Review and Assessment of Decarbonized Future Electricity Markets
Abstract
:1. Introduction
2. Structure and Determinants of the Electricity Sector
- The physical layer includes the technical aspects of electricity systems on the supply, transport, and demand sides.
- The stakeholder layer captures the roles and relationships of the different actors in the system.
- The policy and market layer captures the wide range of regulatory, policy, and market design concepts and adjustments prevalent in electricity systems.
2.1. Physical Electricity System Layer
2.2. Stakeholder Layer
2.3. Policy and Market Layer
3. Review of Future Electricity Assessments
3.1. Physical Electricity System Layer
3.1.1. Electricity Generation
3.1.2. Storage Technologies
3.1.3. Electricity Demand
3.1.4. Network
3.2. Stakeholder Layer
3.2.1. Actor Representation on the Supply Side
3.2.2. Representation of Storage Actors
3.2.3. Actor Representation on the Demand Side
3.2.4. Network Companies
3.2.5. Old Actors, New Actors, and Aggregators
3.3. Policy and Market Layer
3.3.1. Supply
Short-Term Market Adjustments
Long-Term Market Adjustments
3.3.2. Storage
3.3.3. Demand
Energy Efficiency Policies
Tariff Design
Flexibility Policies and Markets
Energy Alliances
3.3.4. Network Regulation
3.3.5. Policy Interaction
4. Common Trends, Insights, and Research Gaps
4.1. Common Drivers and Insights
4.2. Identified Challenges Ahead
4.3. Research Gaps and Needed Next Steps
5. Summary and Conclusions
Funding
Conflicts of Interest
Appendix A
Generation Mix [TWh] | Flexibility [GW] | Demand [TWh] | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reference | Model | Scenarios | PV + CSP | Wind (on) | Wind (off) | Hydro | Fossil | Nuclear | other RES | Hydrogen | Total | PHS | Battery + CAES | Power-2-X | Other | Total | Transport | Heating | Network |
[22] | PRIMES | JRC EU Reference Scenario | 429 | 980 | 0 | 421 | 1088 | 737 | 405 | 0 | 4060 | 0 | 0 | 0 | 0 | 3574 | 0 | 0 | |
[167] | PRIMES | EU Energy Roadmap 2050 | 843 | 2504 | 0 | 396 | 494 | 180 | 525 | 200 | 5142 | 0 | 0 | 0 | 0 | 3377 | 0 | 0 | |
[168] | Undisclosed | Roadmap 2050 | 1880 | 758 | 758 | 591 | 144 | 0 | 930 | 0 | 5061 | AT | 0 | 0 | 0 | 4385 | 0 | 0 | |
[169] | MESAP/Planet | Energy Revolution | 1510 | 1450 | 901 | 620 | 0 | 0 | 1017 | 267 | 5765 | 0 | 0 | 0 | 0 | 3889 | 0 | 0 | |
[15] | Undisclosed | Re-thinking 2050 | 1732 | 1552 | 0 | 448 | 0 | 0 | 1255 | 0 | 4987 | 0 | 0 | 0 | 0 | 4987 | 0 | 0 | |
[170] | Antares | e-Highway 100% RES | 892 | 1774 | 464 | 890 | 13 | 0 | 454 | 0 | 4488 | 114 | 0 | 0 | 0 | 4298 | 0 | 0 | |
[11] | PyPSA | Electricity only | 871 | 1326 | 305 | 474 | 0 | 0 | 0 | 0 | 2976 | 47 | 57 | 107 | - | 2960 | - | - | NTC |
Transport inflex. | 1478 | 1779 | 352 | 474 | 0 | 0 | 0 | 0 | 4083 | 47 | 169 | 178 | Y | 3952 | 1102 | - | NTC | ||
Transport BEV 25% flex. | 1488 | 1691 | 327 | 474 | 0 | 0 | 0 | 0 | 3979 | 47 | 495 | 101 | Y | 3952 | 1102 | - | NTC | ||
Transport BEV 50% flex. | 1489 | 1668 | 325 | 473 | 0 | 0 | 0 | 0 | 3955 | 47 | 560 | 93 | Y | 3952 | 1102 | - | NTC | ||
Transport BEV 100% flex. | 1451 | 1688 | 317 | 474 | 0 | 0 | 0 | 0 | 3952 | 47 | 641 | 96 | Y | 3952 | 1102 | - | NTC | ||
Transport BEV 25% V2G | 1654 | 1570 | 298 | 473 | 0 | 0 | 0 | 0 | 3995 | 47 | 863 | 93 | Y | 3952 | 1102 | - | NTC | ||
Transport BEV 50% V2G | 1771 | 1531 | 175 | 474 | 0 | 0 | 0 | 0 | 3952 | 47 | 834 | 53 | Y | 3952 | 1102 | - | NTC | ||
Transport BEV 100% V2G | 1920 | 1464 | 56 | 474 | 0 | 0 | 0 | 0 | 3952 | 47 | 878 | 2 | Y | 3952 | 1102 | - | NTC | ||
Fuel cell EV share 25% | 1515 | 1835 | 409 | 474 | 0 | 0 | 0 | 0 | 4233 | 47 | 121 | 245 | Y | 4131 | 1102 | - | NTC | ||
Fuel cell EV share 50% | 1627 | 1920 | 431 | 474 | 0 | 0 | 0 | 0 | 4452 | 47 | 88 | 349 | Y | 4311 | 1102 | - | NTC | ||
Fuel cell EV share 100% | 1879 | 2090 | 488 | 474 | 0 | 0 | 0 | 0 | 4930 | 47 | 15 | 486 | Y | 4670 | 1102 | - | NTC | ||
Heating | 1145 | 2853 | 1176 | 471 | 0 | 0 | 0 | 0 | 5645 | 47 | 91 | 382 | Y | - | 1102 | 3585 | NTC | ||
Methanation | 1491 | 2890 | 1196 | 474 | 0 | 0 | 0 | 0 | 6050 | 47 | 141 | 404 | Y | - | 1102 | 3585 | NTC | ||
TES | 1548 | 2920 | 1145 | 473 | 0 | 0 | 0 | 0 | 6087 | 47 | 113 | 416 | Y | - | 1102 | 3585 | NTC | ||
Central | 1472 | 2839 | 1055 | 474 | 0 | 0 | 0 | 0 | 5839 | 47 | 99 | 305 | Y | - | 1102 | 3585 | NTC | ||
Central-TES | 1538 | 2997 | 975 | 474 | 0 | 0 | 0 | 0 | 5983 | 47 | 88 | 258 | Y | - | 1102 | 3585 | NTC | ||
All Flex | 2190 | 2735 | 720 | 473 | 0 | 0 | 0 | 0 | 6117 | 47 | 1304 | 236 | Y | - | 1102 | 3585 | NTC | ||
All Flex Central | 2136 | 2825 | 583 | 474 | 0 | 0 | 0 | 0 | 6017 | 47 | 1153 | 99 | Y | - | 1102 | 3585 | NTC | ||
[13] | PLEXOS | Base | 1830 | 620 | 400 | 480 | 1055 | 0 | 350 | 0 | 4735 | 56 | 0 | X | 16 GW shedding 82GW load shifting | 4409 | 800 | 500 | Center of gravity |
High demand | 2300 | 620 | 1280 | 480 | 1455 | 0 | 420 | 0 | 6555 | 56 | 0 | X | 6020 | 800 | 500 | ||||
Alternative demand | 1840 | 520 | 510 | 480 | 898 | 0 | 400 | 0 | 4648 | 56 | 0 | X | 4409 | 800 | 500 | ||||
No CSP or Geothermal | 1390 | 720 | 900 | 480 | 1210 | 0 | 0 | 0 | 4700 | 56 | 0 | X | 4409 | 800 | 500 | ||||
Storage | 1834 | 580 | 416 | 480 | 1005 | 0 | 420 | 0 | 4735 | 56 | 80 | X | 4409 | 800 | 500 | ||||
Free RES | 1684 | 700 | 296 | 480 | 1061 | 0 | 410 | 0 | 4631 | 56 | 0 | X | 4409 | 800 | 500 | ||||
Allow non-RES | 290 | 390 | 0 | 480 | 1836 | 1127 | 387 | 0 | 4509 | 56 | 0 | X | 4409 | 800 | 500 | ||||
[171] | PRIMES | EC LTS 1.5Tech | 1333 | 4060 | 0 | 439 | 298 | 941 | 878 | 0 | 7948 | 51 | 69 | 511 | 0 | - | 0 | 0 | |
EC LTS 1.5Life | 1029 | 3629 | 0 | 386 | 129 | 836 | 515 | 0 | 6524 | 53 | 54 | 403 | 0 | - | 0 | 0 | |||
[172] | POLES | JRC GECO 1.5C | 877 | 1144 | 0 | 419 | 137 | 602 | 671 | 0 | 3851 | NR | 0 | NR | 0 | - | 0 | 0 | |
[173] | EU-TIMES | JRC LCEO Zero Carbon | 3663 | 4604 | 0 | 419 | 607 | 942 | 314 | 0 | 10,548 | NR | 0 | NR | 0 | - | 0 | 0 | |
[16] | Navigant Energy System Model | Navigant min gas | 1100 | 1000 | 2600 | 800 | 0 | 0 | 809 | 0 | 6309 | NR/AT | 0 | NR | Y | 5513 | 853 | 390 | |
Navigant opt gas | 2500 | 800 | 2600 | 800 | 400 | 0 | 0 | 0 | 7100 | NR/AT | 0 | NR | Y | 4461 | 772 | 399 | |||
[174] | NR | Oeko Vision | 1079 | 2878 | 0 | 432 | 0 | 0 | 252 | 0 | 4641 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
[21] | interaction of seven models | IFS 2C | 1405 | 2359 | 0 | 420 | 0 | 0 | 1015 | 0 | 5199 | NR | NR | NR | 0 | 0 | 0 | 0 | NTC |
IFS 1.5C | 1593 | 2526 | 0 | 439 | 0 | 0 | 1044 | 0 | 5602 | NR | NR | NR | 0 | 0 | 0 | 0 | |||
[12] | LUT Energy System Transition | Regions | 2655 | 1770 | 0 | 649 | 0 | 25 | 801 | 0 | 5900 | AT | NR | 37 | - | 5259 | - | - | NTC |
Area | 2317 | 2091 | 0 | 622 | 0 | 25 | 597 | 0 | 5650 | AT | NR | 4 | - | 5259 | - | - | NTC | ||
[175] | elesplan-m | Decarbonization pathway EU | 1199 | 3805 | 0 | 539 | 426 | 0 | 0 | 0 | 5968 | 43 | 22 | 367 | - | 4448 | - | - | CoG |
References
- IEA. Net Zero by 2050 A Roadmap for the Global Energy Sector; OECD Publishing: Paris, France, 2021. [Google Scholar]
- Gütschow, J.; Pflüger, M.; Busch, D. The PRIMAP-Hist National Historical Emissions Time Series (1750–2022) v2.5.1. Available online: https://zenodo.org/records/10705513 (accessed on 11 September 2024).
- International Energy Agency. Electricity Market Report—December 2020; IEA: Paris, France, 2020. [Google Scholar]
- Internation Energy Agency. World Energy Outlook 2022; IEA: Paris, France, 2022. [Google Scholar]
- G7. G7 Climate, Energy and Environment Ministers’ Communiqué; G7: Berlin, Germany, 2022. [Google Scholar]
- Mcwilliams, B.; Tagliapietra, S.; Zachmann, G.; Deschuyteneer, T. Preparing for the Next Winter: Europe’s Gas Outlook for 2023; Bruegel Policy Contribution: Brussels, Belgium, 2023. [Google Scholar]
- European Commission. Public Consultation—Reform of the EU’s Electricity Market Design; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- Heide, D.; von Bremen, L.; Greiner, M.; Hoffmann, C.; Speckmann, M.; Bofinger, S. Seasonal Optimal Mix of Wind and Solar Power in a Future, Highly Renewable Europe. Renew. Energy 2010, 35, 2483–2489. [Google Scholar] [CrossRef]
- Rasmussen, M.G.; Andresen, G.B.; Greiner, M. Storage and Balancing Synergies in a Fully or Highly Renewable Pan-European Power System. Energy Policy 2012, 51, 642–651. [Google Scholar] [CrossRef]
- Hansen, K.; Breyer, C.; Lund, H. Status and Perspectives on 100% Renewable Energy Systems. Energy 2019, 175, 471–480. [Google Scholar] [CrossRef]
- Brown, T.; Schlachtberger, D.; Kies, A.; Schramm, S.; Greiner, M. Synergies of Sector Coupling and Transmission Reinforcement in a Cost-Optimised, Highly Renewable European Energy System. Energy 2018, 160, 720–739. [Google Scholar] [CrossRef]
- Child, M.; Kemfert, C.; Bogdanov, D.; Breyer, C. Flexible Electricity Generation, Grid Exchange and Storage for the Transition to a 100% Renewable Energy System in Europe. Renew. Energy 2019, 139, 80–101. [Google Scholar] [CrossRef]
- Zappa, W.; Junginger, M.; van den Broek, M. Is a 100% Renewable European Power System Feasible by 2050? Appl. Energy 2019, 233–234, 1027–1050. [Google Scholar] [CrossRef]
- Hirth, L. The Market Value of Variable Renewables. The Effect of Solar Wind Power Variability on Their Relative Price. Energy Econ. 2013, 38, 218–236. [Google Scholar] [CrossRef]
- EREC. RE-Thinking 2050: A 100% Renewable Energy Vision for the European Union; EREC: Brussels, Belgium, 2010. [Google Scholar]
- Navigant Gas for Climate. The Optimal Role for Gas in a Net-Zero Emissions Energy System; Navigator Netherlands B.V.: Haarlem, The Netherlands, 2019. [Google Scholar]
- Cebulla, F.; Haas, J.; Eichman, J.; Nowak, W.; Mancarella, P. How Much Electrical Energy Storage Do We Need? A Synthesis for the U.S., Europe, and Germany. J. Clean. Prod. 2018, 181, 449–459. [Google Scholar] [CrossRef]
- Bistline, J.; Cole, W.; Damato, G.; DeCarolis, J.; Frazier, W.; Linga, V.; Marcy, C.; Namovicz, C.; Podkaminer, K.; Sims, R.; et al. Energy Storage in Long-Term System Models: A Review of Considerations, Best Practices, and Research Needs. Prog. Energy 2020, 2, 039601. [Google Scholar] [CrossRef]
- Oldenbroek, V.; Wijtzes, S.; Blok, K.; van Wijk, A.J.M. Fuel Cell Electric Vehicles and Hydrogen Balancing 100 Percent Renewable and Integrated National Transportation and Energy Systems. Energy Convers. Manag. X 2021, 9, 100077. [Google Scholar] [CrossRef]
- Darudi, A.; Mendesh, C.; Weigt, H. Electric Mobility in Switzerland: How Many Teslas Can The System Deal With? In Proceedings of the 1st IAEE Online Conference, Online, 7–9 June 2021. [Google Scholar]
- Teske, S. Achieving the Paris Climate Agreement Goals—Global and Regional 100% Renewable Energy Scenarios with Non-Energy GHG Pathways for +1.5 °C and +2 °C; Springer: Cham, Switzerland, 2019; ISBN 9783030058432. [Google Scholar]
- European Comission. EU Reference Scenario 2016 Energy, Transport and GHG Emissions Trends to 2050; European Commission: Brussels, Belgium, 2016; ISBN 978-92-79-52373-1. [Google Scholar]
- Zöphel, C.; Schreiber, S.; Müller, T.; Möst, D. Which Flexibility Options Facilitate the Integration of Intermittent Renewable Energy Sources in Electricity Systems? Curr. Sustain./Renew. Energy Rep. 2018, 5, 37–44. [Google Scholar] [CrossRef]
- Go, R.S.; Munoz, F.D.; Watson, J.P. Assessing the Economic Value of Co-Optimized Grid-Scale Energy Storage Investments in Supporting High Renewable Portfolio Standards. Appl. Energy 2016, 183, 902–913. [Google Scholar] [CrossRef]
- Matsuo, Y.; Endo, S.; Nagatomi, Y.; Shibata, Y.; Komiyama, R.; Fujii, Y. Investigating the Economics of the Power Sector under High Penetration of Variable Renewable Energies. Appl. Energy 2020, 267, 113956. [Google Scholar] [CrossRef]
- Kraan, O.; Kramer, G.J.; Nikolic, I. Investment in the Future Electricity System—An Agent-Based Modelling Approach. Energy 2018, 151, 569–580. [Google Scholar] [CrossRef]
- Petitet, M.; Finon, D.; Janssen, T. Capacity Adequacy in Power Markets Facing Energy Transition: A Comparison of Scarcity Pricing and Capacity Mechanism. Energy Policy 2017, 103, 30–46. [Google Scholar] [CrossRef]
- Tao, Z.; Moncada, J.A.; Poncelet, K.; Delarue, E. Review and Analysis of Investment Decision Making Algorithms in Long-Term Agent-Based Electric Power System Simulation Models. Renew. Sustain. Energy Rev. 2021, 136, 110405. [Google Scholar] [CrossRef]
- Pineda, S.; Boomsma, T.K.; Wogrin, S. Renewable Generation Expansion under Different Support Schemes: A Stochastic Equilibrium Approach. Eur. J. Oper. Res. 2018, 266, 1086–1099. [Google Scholar] [CrossRef]
- Aflaki, S.; Netessine, S. Strategic Investment in Renewable Energy Sources: The Effect of Supply Intermittency. Manuf. Serv. Oper. Manag. 2017, 19, 489–507. [Google Scholar] [CrossRef]
- Darudi, A. Auctions for Renewables: Does the Choice of the Remuneration Scheme Matter? Energy J. 2023, 44, 245–274. [Google Scholar] [CrossRef]
- Pascoal, T.; Campos-náñez, E.; Robert, M. Technology Selection and Capacity Investment under Uncertainty. Eur. J. Oper. Res. 2014, 232, 125–136. [Google Scholar] [CrossRef]
- von der Fehr, N.-H.M.; Ropenus, S. Renewable Energy Policy Instruments and Market Power. Scand. J. Econ. 2017, 119, 312–345. [Google Scholar] [CrossRef]
- Andres-Cerezo, D.; Fabra, C.N. Storing Power: Market Structure Matters. RAND J. Econ. 2020, 54, 3–53. [Google Scholar] [CrossRef]
- Darudi, A.; Weigt, H. Incumbent’s Bane or Gain? Renewable Support and Strategic Behavior in Electricity Markets. Energy J. 2020, 41, 167–190. [Google Scholar] [CrossRef]
- Ambec, S.; Crampes, C. Decarbonizing Electricity Generation with Intermittent Sources of Energy. J. Assoc. Environ. Resour. Econ. 2019, 6, 1105–1134. [Google Scholar] [CrossRef]
- Gal, N.; Milstein, I.; Tishler, A.; Woo, C.K. Fuel Cost Uncertainty, Capacity Investment and Price in a Competitive Electricity Market. Energy Econ. 2017, 61, 233–240. [Google Scholar] [CrossRef]
- Ruiz, C.; Conejo, A.J.; Fuller, J.D.; Gabriel, S.A.; Hobbs, B.F. A Tutorial Review of Complementarity Models for Decision-Making in Energy Markets. EURO J. Decis. Process. 2014, 2, 91–120. [Google Scholar] [CrossRef]
- Dimitriadis, C.N.; Tsimopoulos, E.G.; Georgiadis, M.C. A Review on the Complementarity Modelling in Competitive Electricity Markets. Energies 2021, 14, 7133. [Google Scholar] [CrossRef]
- Bhagwat, P.C.; Richstein, J.C.; Chappin, E.J.L.; de Vries, L.J. The Effectiveness of a Strategic Reserve in the Presence of a High Portfolio Share of Renewable Energy Sources. Util. Policy 2016, 39, 13–28. [Google Scholar] [CrossRef]
- Krishnamurthy, C.K.; Shanker, A.; Stern, D. Zero-Carbon Electricity Markets with Grid-Scale Electricity Storage. 2020, pp. 1–25. Available online: https://ethz.ch/content/dam/ethz/special-interest/mtec/cer-eth/resource-econ-dam/documents/research/sured/sured-2020/Zero-carbon%20electricity%20markets%20with%20grid-scale.pdf (accessed on 11 September 2024).
- Schmalensee, R.; Junge, C.; Mallapragada, D. Energy Storage Investment and Operation in Efficient Electric Power Systems. SSRN Electron. J. 2021, 41, 3752324. [Google Scholar] [CrossRef]
- Prol, J.L.; Schill, W.-P. The Economics of Variable Renewables and Electricity Storage; ZBW—Leibniz Information Centre for Economics: Kiel, Hamburg, 2020. [Google Scholar]
- Ekholm, T.; Virasjoki, V. Pricing and Competition with 100% Variable Renewable Energy and Storage. Energy J. 2020, 41, 215–231. [Google Scholar] [CrossRef]
- Han, X.; Garrison, J.; Hug, G. Techno-Economic Analysis of PV-Battery Systems in Switzerland. Renew. Sustain. Energy Rev. 2022, 158, 112028. [Google Scholar] [CrossRef]
- Rana, M.M.; Uddin, M.; Sarkar, M.R.; Shafiullah, G.M.; Mo, H.; Atef, M. A Review on Hybrid Photovoltaic—Battery Energy Storage System: Current Status, Challenges, and Future Directions. J. Energy Storage 2022, 51, 104597. [Google Scholar] [CrossRef]
- Gough, M.; Santos, S.F.; Javadi, M.; Castro, R.; Catalão, J.P.S. Prosumer Flexibility: A Comprehensive State-of-the-Art Review and Scientometric Analysis. Energies 2020, 13, 2710. [Google Scholar] [CrossRef]
- IEA Demand Response, IEA, Paris. Available online: https://www.iea.org/reports/demand-response (accessed on 11 September 2024).
- Barbero, M.; Corchero, C.; Canals Casals, L.; Igualada, L.; Heredia, F.J. Critical Evaluation of European Balancing Markets to Enable the Participation of Demand Aggregators. Appl. Energy 2020, 264, 114707. [Google Scholar] [CrossRef]
- Mokhtari, S.; Yen, K.K. Impact of Large-Scale Wind Power Penetration on Incentive of Individual Investors, a Supply Function Equilibrium Approach. Electr. Power Syst. Res. 2021, 194, 107014. [Google Scholar] [CrossRef]
- Espe, E.; Potdar, V.; Chang, E. Prosumer Communities and Relationships in Smart Grids: A Literature Review, Evolution and Future Directions. Energies 2018, 11, 2528. [Google Scholar] [CrossRef]
- Reis, I.F.G.; Gonçalves, I.; Lopes, M.A.R.; Antunes, C.H. Assessing the Influence of Different Goals in Energy Communities’ Self-Sufficiency—An Optimized Multiagent Approach. Energies 2021, 14, 989. [Google Scholar] [CrossRef]
- SPE. Renewable Self-Consumption Cheap and Clean Power at Your Doorstep; Policy Paper—SolarPower Europe; SPE: Andrews, Australian, 2015. [Google Scholar]
- Galvin, R. I’ll Follow the Sun: Geo-Sociotechnical Constraints on Prosumer Households in Germany. Energy Res. Soc. Sci. 2020, 65, 101455. [Google Scholar] [CrossRef]
- Schill, W.P.; Zerrahn, A.; Kunz, F. Prosumage of Solar Electricity: Pros, Cons, and the System Perspective. Econ. Energy Environ. Policy 2017, 6, 7–31. [Google Scholar] [CrossRef]
- Sarfarazi, S.; Deissenroth-Uhrig, M.; Bertsch, V. Aggregation of Households in Community Energy Systems: An Analysis from Actors ’ and Market Perspectives. Energies 2020, 13, 5154. [Google Scholar] [CrossRef]
- Ellabban, O.; Abu-Rub, H. Smart Grid Customers’ Acceptance and Engagement: An Overview. Renew. Sustain. Energy Rev. 2016, 65, 1285–1298. [Google Scholar] [CrossRef]
- DGRV Energy Cooperatives: Results of the DGRV-Survey—Deutscher Genossenschafts-Und Raiffeisenverband. Available online: https://www.dgrv.de/news/dgrv-jahresumfrage-energiegenossenschaften/ (accessed on 11 September 2024).
- Perez-DeLaMora, D.A.; Quiroz-Ibarra, J.E.; Fernandez-Anaya, G.; Hernandez-Martinez, E.G. Roadmap on Community-Based Microgrids Deployment: An Extensive Review. Energy Rep. 2021, 7, 2883–2898. [Google Scholar] [CrossRef]
- Luo, L.; Abdulkareem, S.S.; Rezvani, A.; Miveh, M.R.; Samad, S.; Aljojo, N.; Pazhoohesh, M. Optimal Scheduling of a Renewable Based Microgrid Considering Photovoltaic System and Battery Energy Storage under Uncertainty. J. Energy Storage 2020, 28, 101306. [Google Scholar] [CrossRef]
- Lowitzsch, J.; Hoicka, C.E.; van Tulder, F.J. Renewable Energy Communities under the 2019 European Clean Energy Package—Governance Model for the Energy Clusters of the Future? Renew. Sustain. Energy Rev. 2020, 122, 109489. [Google Scholar] [CrossRef]
- Castillo-Cagigal, M.; Caamaño-Martín, E.; Matallanas, E.; Masa-Bote, D.; Gutiérrez, A.; Monasterio-Huelin, F.; Jiménez-Leube, J. PV Self-Consumption Optimization with Storage and Active DSM for the Residential Sector. Sol. Energy 2011, 85, 2338–2348. [Google Scholar] [CrossRef]
- Luthander, R.; Widén, J.; Nilsson, D.; Palm, J. Photovoltaic Self-Consumption in Buildings: A Review. Appl. Energy 2015, 142, 80–94. [Google Scholar] [CrossRef]
- Quoilin, S.; Kavvadias, K.; Mercier, A.; Pappone, I.; Zucker, A. Quantifying Self-Consumption Linked to Solar Home Battery Systems: Statistical Analysis and Economic Assessment. Appl. Energy 2016, 182, 58–67. [Google Scholar] [CrossRef]
- Prognos Eigenversorgung Aus Solaranlagen. Das Potenzial Für Photovoltaik-Speicher-Systeme in Ein- Und Zweifamilienhäusern, Landwirtschaft Sowie Im Lebensmittelhandel. Agora Energiewende. 2016. Available online: https://www.agora-energiewende.de/fileadmin/Projekte/2016/Dezentralitaet/Agora_Eigenversorgung_PV_web-02.pdf (accessed on 11 September 2024).
- Bui, V.H.; Hussain, A.; Kim, H.M. Double Deep Q-Learning-Based Distributed Operation of Battery Energy Storage System Considering Uncertainties. IEEE Trans. Smart Grid 2020, 11, 457–469. [Google Scholar] [CrossRef]
- Brunekreeft, G.; Kusznir, J.; Meyer, R.; Sawabe, M.; Hattori, T. Incentive Regulation of Electricity Networks under Large Penetration of Distributed Energy Resources—Selected Issues; (No. 33). Bremen Energy Working Papers; Jacobs University Bremen: Bremen, Germany, 2020. [Google Scholar]
- Khalfallah, H. An Assessment of Incentive Regulation in Electricity Networks: The Story So Far; Hindustan Aeronautics Limited: Bangalore, India, 2013. [Google Scholar]
- Gerard, H.; Rivero Puente, E.I.; Six, D. Coordination between Transmission and Distribution System Operators in the Electricity Sector: A Conceptual Framework. Util. Policy 2018, 50, 40–48. [Google Scholar] [CrossRef]
- Eid, C.; Codani, P.; Perez, Y.; Reneses, J.; Hakvoort, R. Managing Electric Flexibility from Distributed Energy Resources: A Review of Incentives for Market Design. Renew. Sustain. Energy Rev. 2016, 64, 237–247. [Google Scholar] [CrossRef]
- CEER. CEER Position Paper on the Future DSO and TSO Relationship. 2016. Available online: https://www.aemc.gov.au/sites/default/files/content/de49d815-7a03-46b4-8930-07511353f5fa/MarketReview-Submission-EPR0052-S-and-C-Electric-Company-170516.PDF (accessed on 11 September 2024).
- Le Cadre, H.; Mezghani, I.; Papavasiliou, A. A Game-Theoretic Analysis of Transmission-Distribution System Operator Coordination. Eur. J. Oper. Res. 2019, 274, 317–339. [Google Scholar] [CrossRef]
- The SmartNet Consortium. TSO-DSO Coordination for Acquiring Ancillary Services from Distribution Grids. 2019, pp. 1–52. Available online: https://smartnet-project.eu/wp-content/uploads/2019/05/SmartNet-Booktlet.pdf (accessed on 11 September 2024).
- Silva, R.; Alves, E.; Ferreira, R.; Villar, J.; Gouveia, C. Characterization of TSO and DSO Grid System Services and TSO-DSO Basic Coordination Mechanisms in the Current Decarbonization Context. Energies 2021, 14, 4451. [Google Scholar] [CrossRef]
- Joskow, P.; Tirole, J. Merchant Transmission Investment. J. Ind. Econ. 2005, 53, 233–264. [Google Scholar] [CrossRef]
- Littlechild, S. Merchant and Regulated Transmission: Theory, Evidence and Policy. J. Regul. Econ. 2012, 42, 308–335. [Google Scholar] [CrossRef]
- Ming, Z.; Junjie, F.; Xiaoli, Z.; Song, X. Strategic Interaction Study between Generation and Transmission Expansion Planning with Game-Theory. Optimization 2012, 61, 1271–1281. [Google Scholar] [CrossRef]
- Weibelzahl, M.; Märtz, A. Optimal Storage and Transmission Investments in a Bilevel Electricity Market Model. Ann. Oper. Res. 2020, 287, 911–940. [Google Scholar] [CrossRef]
- Gonzalez-Romero, I.C.; Wogrin, S.; Gómez, T. Review on Generation and Transmission Expansion Co-Planning Models under a Market Environment. IET Gener. Transm. Distrib. 2020, 14, 931–944. [Google Scholar] [CrossRef]
- Ikäheimo, J.; Evens, C.; Kärkkäinen, S. DER Aggregator Business: The Finnish Case; Citeseer: Princeton, NJ, USA, 2010. [Google Scholar]
- Stede, J.; Arnold, K.; Dufter, C.; Holtz, G.; von Roon, S.; Richstein, J.C. The Role of Aggregators in Facilitating Industrial Demand Response: Evidence from Germany. Energy Policy 2020, 147, 111893. [Google Scholar] [CrossRef]
- Willems, B.; Zhou, J. The Clean Energy Package and Demand Response: Setting Correct Incentives. Energies 2020, 13, 5672. [Google Scholar] [CrossRef]
- Burger, S.; Chaves-Ávila, J.P.; Batlle, C.; Pérez-Arriaga, I.J. A Review of the Value of Aggregators in Electricity Systems. Renew. Sustain. Energy Rev. 2017, 77, 395–405. [Google Scholar] [CrossRef]
- Lu, X.; Li, K.; Xu, H.; Wang, F.; Zhou, Z.; Zhang, Y. Fundamentals and Business Model for Resource Aggregator of Demand Response in Electricity Markets. Energy 2020, 204, 117885. [Google Scholar] [CrossRef]
- Kandil, S.M.; Farag, H.E.Z.; Shaaban, M.F.; El-Sharafy, M.Z. A Combined Resource Allocation Framework for PEVs Charging Stations, Renewable Energy Resources and Distributed Energy Storage Systems. Energy 2018, 143, 961–972. [Google Scholar] [CrossRef]
- Wang, D.; Hu, Q.; Jia, H.; Hou, K.; Du, W.; Chen, N.; Wang, X.; Fan, M. Integrated Demand Response in District Electricity-Heating Network Considering Double Auction Retail Energy Market Based on Demand-Side Energy Stations. Appl. Energy 2019, 248, 656–678. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, K.; Zhang, J. Optimal Joint Bidding and Pricing of Profit-Seeking Load Serving Entity. IEEE Trans. Power Syst. 2018, 33, 5427–5436. [Google Scholar] [CrossRef]
- Misaghian, M.S.; Saffari, M.; Kia, M.; Nazar, M.S.; Heidari, A.; Shafie-khah, M.; Catalão, J.P.S. Hierarchical Framework for Optimal Operation of Multiple Microgrids Considering Demand Response Programs. Electr. Power Syst. Res. 2018, 165, 199–213. [Google Scholar] [CrossRef]
- Li, B.; Wang, X.; Shahidehpour, M.; Jiang, C.; Li, Z. Robust Bidding Strategy and Profit Allocation for Cooperative DSR Aggregators with Correlated Wind Power Generation. IEEE Trans. Sustain. Energy 2019, 10, 1904–1915. [Google Scholar] [CrossRef]
- Rezaei, N.; Ahmadi, A.; Khazali, A.; Aghaei, J. Multiobjective Risk-Constrained Optimal Bidding Strategy of Smart Microgrids: An IGDT-Based Normal Boundary Intersection Approach. IEEE Trans. Ind. Inf. 2019, 15, 1532–1543. [Google Scholar] [CrossRef]
- Duscha, V.; del Río, P. An Economic Analysis of the Interactions between Renewable Support and Other Climate and Energy Policies. Energy Environ. 2017, 28, 11–33. [Google Scholar] [CrossRef]
- Flues, F.; Löschel, A.; Lutz, B.J.; Schenker, O. Designing an EU Energy and Climate Policy Portfolio for 2030: Implications of Overlapping Regulation under Different Levels of Electricity Demand. Energy Policy 2014, 75, 91–99. [Google Scholar] [CrossRef]
- Winkler, J.; Altmann, M. Market Designs for a Completely Renewable Power Sector. Z. Für Energiewirtschaft 2012, 36, 77–92. [Google Scholar] [CrossRef]
- Sarfati, M.; Hesamzadeh, M.; Holmberg, P. Production Efficiency of Nodal and Zonal Pricing in Imperfectly Competitive Electricity Markets. Energy Strategy Rev. 2019, 24, 193–206. [Google Scholar] [CrossRef]
- Newbery, D.; Pollitt, M.G.; Ritz, R.A.; Strielkowski, W. Market Design for a High-Renewables European Electricity System. Renew. Sustain. Energy Rev. 2018, 91, 695–707. [Google Scholar] [CrossRef]
- Silva-Rodriguez, L.; Sanjab, A.; Fumagalli, E.; Virag, A.; Gibescu, M. Short Term Electricity Market Designs: Identified Challenges and Promising Solutions. arXiv 2020, arXiv:2011.04587. [Google Scholar] [CrossRef]
- Cochran, J.; Miller, M.; Milligan, M.; Ela, E.; Arent, D.; Bloom, A.; Futch, M.; Kiviluoma, J.; Holtinnen, H.; Orths, A.; et al. Market Evolution: Wholesale Electricity Market Design for 21st Century Power Systems; NREL: Golden CO, USA, 2013. [Google Scholar]
- Hu, J.; Harmsen, R.; Crijns-Graus, W.; Worrell, E.; van den Broek, M. Identifying Barriers to Large-Scale Integration of Variable Renewable Electricity into the Electricity Market: A Literature Review of Market Design. Renew. Sustain. Energy Rev. 2018, 81, 2181–2195. [Google Scholar] [CrossRef]
- Papaefthymiou, G.; Dragoon, K. Towards 100% Renewable Energy Systems: Uncapping Power System Flexibility. Energy Policy 2016, 92, 69–82. [Google Scholar] [CrossRef]
- Jansen, M.; Staffell, I.; Kitzing, L.; Quoilin, S.; Wiggelinkhuizen, E.; Bulder, B.; Riepin, I.; Müsgens, F. Offshore Wind Competitiveness in Mature Markets without Subsidy. Nat. Energy 2020, 5, 614–622. [Google Scholar] [CrossRef]
- Held, A.; Ragwitz, M.; Del Río, P.; Resch, G.; Klessmann, C.; Hassel, A.; Elkerbout, M.; Rawlins, J. Do Almost Mature Renewable Energy Technologies Still Need Dedicated Support towards 2030? Econ. Energy Environ. Policy 2019, 8, 81–98. [Google Scholar] [CrossRef]
- Voss, A.; Madlener, R. Auction Schemes, Bidding Strategies and the Cost-Optimal Level of Promoting Renewable Electricity in Germany. Energy J. 2017, 38, 229–264. [Google Scholar] [CrossRef]
- Bichler, M.; Grimm, V.; Kretschmer, S.; Sutterer, P. Market Design for Renewable Energy Auctions: An Analysis of Alternative Auction Formats. Energy Econ. 2020, 92, 104904. [Google Scholar] [CrossRef]
- Matthäus, D.; Schwenen, S.; Wozabal, D. Renewable Auctions: Bidding for Real Options. Eur. J. Oper. Res. 2021, 291, 1091–1105. [Google Scholar] [CrossRef]
- Haelg, L. Promoting Technological Diversity: How Renewable Energy Auction Designs Influence Policy Outcomes. Energy Res. Soc. Sci. 2020, 69, 101636. [Google Scholar] [CrossRef]
- Haufe, M.; Ehrhart, K. Auctions for Renewable Energy Support—Suitability, Design, and First Lessons Learned. Energy Policy 2018, 121, 217–224. [Google Scholar] [CrossRef]
- Kreiss, J.; Ehrhart, K.M.; Haufe, M.C. Appropriate Design of Auctions for Renewable Energy Support—Prequalifications and Penalties. Energy Policy 2017, 101, 512–520. [Google Scholar] [CrossRef]
- Haufe, M.C.; Ehrhart, K.-M. Assessment of Auction Types Suitable for RES-E. AURES Rep. D 3. 2016. Available online: http://aures2project.eu/wp-content/uploads/2021/07/d_3_1_assessment_of_auctions_final_mm.pdf (accessed on 11 September 2024).
- Noothout, P.; de Jager, D.; Tesnière, L.; van Rooijen, S.; Karypidis, N. The Impact of Risks in Renewable Investments and the Role of Smart Policies. 2016. Available online: https://www.isi.fraunhofer.de/content/dam/isi/dokumente/ccx/dia-core/D3-4_diacore_2016_impact_of_risk_in_res_investments.pdf (accessed on 11 September 2024).
- Lackner, M.; Koller, S.; Camuzeaux, J.R. Policy Brief-Using Lessons from Reverse Auctions for Renewables to Deliver Energy Storage Capacity: Guidance for Policymakers. Rev. Environ. Econ. Policy 2019, 13, 140–148. [Google Scholar] [CrossRef]
- Woodman, B.; Fitch-Roy, O. The Future of Renewable Energy Auctions—Scenarios and Pathways; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Newbery, D.M. What Future(s) for Liberalized Electricity Markets: Efficient, Equitable or Innovative? Energy J. 2018, 39, 1–28. [Google Scholar] [CrossRef]
- Bublitz, A.; Keles, D.; Zimmermann, F.; Fraunholz, C.; Fichtner, W. A Survey on Electricity Market Design: Insights from Theory and Real-World Implementations of Capacity Remuneration Mechanisms. Energy Econ. 2019, 80, 1059–1078. [Google Scholar] [CrossRef]
- Peng, D.; Poudineh, R. Electricity Market Design under Increasing Renewable Energy Penetration: Misalignments Observed in the European Union. Util. Policy 2019, 61, 100970. [Google Scholar] [CrossRef]
- Le Coq, C.; Orzen, H.; Schwenen, S. Pricing and Capacity Provision in Electricity Markets: An Experimental Study. J. Regul. Econ. 2017, 51, 123–158. [Google Scholar] [CrossRef]
- Hach, D.; Spinler, S. Capacity Payment Impact on Gas-Fired Generation Investments under Rising Renewable Feed-in—A Real Options Analysis. Energy Econ. 2016, 53, 270–280. [Google Scholar] [CrossRef]
- Ousman Abani, A.; Hary, N.; Rious, V.; Saguan, M. The Impact of Investors’ Risk Aversion on the Performances of Capacity Remuneration Mechanisms. Energy Policy 2018, 112, 84–97. [Google Scholar] [CrossRef]
- Zimmermann, F.; Bublitz, A.; Keles, D.; Fichtner, W. Cross-Border Effects of Capacity Remuneration Mechanisms: The Swiss Case. Energy J. 2021, 42, 53–90. [Google Scholar] [CrossRef]
- Joskow, P.L. From Hierarchies to Markets and Partially Back Again in Electricity: Responding to Decarbonization and Security of Supply Goals. J. Institutional Econ. 2022, 18, 313–329. [Google Scholar] [CrossRef]
- Wolak, F.A. Long-Term Resource Adequacy in Wholesale Electricity Markets with Significant Intermittent Renewables. Environ. Energy Policy Econ. 2022, 3, 155–220. [Google Scholar] [CrossRef]
- Keppler, J.H.; Quemin, S.; Saguan, M. Why the Sustainable Provision of Low-Carbon Electricity Needs Hybrid Markets. Energy Policy 2022, 171, 113273. [Google Scholar] [CrossRef]
- Corneli, S.; Gimon, E.; Pierpont, B. Wholesale Electricity Market Design for Rapid Decarbonization: Long-Term Markets, Working with Short-Term Energy Markets; Energy Innovation: San Francisco, CA, USA, 2019; pp. 1–12. [Google Scholar]
- Tierney, S. Resource Adequacy and Wholesale Market Structure for a Future Low-Carbon Power System in California; Analysis Group: Boston, MA, USA, 2018; pp. 1–25. [Google Scholar]
- Corneli, S. A Prism-Based Configuration Market for Rapid, Low Cost and Reliable Electric Sector Decarbonization; World Resources Institute: Washington, DC, USA, 2020. [Google Scholar]
- Gimon, E. Let’s Get Organized! Long-Term Market Design for a High Penetration Grid; Energy Innovation: San Francisco, CA, USA, 2020; pp. 1–32. [Google Scholar]
- Pierpont, B. A Market Mechanism for Long-Term Energy Contracts to Support Electricity System Decarbonization. 2020, pp. 1–34. Available online: https://media.rff.org/documents/pierpont-long-term-electricity-markets-paper-dec-2020-final.pdf (accessed on 11 September 2024).
- Twitchell, J. A Review of State-Level Policies on Electrical Energy Storage. Curr. Sustain. Renew. Energy Rep. 2019, 6, 35–41. [Google Scholar] [CrossRef]
- Schmalensee, R. On the Efficiency of Competitive Energy Storage. 2019. Available online: https://ceepr.mit.edu/wp-content/uploads/2021/09/2019-009.pdf (accessed on 11 September 2024).
- Sioshansi, R. When Energy Storage Reduces Social Welfare. Energy Econ. 2014, 41, 106–116. [Google Scholar] [CrossRef]
- Gillingham, K.; Keyes, A.; Palmer, K. Advances in Evaluating Energy Efficiency Policies and Programs. Annu. Rev. Resour. Econ. 2018, 10, 511–532. [Google Scholar] [CrossRef]
- Lind, A.; Rosenberg, E.; Seljom, P.; Espegren, K.; Fidje, A.; Lindberg, K. Analysis of the EU Renewable Energy Directive by a Techno-Economic Optimisation Model. Energy Policy 2013, 60, 364–377. [Google Scholar] [CrossRef]
- Mier, M.; Weissbart, C. Power Markets in Transition: Decarbonization, Energy Efficiency, and Short-Term Demand Response. Energy Econ. 2020, 86, 104644. [Google Scholar] [CrossRef]
- Ansarin, M.; Ghiassi-Farrokhfal, Y.; Ketter, W.; Collins, J. The Economic Consequences of Electricity Tariff Design in a Renewable Energy Era. Appl. Energy 2020, 275, 115317. [Google Scholar] [CrossRef]
- Borenstein, S. Private Net Bene Fi Ts of Residential Solar PV: The Role of Electricity Tariffs, Tax Incentives, and Rebates. J. Assoc. Environ. Resour. Econ. 2017, 4, 85–122. [Google Scholar]
- Eid, C.; Reneses Guillén, J.; Frías Marín, P.; Hakvoort, R. The Economic Effect of Electricity Net-Metering with Solar PV: Consequences for Network Cost Recovery, Cross Subsidies and Policy Objectives. Energy Policy 2014, 75, 244–254. [Google Scholar] [CrossRef]
- Gautier, A.; Jacqmin, J.; Poudou, J.C. The Prosumers and the Grid. J. Regul. Econ. 2018, 53, 100–126. [Google Scholar] [CrossRef]
- Levin, R.D. Rate Design for a Decarbonizing Grid. Electr. J. 2019, 32, 58–63. [Google Scholar] [CrossRef]
- Manuel de Villena, M.; Gautier, A.; Ernst, D.; Glavic, M.; Fonteneau, R. Modelling and Assessing the Impact of the DSO Remuneration Strategy on Its Interaction with Electricity Users. Int. J. Electr. Power Energy Syst. 2021, 126, 106585. [Google Scholar] [CrossRef]
- Villar, J.; Bessa, R.; Matos, M. Flexibility Products and Markets: Literature Review. Electr. Power Syst. Res. 2018, 154, 329–340. [Google Scholar] [CrossRef]
- Stawska, A.; Romero, N.; de Weerdt, M.; Verzijlbergh, R. Demand Response: For Congestion Management or for Grid Balancing? Energy Policy 2021, 148, 111920. [Google Scholar] [CrossRef]
- Valarezo, O.; Gómez, T.; Chaves-Avila, J.P.; Lind, L.; Correa, M.; Ulrich Ziegler, D.; Escobar, R. Analysis of New Flexibility Market Models in Europe. Energies 2021, 14, 3521. [Google Scholar] [CrossRef]
- Jin, X.; Wu, Q.; Jia, H. Local Flexibility Markets: Literature Review on Concepts, Models and Clearing Methods. Appl. Energy 2020, 261, 114387. [Google Scholar] [CrossRef]
- Campos, I.; Luz Guilherme, P.; Marín González, E.; Gährs, S.; Hall, S.; Holstenkamp, L. Regulatory Challenges and Opportunities for Collective Renewable Energy Prosumers in the EU. Energy Policy 2020, 138, 111212. [Google Scholar] [CrossRef]
- CEER. Regulatory Aspects of Self-Consumption and Energy Communities; Council of European Energy Regulators: Brussels, Belgium, 2019. [Google Scholar]
- Reis, I.F.; Gonçalves, I.; Lopes, M.A.; Antunes, C.H. Business Models for Energy Communities: A Review of Key Issues and Trends. Renew. Sustain. Energy Rev. 2021, 144, 111013. [Google Scholar] [CrossRef]
- de la Hoz, J.; Alonso, À.; Coronas, S.; Martín, H.; Matas, J. Impact of Different Regulatory Structures on the Management of Energy Communities. Energies 2020, 13, 2892. [Google Scholar] [CrossRef]
- Rosellón, J.; Weigt, H. A Dynamic Incentive Mechanism for Transmission Expansion in Electricity Networks: Theory, Modeling, and Application. Energy J. 2011, 32, 119–148. [Google Scholar] [CrossRef]
- CEER. The Future Role of DSOs—A CEER Conclusions Paper; CEER: King Abdullah Economic City, Saudi Arabia, 2015. [Google Scholar]
- Pereira, G.I.; Pereira da Silva, P.; Soule, D. Assessment of Electricity Distribution Business Model and Market Design Alternatives: Evidence for Policy Design. Energy Environ. 2020, 31, 40–59. [Google Scholar] [CrossRef]
- Egerer, J.; Rosellón, J.; Schill, W.P. Power System Transformation toward Renewables: An Evaluation of Regulatory Approaches for Network Expansion. Energy J. 2015, 36, 105–128. [Google Scholar] [CrossRef]
- Strbac, G.; Konstantelos, I.; Aunedi, M.; Pollitt, M.; Green, R. Delivering Future-Proof Energy Infrastructure; National Infrastructure Commission: London, UK, 2016. [Google Scholar]
- Jorgensen, J.; Mai, T.; Brinkman, G. Reducing Wind Curtailment through Transmission Expansion in a Wind Vision Future; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2017. [Google Scholar]
- Huppmann, D.; Egerer, J. National-Strategic Investment in European Power Transmission Capacity. Eur. J. Oper. Res. 2015, 247, 191–203. [Google Scholar] [CrossRef]
- van den Bergh, J.; Castro, J.; Drews, S.; Exadaktylos, F.; Foramitti, J.; Klein, F.; Konc, T.; Savin, I. Designing an Effective Climate-Policy Mix: Accounting for Instrument Synergy. Clim. Policy 2021, 21, 745–764. [Google Scholar] [CrossRef]
- Lehmann, P.; Gawel, E. Why Should Support Schemes for Renewable Electricity Complement the EU Emissions Trading Scheme? Energy Policy 2013, 52, 597–607. [Google Scholar] [CrossRef]
- Freire-González, J. Environmental Taxation and the Double Dividend Hypothesis in CGE Modelling Literature: A Critical Review. J. Policy Model. 2018, 40, 194–223. [Google Scholar] [CrossRef]
- Van Der Gaast, W.; Clochard, G.-J.; Alberola, E.; Türk, A.; Fujiwara, N.; Spyridaki, N.-A. Effects of Interactions between EU Climate and Energy Policies; Institute for Climate Economics: Brussels, Belgium, 2016. [Google Scholar]
- APRAISE. The APRAISE 3E Method—Deliverable 2.2; APRAISE: Sydney, Australia, 2012. [Google Scholar]
- Khan, A.S.M.; Verzijlbergh, R.A.; Sakinci, O.C.; De Vries, L.J. How Do Demand Response and Electrical Energy Storage Affect (the Need for) a Capacity Market? Appl. Energy 2018, 214, 39–62. [Google Scholar] [CrossRef]
- Kozlova, M.; Overland, I. Combining Capacity Mechanisms and Renewable Energy Support: A Review of the International Experience. Renew. Sustain. Energy Rev. 2022, 155, 111878. [Google Scholar] [CrossRef]
- El Khatib, S.; Galiana, F.D. Investigating Emission Regulation Policy in the Electricity Sector: Modeling an Oligopolistic Electricity Market under Hourly Cap-and-Trade. Energy Econ. 2019, 78, 428–443. [Google Scholar] [CrossRef]
- Davis, T.L.; Thurber, M.C.; Wolak, F.A. An Experimental Comparison of Carbon Pricing Under Uncertainty in Electricity Markets; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Matthes, F.C. Energy Transition in Germany: A Case Study on a Policy-Driven Structural Change of the Energy System. Evol. Institutional Econ. Rev. 2017, 14, 141–169. [Google Scholar] [CrossRef]
- Proença, S.; Fortes, P. The Synergies Between EU Climate and Renewable Energy Policies-Evidence from Portugal Using Integrated Modelling. Econ. Energy Environ. Policy 2020, 9, 149–164. [Google Scholar] [CrossRef]
- Sharma, D.K.; Rapaka, G.K.; Pasupulla, A.P.; Jaiswal, S.; Abadar, K.; Kaur, H. A Review on Smart Grid Telecommunication System. Mater. Today Proc. 2021, 51, 470–474. [Google Scholar] [CrossRef]
- Chattopadhyay, D.; Suski, A. Should Electricity Market Designs Be Improved to Drive Decarbonization? World Bank: Washington, DC, USA, 2022. [Google Scholar]
- European Comission. Energy Roadmap 2050 Impact Assessment, Part 2/2: Accompanying the Document Energy Roadmap 2050, 1565 Final; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- Skea, J. Roadmap 2050: A Practical Guide to a Prosperous, Low-Carbon Europe, European Climate Foundation (2010). 2010. Available online: https://www.vliz.be/imisdocs/publications/234029.pdf (accessed on 11 September 2024).
- Greenpeace International; Global Wind Energy Council; SolarPowerEurope. Energy [R] Evolution: 100% Renewable Energy for All; Greenpeace International: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Bruninx, K.; Orlic, D.; Couckuyt, D.; Grisey, N.; Betraoui, B.; Anderski, T. E-HIGHWAY 2050 Modular Development Plan of the Pan-European Transmission System 2050, Deliverable 2.1 Data Sets of Scenarios for 2050; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- European Commission. A Clean Planet for All: A European Long-Term Strategic Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Tchung-Ming, S.; Diaz-Vazquez, A.R.; Keramidas, K. Global Energy and Climate Outlook 2018: Greenhouse Gas Emissions and Energy Balances; JRC: Sevilla, Spain, 2018. [Google Scholar]
- Nijs, W.; Ruiz Castello, P.; Tarvydas, D.; Tsiropoulos, I.; Zucker, A. Deployment Scenarios for Low Carbon Energy Technologies Deliverable D4.7 for the Low Carbon Energy Observatory (LCEO). 2018. Available online: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC112915/jrc112915_lceo_d4.7.pdf (accessed on 11 September 2024).
- Matthes, F.C.; Blanck, R.; Greiner, B.; Zimmer, W. The Vision Scenario for the European Union 2017 Update for the EU-28; European Commission: Berlin, Germany, 2018; Volume 49. [Google Scholar]
- Pleßmann, G.; Blechinger, P. How to Meet EU GHG Emission Reduction Targets? A Model Based Decarbonization Pathway for Europe’s Electricity Supply System until 2050. Energy Strategy Rev. 2017, 15, 19–32. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darudi, A.; Weigt, H. Review and Assessment of Decarbonized Future Electricity Markets. Energies 2024, 17, 4752. https://doi.org/10.3390/en17184752
Darudi A, Weigt H. Review and Assessment of Decarbonized Future Electricity Markets. Energies. 2024; 17(18):4752. https://doi.org/10.3390/en17184752
Chicago/Turabian StyleDarudi, Ali, and Hannes Weigt. 2024. "Review and Assessment of Decarbonized Future Electricity Markets" Energies 17, no. 18: 4752. https://doi.org/10.3390/en17184752
APA StyleDarudi, A., & Weigt, H. (2024). Review and Assessment of Decarbonized Future Electricity Markets. Energies, 17(18), 4752. https://doi.org/10.3390/en17184752