Assessing the Sustainability of Agricultural Bioenergy Potential in the European Union
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
- Biomass imports and exports (thousand tons);
- Materials processed, including biomass and other resources (thousand tons);
- Biomass storage (thousand tons);
- Greenhouse gas emissions associated with biomass (thousand tons);
- Biomass use efficiency (%).
- Descriptive statistical analysis: means, medians and standard deviations were calculated for each indicator to better understand general trends over the period analyzed;
- Temporal analysis: the evolution of each indicator was assessed on an annual basis to identify periods of increase, decrease or stabilization and to correlate these trends with relevant economic and political events;
- Annual analysis: annual increases and decreases were analyzed to highlight year-to-year fluctuations, thus allowing for the impact of EU policies and market conditions on material flows and emissions to be interpreted;
- Correlation of data: the correlation between different indicators (e.g., between imports and associated emissions, or between processed biomass and material accumulation) was used to understand the interdependencies and side-effects of bioenergy and recycling on the environment and the EU economy.
4. Results
4.1. Managing Material Flows and Emissions in the European Union: The Impact of Bioenergy and Recycling 2012–2021
4.2. Assessing the Potential of Agricultural Bioenergy in the European Union
4.3. Analysis of Self-Sufficiency and Import Dependence in the Biomass Economy: Stability and Adaptability 2012–2021
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ali, S.; Akter, S.; Ymeri, P.; Fogarassy, C. How the Use of Biomass for Green Energy and Waste Incineration Practice Will Affect GDP Growth in the Less Developed Countries of the EU (A Case Study with Visegrad and Balkan Countries). Energies 2022, 15, 2308. [Google Scholar] [CrossRef]
- European Commission. Cap Context Indicators 2014–2020; Agriculture and Rural Development, European Commission: Brussels, Belgium, 2017; pp. 190–191. [Google Scholar]
- European Commission. The European Green Deal; COM (2019) 640 Final; European Commission: Brussels, Belgium, 2019; Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=CELEX%3A52019DC0640 (accessed on 15 May 2024).
- OECD. Global Material Resources Outlook to 2060; OECD: Paris, France, 2018; Available online: https://www.oecd.org/environment/waste/highlights-global-material-resources-outlook-to-2060.pdf (accessed on 22 April 2024).
- Alatzas, S.; Moustakas, K.; Malamis, D.; Vakalis, S. Biomass potential from agricultural waste for energetic utilization in Greece. Energies 2019, 12, 1095. [Google Scholar] [CrossRef]
- Daioglou, V.; Doelman, J.C.; Wicke, B.; Faaij, A.; van Vuuren, D.P. Integrated assessment of biomass supply and demand in climate change mitigation scenarios. Glob. Environ. Change 2019, 54, 88–101. [Google Scholar] [CrossRef]
- European Commision. A New Circural Economy Action Plan for a Cleaner and More Competitive Europe; COM (2020) 98 Final; European Commission: Brussels, Belgium, 2020; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2020%3A98%3AFIN (accessed on 4 June 2024).
- European Commission. New EU Forest Strategy for 2030; COM (2021) 572 Final; European Commission: Brussels, Belgium, 2021; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52021DC0572&from=EN (accessed on 22 April 2024).
- Europian Commision. EU Biodiversity Strategy for 2030; COM (2020) 380 Final; European Commission: Brussels, Belgium, 2020; Available online: https://www.eumonitor.eu/9353000/1/j4nvhdfcs8bljza_j9vvik7m1c3gyxp/vl8tqb8jwtyy (accessed on 22 April 2024).
- Scarlat, N.; Dallemand, J.; Taylor, N.; Banja, M. Brief on Biomass for Energy in the European Union; The European Commission’s Knowledge Centre for Bioeconomy, European Union: Luxembourg, 2019; Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC109354 (accessed on 15 May 2024).
- Banja, M.; Sikkema, R.; Jégard, M.; Motola, V.; Dallemand, J.-F. Biomass for energy in the EU—The support framework. Energy Policy 2019, 131, 215–228. [Google Scholar] [CrossRef]
- Tripathi, N.; Hills, C.D.; Singh, R.S.; Atkinson, C.J. Biomass waste utilisation in low-carbon products: Harnessing a major potential resource. Clim. Atmos. Sci. 2019, 2, 35. [Google Scholar] [CrossRef]
- Vaish, S.; Kaur, G.; Sharma, N.K.; Gakkhar, N. Estimation for Potential of Agricultural Biomass Sources as Projections of Bio-Briquettes in Indian Context. Sustainability 2022, 14, 5077. [Google Scholar] [CrossRef]
- Hamelin, L.; Borzęcka, M.; Kozak, M.; Pudełko, R. A spatial approach to bioeconomy: Quantifying the residual biomass potential in the EU-27. Renew. Sustain. Energy Rev. 2019, 100, 127–142. [Google Scholar] [CrossRef]
- Sikkema, R.; Proskurina, S.; Banja, M.; Vakkilainen, E. How can solid biomass contribute to the EU’s renewable energy targets in 2020, 2030 and what are the GHG drivers and safeguards in energy- and forestry sectors? Renew. Energy 2021, 165 Pt 1, 758–772. [Google Scholar] [CrossRef]
- Kuznetsov, G.V.; Syrodoy, S.V.; Kostoreva, Z.A.; Kostoreva, A.A.; Purin, M.V.; Nigay, N.A.; Zamaltdinov, R.R. Features of the Mechanism of Gas-phase Ignition of Wood Biomass Particles. Combust. Sci. Technol. 2024, 1–28. [Google Scholar] [CrossRef]
- Janiszewska, D.; Ossowska, L. The Role of Agricultural Biomass as a Renewable Energy Source in European Union Countries. Energies 2022, 15, 6756. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Bentley, Y.; Geng, X.; Liu, X. Sustainability Assessment of Bioenergy from a Global Perspective: A Review. Sustainability 2018, 10, 2739. [Google Scholar] [CrossRef]
- Firoiu, D.; Ionescu, G.H.; Cojocaru, T.M.; Niculescu, M.; Cimpoeru, M.N.; Călin, O.A. Progress of EU Member States Regarding the Bioeconomy and Biomass Producing and Converting Sectors. Sustainability 2023, 15, 14128. [Google Scholar] [CrossRef]
- Ramanauske, N.; Balezentis, T.; Streimikiene, D. Assessing the efficiency of biomass and non-biomass resource use in the EU bioeconomy. Technol. Forecast. Soc. Change 2023, 198, 121342. [Google Scholar]
- Tolessa, A.; Bélières, J.F.; Salgado, P.; Raharimalala, S.; Louw, T.M.; Goosen, N.J. Assessment of Agricultural Biomass Residues for Anaerobic Digestion in Rural Vakinankaratra Region of Madagascar. Bioenerg. Res. 2022, 15, 1251–1264. [Google Scholar] [CrossRef]
- Shahbaz, M.; Balsalobre-Lorente, D.; Sihna, A. Foreign direct Investment–CO2 emissions nexus in Middle East and North African countries: Importance of biomass energy consumption. J. Clean. Prod. 2019, 20, 603–614. [Google Scholar] [CrossRef]
- Knapek, J.; Kralík, K.; Vavrov, K.; Weger, J. Dynamic biomass potential from agricultural land. Renew. Sustain. Energy Rev. 2020, 134, 110319. [Google Scholar] [CrossRef]
- Saeed, M.A.; Niedzwiecki, L.; Arshad, M.Y.; Skrinsky, J.; Andrews, G.E.; Phylaktou, H.N. Combustion and Explosion Characteristics of Pulverised Wood, Valorized with Mild Pyrolysis in Pilot Scale Installation, Using the Modified ISO 1 m3 Dust Explosion Vessel. Appl. Sci. 2022, 12, 12928. [Google Scholar] [CrossRef]
- Santamaría-Herrera, A.; Hoyuelos, F.J.; Casado-Marcos, C. Characterization of the Explosiveness of Wood Dust. Process Saf. Environ. Prot. 2023, 169, 252–259. [Google Scholar] [CrossRef]
- Danzi, E.; Portarapillo, M.; Di Benedetto, A.; Sanchirico, R.; Marmo, L. Ageing Effect on Ignition Sensitivity of Lignocellulosic Dust. J. Loss Prev. Process Ind. 2023, 85, 105157. [Google Scholar] [CrossRef]
- de Wit, M.; Faaij, A. European Biomass Resource Potential and Costs. Biomass Bioenergy 2010, 34, 188–202. [Google Scholar] [CrossRef]
- Janiszewska, D.; Ossowska, L. Biomass as the Most Popular Renewable Energy Source in EU. Eur. Res. Stud. J. 2020, 23, 315–326. [Google Scholar] [CrossRef]
- Jekayinfa, S.O.; Orisaleye, J.I.; Pecenka, R. An Assessment of Potential Resources for Biomass Energy in Nigeria. Resources 2020, 9, 92. [Google Scholar] [CrossRef]
- Dees, M.; Datta, P.; Höhl, M.; Fitzgerald, J.; Verkerk, H.; Zudin, S.; Lindner, M.; Forsell, N.; Leduc, S.; Elbersen, B.; et al. Atlas with Regional Cost Supply Biomass Potentials for EU-28, Western Balkan Countries, Moldova, Turkey and Ukraine: Project Report–D1.8; S2BIOM Grant Agreement n608622; European Commision: Brussels, Belgium, 2017. [Google Scholar]
- Stathatou, P.M.; Corbin, L.; Meredith, J.C.; Garmulewicz, A. Biomaterials and Regenerative Agriculture: A Methodological Framework to Enable Circular Transitions. Sustainability 2023, 15, 14306. [Google Scholar] [CrossRef]
- Izydorczyk, G.; Skrzypczak, D.; Mironiuk, M.; Mikula, K.; Samoraj, M.; Gil, F.; Taf, R.; Moustakas, K.; Chojnacka, K. Lignocellulosic biomass fertilizers: Production, characterization, and agri-applications. Sci. Total Environ. 2024, 923, 171343. [Google Scholar] [CrossRef]
- Brosowski, A.; Thrän, D.; Mantau, U.; Mahro, B.; Erdmann, G.; Adler, P.; Stinner, W.; Reinhold, G.; Hering, T.; Blanke, C. A review of biomass potential and current utilization—Status quo for 93 biogenic wastes and residues in Germany. Biomass Bioenergy 2016, 95, 257–272. [Google Scholar] [CrossRef]
- Antar, M.; Lyu, D.; Nazari, M.; Shah, A.; Zhou, X.; Smith, D.L. Biomass for a Sustainable Bioeconomy: An Overview of World Biomass Production and Utilization. Renew. Sustain. Energy Rev. 2021, 139, 110691. [Google Scholar] [CrossRef]
- Karras, T.; Brosowski, A.; Thrän, D. A Review on Supply Costs and Prices of Residual Biomass in Techno-Economic Models for Europe. Sustainability 2022, 14, 7473. [Google Scholar] [CrossRef]
- Vlad, I.M.; Toma, E. The Assessment of the Bioeconomy and Biomass Sectors in Central and Eastern European Countries. Agronomy 2022, 12, 880. [Google Scholar] [CrossRef]
- Wieruszewski, M.; Mydlarz, K. The Potential of the Bioenergy Market in the European Union—An Overview of Energy Biomass Resources. Energies 2022, 15, 9601. [Google Scholar] [CrossRef]
- Duca, D.; Toscano, G. Biomass Energy Resources: Feedstock Quality and Bioenergy Sustainability. Resources 2022, 11, 57. [Google Scholar] [CrossRef]
- Saleem, M. Possibility of Utilizing Agriculture Biomass as a Renewable and Sustainable Future Energy Source. Heliyon 2022, 8, e08905. [Google Scholar] [CrossRef]
- Raport: Bioenergy Landscape. Brussels 2019. Available online: https://www.ieabioenergy.com/wp-content/uploads/2020/05/IEA-Bioenergy-Annual-Report-2019.pdf (accessed on 4 July 2024).
- Panoutsou, C.; Maniatis, K. Sustainable Biomass Availability in the EU to 2050; Imperial College: London, UK, 2021; Available online: https://www.concawe.eu/publication/sustainable-biomass-availability-in-the-eu-to-2050/ (accessed on 22 April 2024).
- Eurostat Database. Available online: https://ec.europa.eu/eurostat/databrowser/view/env_ac_rme/default/table?lang=en (accessed on 14 June 2024).
- European Environment Agency (EEA). Available online: https://www.eea.europa.eu/en/analysis/indicators (accessed on 1 June 2024).
- Janiszewska, D.; Ossowska, L. Diversification of European Union Member States due to the production of renewable energy from agriculture and forestry. Probl. World Agric. 2018, 18, 95–104. [Google Scholar] [CrossRef]
- Tenchea, A.I.; Tokar, D.M.; Foris, D. The use of biomass as a renewable energy source in a fluidized bed combustion plant. Bull. Transilv. Univ. Braşov Ser. II For. Wood Ind. Agric. Food Eng. 2019, 12, 117–126. [Google Scholar] [CrossRef]
- Verkerk, P.J.; Fitzgerald, J.B.; Datta, P.; Dees, M.; Hengeveld, G.M.; Lindner, M.; Zudin, S. Spatial distribution of the potential forest biomass availability in Europe. For. Ecosyst. 2019, 6, 5. [Google Scholar] [CrossRef]
- Kluts, I.; Wicke, B.; Leemans, R.; Faaij, A. Sustainability constraints in determining European bioenergy potential: A review of existing studies and steps forward. Renew. Sustain. Energy Rev. 2017, 69, 719–734. [Google Scholar] [CrossRef]
- Odavic´, P.; Milic´, D.; Zekic´, V.; Tica, N. Potential of agricultural biomass: Comparative review of selected EU regions and region of Vojvodina. Contemp. Agric. 2017, 66, 62–67. [Google Scholar] [CrossRef]
- Demirel, B.; Gurdil, G.A.K.; Gadalla, O. Biomass energy potential from agricultural production in Sudan. ETHABD 2019, 2, 35–38. [Google Scholar]
- Mohammed, Y.S.; Mokhtar, A.S.; Bashi, N.; Saidur, C.R. An overview of agricultural biomass for decentralized rural energy in Ghana. Renew. Sustain. Energy Rev. 2013, 20, 15–22. [Google Scholar] [CrossRef]
- Ramanauske, N.; Balezentis, T.; Streimikiene, D. Biomass use and its implications for bioeconomy development: A resource efficiency perspective for the European countries. Technol. Forecast. Soc. Change 2023, 193, 122628. [Google Scholar] [CrossRef]
- Scarlat, N.; Fahl, F.; Lugato, E.; Monforti-Ferrario, F.; Dallemand, J.F. Integrated and spatially explicit assessment of sustainable crop residues potential in Europe. Biomass Bioenergy 2019, 122, 257–269. [Google Scholar] [CrossRef]
- Spinelli, R.; Pari, L.; Magagnotti, N. New biomass products, small-scale plants and vertical integration as opportunities for rural development. Biomass Bioenergy 2018, 115, 244–252. [Google Scholar] [CrossRef]
- Cintas, O.; Berndes, G.; Englund, O.; Cutz, L.; Johnsson, F. Geospatial supply–demand modeling of biomass residues for co-firing in European coal power plants. GCB Bioenergy 2018, 10, 786–803. [Google Scholar] [CrossRef]
- Stürmer, B. Feedstock change at biogas plants—Impact on production costs. Biomass Bioenergy 2017, 98, 228–235. [Google Scholar] [CrossRef]
- Kircher, M.; Aranda, E.; Athanasios, P.; Radojcic-Rednovnikov, I.; Romantschuk, M.; Ryberg, M.; Schock, G.; Shilev, S.; Stanescu, M.D.; Stankeviciute, J.; et al. Treatment and valorization of bio-waste in the EU. EFB Bioeconomy J. 2023, 3, 100051. [Google Scholar] [CrossRef]
- López-Rodríguez, F.; García Sanz-Calcedo, J.; Moral-García, F.J. Spatial Analysis of Residual Biomass and Location of Future Storage Centers in the Southwest of Europe. Energies 2019, 12, 1978. [Google Scholar] [CrossRef]
- Croxatto Vega, G.; Voogt, J.; Sohn, J.; Birkved, M.; Olsen, S.I. Assessing New Biotechnologies by Combining TEA and TM-LCA for an Efficient Use of Biomass Resources. Sustainability 2020, 12, 3676. [Google Scholar] [CrossRef]
- Boitier, B.; Nikas, A.; Gambhir, A.; Koasidis, K.; Elia, A.; Al-Dabbas, K.; Alibaş, Ş.; Campagnolo, L.; Chiodi, A.; Delpiazzo, E.; et al. A multi-model analysis of the EU’s path to net zero. Joule 2023, 7, 2760–2782. [Google Scholar] [CrossRef]
- Colesca, S.E.; Ciocoiu, C.N. An overview of the Romanian renewable energy sector. Renew. Sustain. Energy Rev. 2013, 24, 149–158. [Google Scholar] [CrossRef]
- Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Plaza-Úbeda, J.A.; Camacho-Ferre, F. The Management of Agricultural Waste Biomass in the Framework of Circular Economy and Bioeconomy: An Opportunity for Greenhouse Agriculture in Southeast Spain. Agronomy 2020, 10, 489. [Google Scholar] [CrossRef]
- Ferronato, N.; Rada, E.C.; Portillo, M.A.G.; Cioca, L.I.; Ragazzi, M.; Torretta, V. Introduction of the circular economy within developing regions: A comparative analysis of advantages and opportunities for waste valorization. J. Environ. Manag. 2019, 230, 366–378. [Google Scholar] [CrossRef]
- Muscat, A.; De Olde, E.; Boer, I.J.M.; Ripoll-Bosch, R. The battle for biomass: A systematic review of food-feed-fuel competition. Glob. Food Secur. 2019, 25, 100330. [Google Scholar] [CrossRef]
- Ronzon, T.; Piotrowski, S.; Carus, M. DataM, Biomass Estimates (v3): A New Database to Quantify Biomass Availability in the European Union; Joint Research Centre, Institute for Prospective Technological Studies: Seville, Spain, 2015; Available online: https://op.europa.eu/en/publication-detail/-/publication/ce366cbc-737e-4b7a-ac9b-a10490510c0a/language-en (accessed on 22 January 2021).
- Tippayawong, K.Y.; Chaidi, N.; Ngamlertsappakit, T.; Tippayawong, N. Demand and cost analysis of agricultural residues utilized as biorenewable fuels for power generation. Energy Rep. 2020, 6 (Suppl. S9), 1298–1302. [Google Scholar] [CrossRef]
- Flak, J. Technologies for Sustainable Biomass Supply—Overview of Market Offering. Agronomy 2020, 10, 798. [Google Scholar] [CrossRef]
- Liobikiene, G.; Chen, X.; Streimikiene, D.; Balezentis, T. The trends in bioeconomy development in the European Union: Exploiting capacity and productivity measures based on the land footprint approach. Land Use Policy 2020, 91, 104375. [Google Scholar] [CrossRef]
- Perea-Moreno, M.A.; Samerón-Manzano, E.; Perea-Moreno, A.J. Biomass as renewable energy: Worldwide research trends. Sustainability 2019, 11, 863. [Google Scholar] [CrossRef]
- Rodino, S.; Butu, A.; Dragomir, V.; Butu, M. An Analysis Regarding the Biomass Production Sector in Romania—A Bioeconomy Point of View. In Management, Economic Engineering in Agriculture and Rural Development; Scientific Papers Series; University of Agricultural Sciences and Veterinary Medicine: Bucharest, Romania, 2019; Volume 19, pp. 497–502. Available online: https://managementjournal.usamv.ro/pdf/vol.19_1/Art62.pdf (accessed on 10 June 2024)ISSN 2284-7995.
- De Carlo, A.; Tarraf, W.; Lambardi, M.; Benelli, C. Temporary Immersion System for Production of Biomass and Bioactive Compounds from Medicinal Plants. Agronomy 2021, 11, 2414. [Google Scholar] [CrossRef]
- Moll, L.; Höller, M.; Hubert, C.; Korte, C.A.C.; Völkering, G.; Wever, C.; Pude, R. Cup Plant (Silphium perfoliatum L.) Biomass as Substitute for Expanded Polystyrene in Bonded Leveling Compounds. Agronomy 2022, 12, 178. [Google Scholar] [CrossRef]
- Wever, C.; Tassel, D.L.V.; Pude, R. Third-Generation Biomass Crops in the New Era of De Novo Domestication. Agronomy 2020, 10, 1322. [Google Scholar] [CrossRef]
- Balan, E.M.; Cismas, L.M.; Zeldea, C.G. Agricultural Biomass Production: Implications for Economic Growth and Environment in Central and Eastern European Countries. In Contemporary Issues in Social Science; Emerald Publishing Limited: Bingley, UK, 2021; Volume 106, pp. 263–279. [Google Scholar] [CrossRef]
- Popp, J.; Kovács, S.; Oláh, J.; Divéki, Z.; Balázs, E. Bioeconomy: Biomass and biomass-based energy supply and demand. NewBiotechnol. 2021, 60, 76–84. [Google Scholar] [CrossRef]
- Ivanova, B.; Shishkova, M.; Beluhova-Uzunova, R. Agricultural Biomass Potential in Bulgaria. In Management, Economic Engineering in Agriculture and Rural Development; Scientific Papers Series; University of Agricultural Sciences and Veterinary Medicine: Bucharest, Romania, 2020; Volume 20, pp. 273–280. ISSN 2284-7995. Available online: https://managementjournal.usamv.ro/pdf/vol.20_2/Art36.pdf (accessed on 24 May 2024).
- Chmieliński, P.; Wrzaszcz, W.; Zieliński, M.; Wigier, M. Intensity and Biodiversity: The ‘Green’ Potential of Agriculture and Rural Territories in Poland in the Context of Sustainable Development. Energies 2022, 15, 2388. [Google Scholar] [CrossRef]
Period | Biomass Trade Balance (Thousand Tons) | Share of Imports in Raw Material Consumption (%) | Share of Exports in Domestic Extraction (%) | Gross Inland Consumption (Thousand Tons) | Import Dependence (%) | Degree of Self-Sufficiency (%) |
---|---|---|---|---|---|---|
2012 | 53,614.89 | 18.04 | 21.12 | 1,071,558.71 | 14.79 | 103.91 |
2013 | 74,176.91 | 18.06 | 22.18 | 1,074,962.40 | 14.64 | 105.29 |
2014 | 67,465.11 | 17.58 | 21.12 | 1,172,868.09 | 14.41 | 104.48 |
2015 | 85,911.74 | 18.18 | 22.98 | 1,042,105.56 | 14.61 | 106.23 |
2016 | 71,253.54 | 18.22 | 22.16 | 1,081,928.50 | 14.78 | 105.05 |
2017 | 68,254.76 | 18.22 | 21.86 | 1,131,627.48 | 14.83 | 104.65 |
2018 | 39,931.79 | 19.04 | 21.25 | 1,113,982.00 | 15.63 | 102.80 |
2019 | 59,613.09 | 19.38 | 22.58 | 1,103,994.22 | 15.69 | 104.13 |
2020 | 82,660.45 | 18.11 | 22.60 | 1,084,172.77 | 14.62 | 105.80 |
2021 | 85,256.00 | 18.49 | 22.96 | 1,111,510.83 | 14.87 | 105.81 |
Indicators | Average (2012–2021) | Median | Standard Deviation |
---|---|---|---|
Biomass trade balance (thousand tons) | 71,813.83 | 69,754.15 | 15,840.63 |
Share of imports in raw material consumption (%) | 18.23 | 18.20 | 0.46 |
Share of exports from domestic extraction (%) | 21.96 | 22.17 | 0.69 |
Gross inland consumption (thousand tons) | 1,098,971.86 | 1,094,083.50 | 34,649.52 |
Import dependence (%) | 14.89 | 14.78 | 0.41 |
Degree of self-sufficiency (%) | 104.82 | 104.85 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ignat, G.; Șargu, L.; Prigoreanu, I.; Șargu, N.; Ulinici, A.; Bordeianu, G.D. Assessing the Sustainability of Agricultural Bioenergy Potential in the European Union. Energies 2024, 17, 4879. https://doi.org/10.3390/en17194879
Ignat G, Șargu L, Prigoreanu I, Șargu N, Ulinici A, Bordeianu GD. Assessing the Sustainability of Agricultural Bioenergy Potential in the European Union. Energies. 2024; 17(19):4879. https://doi.org/10.3390/en17194879
Chicago/Turabian StyleIgnat, Gabriela, Lilia Șargu, Ioan Prigoreanu, Nicu Șargu, Andrian Ulinici, and Gabriela Daniela Bordeianu. 2024. "Assessing the Sustainability of Agricultural Bioenergy Potential in the European Union" Energies 17, no. 19: 4879. https://doi.org/10.3390/en17194879
APA StyleIgnat, G., Șargu, L., Prigoreanu, I., Șargu, N., Ulinici, A., & Bordeianu, G. D. (2024). Assessing the Sustainability of Agricultural Bioenergy Potential in the European Union. Energies, 17(19), 4879. https://doi.org/10.3390/en17194879