. A Review of Trends and Drivers of Greenhouse Gas Emissions by Sector from 1990 to 2018. Environ. Res. Lett. 2021, 16, 073005. [Google Scholar] [CrossRef]
- Chłopek, Z.; Szczepański, T. Ocena zagrożenia środowiska cząstami stałymi ze źródeł cywilizacyjnych. Inż. Ekol. 2012, 30, 174–193. [Google Scholar]
- Badura, X. Profile of the chemical composition of particulate matter (PM) emissions by using fuel with bio-components. Nafta-Gaz 2014, LXX, 817–824. [Google Scholar]
- Mikulski, M.; Ambrosewicz-Walacik, M.; Hunicz, J.; Nitkiewicz, S. Combustion Engine Applications of Waste Tyre Pyrolytic Oil. Prog. Energy Combust. Sci. 2021, 85, 100915. [Google Scholar] [CrossRef]
- Dzikuć, M.; Adamczyk, J.; Piwowar, A. Problems Associated with the Emissions Limitations from Road Transport in the Lubuskie Province (Poland). Atmos. Environ. 2017, 160, 1–8. [Google Scholar] [CrossRef]
- Burchart-Korol, D.; Jursova, S.; Folęga, P.; Korol, J.; Pustejovska, P.; Blaut, A. Environmental Life Cycle Assessment of Electric Vehicles in Poland and the Czech Republic. J. Clean. Prod. 2018, 202, 476–487. [Google Scholar] [CrossRef]
- Psistaki, K.; Achilleos, S.; Middleton, N.; Paschalidou, A.K. Exploring the Impact of Particulate Matter on Mortality in Coastal Mediterranean Environments. Sci. Total Environ. 2023, 865, 161147. [Google Scholar] [CrossRef] [PubMed]
- Shin, C.; Lee, D.-K.; Oh, S.-H.; Choi, J.-H.; Hwang, K.-T.; Han, K.-S.; Kim, J.-H. Filtering Performance of Ceramic Filter with Mullite Whisker for Non-Exhaust Particulate Matter from Transportation. J. Mater. Res. Technol. 2023, 23, 165–171. [Google Scholar] [CrossRef]
- Rymaniak, Ł.; Lijewski, P.; Kamińska, M.; Fuć, P.; Kurc, B.; Siedlecki, M.; Kalociński, T.; Jagielski, A. The Role of Real Power Output from Farm Tractor Engines in Determining Their Environmental Performance in Actual Operating Conditions. Comput. Electron. Agric. 2020, 173, 105405. [Google Scholar] [CrossRef]
- Jackowska, I.; Krasucki, W.; Piekarski, W.; Tys, J.; Zając, G. Rzepak z Pola Do Baku; Państwowe Wydawnictwo Rolnicze i Leśne: Warszawa, Poland, 2004; ISBN 83-09-01781-2. [Google Scholar]
- Ganguly, P.; Sarkhel, R.; Das, P. The Second- and Third-Generation Biofuel Technologies: Comparative Perspectives. In Sustainable Fuel Technologies Handbook; Elsevier: Amsterdam, The Netherlands, 2021; pp. 29–50. ISBN 978-0-12-822989-7. [Google Scholar]
- Souza, G.M.; Ballester, M.V.R.; De Brito Cruz, C.H.; Chum, H.; Dale, B.; Dale, V.H.; Fernandes, E.C.M.; Foust, T.; Karp, A.; Lynd, L.; et al. The Role of Bioenergy in a Climate-Changing World. Environ. Dev. 2017, 23, 57–64. [Google Scholar] [CrossRef]
- Szmigielski, M.; Maniak, B.; Piekarski, W.; Zając, G. Effect of Fried Dishes Assortment on Chosen Properties of Used Plant Oils as Raw Materials for Production of Diesel Fuel Substitute. In Biofuel’s Engineering Process Technology; Dos Santos Bernardes, M.A., Ed.; IntechOpen: Rijeka, Croatia, 2011. [Google Scholar]
- Knothe, G.; Razon, L.F. Biodiesel Fuels. Prog. Energy Combust. Sci. 2017, 58, 36–59. [Google Scholar] [CrossRef]
- Ezzati, R.; Ranjbar, S.; Soltanabadi, A. Kinetics Models of Transesterification Reaction for Biodiesel Production: A Theoretical Analysis. Renew. Energy 2021, 168, 280–296. [Google Scholar] [CrossRef]
- Topare, N.S.; Patil, K.D. Biodiesel from Waste Cooking Soybean Oil under Ultrasonication as an Alternative Fuel for Diesel Engine. Mater. Today Proc. 2021, 43, 510–513. [Google Scholar] [CrossRef]
- Ji, W.; Zhang, K.; Zhan, K.; Wang, P.; Wang, X.; Yan, Y. Solar-Powered Environmentally Friendly Hydrogen Production: Advanced Technologies for Sunlight-Electricity-Hydrogen Nexus. Chin. J. Struct. Chem. 2022, 41, 2205015–2205029. [Google Scholar] [CrossRef]
- Boutesteijn, C.; Drabik, D.; Venus, T.J. The Interaction between EU Biofuel Policy and First- and Second-Generation Biodiesel Production. Ind. Crops Prod. 2017, 106, 124–129. [Google Scholar] [CrossRef]
- Nazloo, E.K.; Moheimani, N.R.; Ennaceri, H. Biodiesel Production from Wet Microalgae: Progress and Challenges. Algal Res. 2022, 68, 102902. [Google Scholar] [CrossRef]
- Adesanya, V.O.; Cadena, E.; Scott, S.A.; Smith, A.G. Life Cycle Assessment on Microalgal Biodiesel Production Using a Hybrid Cultivation System. Bioresour. Technol. 2014, 163, 343–355. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, B.; Korstad, J. Utilization of Lignocellulosic Biomass by Oleaginous Yeast and Bacteria for Production of Biodiesel and Renewable Diesel. Renew. Sustain. Energy Rev. 2017, 73, 654–671. [Google Scholar] [CrossRef]
- Gracz, W.; Marcinkowski, D.; Golimowski, W.; Szwajca, F.; Strzelczyk, M.; Wasilewski, J.; Krzaczek, P. Multifaceted Comparison Efficiency and Emission Characteristics of Multi-Fuel Power Generator Fueled by Different Fuels and Biofuels. Energies 2021, 14, 3388. [Google Scholar] [CrossRef]
- Mikulski, M.; Ambrosewicz-Walacik, M.; Duda, K.; Hunicz, J. Performance and Emission Characterization of a Common-Rail Compression-Ignition Engine Fuelled with Ternary Mixtures of Rapeseed Oil, Pyrolytic Oil and Diesel. Renew. Energy 2020, 148, 739–755. [Google Scholar] [CrossRef]
- Mikulski, M.; Duda, K.; Wierzbicki, S. Performance and Emissions of a CRDI Diesel Engine Fuelled with Swine Lard Methyl Esters–Diesel Mixture. Fuel 2016, 164, 206–219. [Google Scholar] [CrossRef]
- Koniuszy, A.; Kostencki, P.; Berger, A.; Golimowski, W. Power Performance of Farm Tractor in FIeld Operations. Eksploat. Niezawodn.—Maint. Reliab. 2016, 19, 43–47. [Google Scholar] [CrossRef]
- Rymaniak, Ł.; Merkisz, J.; Szymlet, N.; Kamińska, M.; Weymann, S. Use of Emission Indicators Related to CO2 Emissions in the Ecological Assessment of an Agricultural Tractor. Eksploat. Niezawodn.—Maint. Reliab. 2021, 23, 605–611. [Google Scholar] [CrossRef]
- Krzaczek, P.; Rybak, A.; Bochniak, A. The Impact of Selected Biofuels on the Performance Parameters of the Common Rail Power System in the Utility Engine. MATEC Web Conf. 2018, 234, 03004. [Google Scholar] [CrossRef]
- Dzieniszewski, G.; Kuboń, M.; Pristavka, M.; Findura, P. Operating Parameters and Environmental Indicators of Diesel Engines Fed with Crop-Based Fuels. Agric. Eng. 2021, 25, 13–28. [Google Scholar] [CrossRef]
- National Biodiesel Board. Biodiesel Emissions and Health Effects Testing. In Bioenergy; Elsevier: Amsterdam, The Netherlands, 2020; pp. 745–748. ISBN 978-0-12-815497-7. [Google Scholar] [CrossRef]
- Gongping, M.; Zhong, W.; Peng, H.; Peiyong, N.; Xiaozhe, W.; Shi-qiang, G. Experimental Research on the Flame Temperature of Biodiesel Fuel Combustion in Open-Air Conditions. In Proceedings of the 2011 International Conference on Electric Information and Control Engineering, Wuhan, China, 15–17 April 2011; pp. 2171–2174. [Google Scholar] [CrossRef]
- Mirhashemi, F.S.; Sadrnia, H. NOX Emissions of Compression Ignition Engines Fueled with Various Biodiesel Blends: A Review. J. Energy Inst. 2020, 93, 129–151. [Google Scholar] [CrossRef]
- Ashok, B.; Nanthagopal, K.; Chyuan, O.H.; Le, P.T.K.; Khanolkar, K.; Raje, N.; Raj, A.; Karthickeyan, V.; Tamilvanan, A. Multi-Functional Fuel Additive as a Combustion Catalyst for Diesel and Biodiesel in CI Engine Characteristics. Fuel 2020, 278, 118250. [Google Scholar] [CrossRef]
- EL-Seesy, A.I.; Xuan, T.; He, Z.; Hassan, H. Enhancement the Combustion Aspects of a CI Engine Working with Jatropha Biodiesel/Decanol/Propanol Ternary Combinations. Energy Convers. Manag. 2020, 226, 113524. [Google Scholar] [CrossRef]
- Ogunkunle, O.; Ahmed, N.A. Overview of Biodiesel Combustion in Mitigating the Adverse Impacts of Engine Emissions on the Sustainable Human–Environment Scenario. Sustainability 2021, 13, 5465. [Google Scholar] [CrossRef]
- Demirbas, A. Biofuels Securing the Planet’s Future Energy Needs. Energy Convers. Manag. 2009, 50, 2239–2249. [Google Scholar] [CrossRef]
- Maia, E.C.R.; Borsato, D.; Moreira, I.; Spacino, K.R.; Rodrigues, P.R.P.; Gallina, A.L. Study of the Biodiesel B100 Oxidative Stability in Mixture with Antioxidants. Fuel Process. Technol. 2011, 92, 1750–1755. [Google Scholar] [CrossRef]
- Wasilewski, J.; Szyszlak-Bargłowicz, J.; Zając, G.; Szczepanik, M. Assessment of CO2 Emission by Tractor Engine at Varied Control Settings of Fuel Unit. Agric. Eng. 2020, 24, 105–115. [Google Scholar] [CrossRef]
- Kousoulidou, M.; Fontaras, G.; Ntziachristos, L.; Samaras, Z. Biodiesel Blend Effects on Common-Rail Diesel Combustion and Emissions. Fuel 2010, 89, 3442–3449. [Google Scholar] [CrossRef]
- Arshad, M. (Ed.) Perspectives on Water Usage for Biofuels Production; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-66407-1. [Google Scholar]
- Agarwal, A.K.; Gupta, J.G.; Dhar, A. Potential and Challenges for Large-Scale Application of Biodiesel in Automotive Sector. Prog. Energy Combust. Sci. 2017, 61, 113–149. [Google Scholar] [CrossRef]
- Mohd Noor, C.W.; Noor, M.M.; Mamat, R. Biodiesel as Alternative Fuel for Marine Diesel Engine Applications: A Review. Renew. Sustain. Energy Rev. 2018, 94, 127–142. [Google Scholar] [CrossRef]
Parameter | Method | Apparatus |
---|---|---|
Cetane number | according to ASTM D 613 | Eralitic ERASPEC |
Density at 15 °C | ASTM D 4052 | Eralitic ERASPEC |
Viscosity at 40 °C | ISO 3104 | Rehotek |
FAME content | according to EN 14078 | Eralitic ERASPEC |
Flash point | according to ASTM D 93 | Eralitic ERAFlash |
Carbon | - | Leco CHN 628 |
Hydrogen | - | Leco CHN 628 |
Nitrogen | - | Leco CHN 628 |
HHV | ISO 1928 | Leco AC 600 |
LHV | ISO 1928 | Leco AC 600 |
Parameter | Unit | UCOME | RME | DF |
---|---|---|---|---|
Cetane number | - | 58 | 56 | 53 |
Density at 15 °C | kg·m−3 | 869 | 880 | 826 |
Viscosity at 40 °C | mm2·s−1 | 4.2 | 4.64 | 2.84 |
FAME content | % w/w | 98.1 | 98.4 | 6.8 |
Flash point | °C | 125 | 130 | 69 |
Carbon | % | 77.96 | 78.36 | 86.13 |
Hydrogen | % | 11.19 | 11.19 | 13.78 |
Nitrogen | % | 0.153 | 0.137 | 0.094 |
Oxygen | % | 10.69 | 10.58 | 0 |
HHV | kJ·kg−1 | 38,167 | 37,684 | 43,771 |
LHV | kJ·kg−1 | 39,347 | 38,864 | 44,951 |
Type of Characteristics | Component of Exhaust | Factor | Degree of Freedom df | Totals of Squares SS | Mean Squares MS | Test Function Value F | Calculated Significance Level p |
---|---|---|---|---|---|---|---|
External | NO | UCOME-DF | 1 | 259.2 | 259.2 | 0.021657 | 0.884639 |
RME-DF | 1 | 186.05 | 186.05 | 0.014822 | 0.904448 | ||
UCOME-RME | 1 | 6.05 | 6.05 | 0.000581 | 0.981037 | ||
PM | UCOME-DF | 1 | 91.592 | 91.592 | 15.14326 | 0.00107 | |
RME-DF | 1 | 121.4752 | 121.4752 | 20.4497 | 0.000264 | ||
UCOME-RME | 1 | 2.106005 | 2.106005 | 2.160881 | 0.158827 | ||
Load | NO | UCOME-DF | 1 | 163.3333 | 163.3333 | 0.029583 | 0.864677 |
RME-DF | 1 | 177.6333 | 177.6333 | 0.030021 | 0.863689 | ||
UCOME-RME | 1 | 0.3 | 0.3 | 5.46 × 10−5 | 0.994155 | ||
PM | UCOME-DF | 1 | 405.132 | 405.132 | 58.79883 | 2.36 × 10−8 | |
RME-DF | 1 | 493.0069 | 493.0069 | 74.71166 | 2.17 × 10−9 | ||
UCOME-RME | 1 | 4.30923 | 4.30923 | 2.807941 | 0.104932 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wasilewski, J.; Krzaczek, P.; Szyszlak-Bargłowicz, J.; Zając, G.; Koniuszy, A.; Hawrot-Paw, M.; Marcinkowska, W. Evaluation of Nitrogen Oxide (NO) and Particulate Matter (PM) Emissions from Waste Biodiesel Combustion. Energies 2024, 17, 328. https://doi.org/10.3390/en17020328
Wasilewski J, Krzaczek P, Szyszlak-Bargłowicz J, Zając G, Koniuszy A, Hawrot-Paw M, Marcinkowska W. Evaluation of Nitrogen Oxide (NO) and Particulate Matter (PM) Emissions from Waste Biodiesel Combustion. Energies. 2024; 17(2):328. https://doi.org/10.3390/en17020328
Chicago/Turabian StyleWasilewski, Jacek, Paweł Krzaczek, Joanna Szyszlak-Bargłowicz, Grzegorz Zając, Adam Koniuszy, Małgorzata Hawrot-Paw, and Weronika Marcinkowska. 2024. "Evaluation of Nitrogen Oxide (NO) and Particulate Matter (PM) Emissions from Waste Biodiesel Combustion" Energies 17, no. 2: 328. https://doi.org/10.3390/en17020328
APA StyleWasilewski, J., Krzaczek, P., Szyszlak-Bargłowicz, J., Zając, G., Koniuszy, A., Hawrot-Paw, M., & Marcinkowska, W. (2024). Evaluation of Nitrogen Oxide (NO) and Particulate Matter (PM) Emissions from Waste Biodiesel Combustion. Energies, 17(2), 328. https://doi.org/10.3390/en17020328