Environmental and Social Life Cycle Assessment of Data Centre Heat Recovery Technologies Combined with Fuel Cells for Energy Generation
Abstract
:1. Introduction
2. Methodology
2.1. Case Study and System Boundaries
2.2. LCA and S-LCA Goal and Scope Definition
2.3. LCA Methodology
2.3.1. Life Cycle Inventory (LCI)
2.3.2. Life Cycle Impact Assessment (LCIA)
2.4. S-LCA Methodology
System Boundaries
3. Results and Disccussion
3.1. LCA Results
3.2. S-LCA Results
4. Conclusions
Limitations and Assumptions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rashid, E.; Majed, N. Integrated life cycle sustainability assessment of the electricity generation sector in Bangladesh: Towards sustainable electricity generation. Energy Rep. 2023, 10, 3993–4012. [Google Scholar] [CrossRef]
- Eurostat. Energy Consumption in Households. 2022. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_consumption_in_households#Energy_products_used_in_the_residential_sector (accessed on 6 June 2023).
- IEA. Energy System. 2023. Available online: https://www.iea.org/energy-system/buildings/district-heating (accessed on 9 January 2024).
- Directorate-General for Energy. (15 de March de 2024). Commission Adopts EU-Wide Scheme for Rating Sustainability of Data Centres. Available online: https://energy.ec.europa.eu/news/commission-adopts-eu-wide-scheme-rating-sustainability-data-centres-2024-03-15_en (accessed on 26 March 2024).
- Lake, A.; Rezaie, B.; Beyerlein, S. Review of district heating and cooling systems for a sustainable future. Renew. Sustain. Energy Rev. 2017, 67, 417–425. [Google Scholar] [CrossRef]
- IEA. International Energy Agency. 2023. Available online: https://www.iea.org/topics/climate-change (accessed on 6 June 2023).
- Hellweg, S.; Canals, L. Emerging approaches, challenges and opportunities in life cycle assessment. Science 2014, 344, 1109–1113. [Google Scholar] [CrossRef] [PubMed]
- Famiglietti, J.; Gerevini, L.; Spirito, G.; Pozzi, M.; Dénarié, A.; Scoccia, R.; Motta, M. Environmental Life Cycle Assessment scenarios for a district heating network. An Italian case study. Energy Rep. 2021, 7, 368–379. [Google Scholar] [CrossRef]
- Matak, N.; Tomić, T.; Schneider, D.R.; Krajačić, G. Integration of WtE and district cooling in existing Gas-CHP based district heating system–Central European city perspective. Smart Energy 2021, 4, 100043. [Google Scholar] [CrossRef]
- Karlsson, J.; Brunzell, L.; Venkatesh, G. Material-flow analysis, energy analysis, and partial environmental-LCA of a district-heating combined heat and power plant in Sweden. Energy 2018, 144, 31–40. [Google Scholar] [CrossRef]
- Wahlroos, M.; Pärssinen, M.; Manner, J.; Syri, S. Utilizing data center waste heat in district heating–Impacts on energy efficiency and prospects for low-temperature district heating networks. Energy 2017, 140, 1228–1238. [Google Scholar] [CrossRef]
- Oró, E.; Depoorter, V.; Garcia, A.; Salom, J. Energy efficiency and renewable energy integration in data centres. Strategies and modelling review. Renew. Sustain. Energy Rev. 2015, 42, 429–445. [Google Scholar] [CrossRef]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.; Hultink, E.J. The circular economy–A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Guillén-Lambea, S.; Carvalho, M.; Delgado, M.; Lazaro, A. Sustainable enhancement of district heating and cooling configurations by combining thermal energy storage and life cycle assessment. Clean Technol. Environ. Policy 2021, 23, 857–867. [Google Scholar] [CrossRef]
- Jeandaux, C.; Videau, J.-B.; Prieur-Vernat, A. Life Cycle Assessment of District Heating Systems in Europe: Case Study and Recommendations. Sustainability 2021, 13, 11256. [Google Scholar] [CrossRef]
- Vauchez, M.; Famiglietti, J.; Autelitano, K.; Colombert, M.; Scoccia, R.; Motta, M. Life Cycle Assessment of District Heating Infrastructures: A Comparison of Pipe Typologies in France. Energies 2023, 16, 3912. [Google Scholar] [CrossRef]
- Chiavetta, C.; Tinti, F.; Bonoli, A. Comparative life cycle assessment of renewable energy systems for heating and cooling. Procedia Eng. 2011, 21, 591–597. [Google Scholar] [CrossRef]
- Lenzo, P.; Traverso, M.; Salomone, R.; Ioppolo, G. Social Life Cycle Assessment in the Textile Sector: An Italian Case Study. Sustainability 2017, 9, 2092. [Google Scholar] [CrossRef]
- Mirabella, N.; Allacker, K.; Sala, S. Current trends and limitations of life cycle assessment applied to the urban scale: Critical analysis and review of selected literature. Int. J. Life Cycle Assess. 2019, 24, 1174–1193. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhang, T.; Tan, X.; Wang, G.; Duan, L.; Shi, Q.; Ji, C.; Bai, Y.; Shen, X.; Meng, J.; et al. Environmental impact assessment of ground source heat pump system for heating and cooling: A case study in China. Int. J. Life Cycle Assess. 2022, 27, 395–408. [Google Scholar] [CrossRef]
- LuleKraft. 2024. Available online: https://lulekraft.se (accessed on 27 March 2024).
- UNEP. Guidelines for Social Life Cycle Assessment of Products and Organizations; Norris, C.B., Traverso, M., Neugebauer, S., Ekener, E., Schaubroeck, T., Garrido, S.R., Berger, M., Valdivia, S., Lehmann, A., Finkbeiner, M., et al., Eds.; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2020; Available online: https://www.lifecycleinitiative.org/wp-content/uploads/2021/01/Guidelines-for-Social-Life-Cycle-Assessment-of-Products-and-Organizations-2020-22.1.21sml.pdf (accessed on 26 May 2024).
- UNEP. Methodological Sheets for Subcategories in Social Life Cycle Assessment (S-LCA); Traverso, M., Valdivia, S., Luthin, A., Roche, L., Arcese, G., Neugebauer, S., Petti, L., D’Eusanio, M., Tragnone, B.M., Mankaa, R., et al., Eds.; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2021; Available online: https://www.lifecycleinitiative.org/wp-content/uploads/2021/12/Methodological-Sheets_2021_final.pdf (accessed on 26 May 2024).
- UNEP/SETAC. Guidelines for Social Life Cycle Assessment Of Products; Benoît, C., Mazijn, B., Eds.; United Nations Environment Programme: Nairobi, Kenya, 2013; Available online: https://www.deslibris.ca/ID/236529 (accessed on 26 May 2024).
- ISO 26000; Guidance on Social Responsibility. ISO: Geneva, Switzerland, 2010. Available online: https://www.iso.org/standard/42546.html (accessed on 25 May 2024).
- Zu, L. ISO 26000. In Encyclopedia of Corporate Social Responsibility; Idowu, S.O., Capaldi, N., Zu, L., Gupta, A.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1507–1512. [Google Scholar] [CrossRef]
- Commission Recommendation (EU) 2021/2279 of the European Parliament and of the Council of 15 December 2021 on the Use of the Environmental Footprint Methods to Measure and Communicate the Life Cycle Environmental Performance of Products and Organisations (OJ L 471/1, 30.12.2021). Available online: http://data.europa.eu/eli/reco/2021/2279/oj (accessed on 1 March 2024).
- Brentrup, F.; Küsters, J.; Kuhlmann, H.; Lammel, J. Environmental impact assessment of agricultural production systems using the life cycle assessment methodology. Eur. J. Agron. 2004, 20, 247–264. [Google Scholar] [CrossRef]
- Dong, Y.H.; Ng, S.T. A life cycle assessment model for evaluating the environmental impacts of building construction in Hong Kong. Build. Environ. 2015, 89, 183–191. [Google Scholar] [CrossRef]
- Ghoroghi, A.; Rezgui, Y.; Petri, I.; Beach, T. Advances in application of machine learning to life cycle assessment: A literature review. Int. J. Life Cycle Assess. 2022, 27, 433–456. [Google Scholar] [CrossRef]
- Goglio, P.; Williams, A.G.; Balta-Ozkan, N.; Harris, N.R.P.; Williamson, P.; Huisingh, D.; Zhang, Z.; Tavoni, M. Advances and challenges of life cycle assessment (LCA) of greenhouse gas removal technologies to fight climate changes. J. Clean. Prod. 2020, 244, 118896. [Google Scholar] [CrossRef]
- Grenz, J.; Ostermann, M.; Käsewieter, K.; Cerdas, F.; Marten, T.; Herrmann, C.; Tröster, T. Integrating Prospective LCA in the Development of Automotive Components. Sustainability 2023, 15, 10041. [Google Scholar] [CrossRef]
- Hertwich, E.G.; Gibon, T.; Bouman, E.A.; Arvesen, A.; Suh, S.; Heath, G.A.; Bergesen, J.D.; Ramirez, A.; Vega, M.I.; Shi, L. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc. Natl. Acad. Sci. USA 2015, 112, 6277–6282. [Google Scholar] [CrossRef]
- Jolliet, O.; Antón, A.; Boulay, A.-M.; Cherubini, F.; Fantke, P.; Levasseur, A.; McKone, T.E.; Michelsen, O.; Milà I Canals, L.; Motoshita, M.; et al. Global guidance on environmental life cycle impact assessment indicators: Impacts of climate change, fine particulate matter formation, water consumption and land use. Int. J. Life Cycle Assess. 2018, 23, 2189–2207. [Google Scholar] [CrossRef]
- Odey, G.; Adelodun, B.; Kim, S.-H.; Choi, K.-S. Status of Environmental Life Cycle Assessment (LCA): A Case Study of South Korea. Sustainability 2021, 13, 6234. [Google Scholar] [CrossRef]
- Plevin, R.J.; Delucchi, M.A.; Creutzig, F. Using Attributional Life Cycle Assessment to Estimate Climate-Change Mitigation Benefits Misleads Policy Makers. J. Ind. Ecol. 2014, 18, 73–83. [Google Scholar] [CrossRef]
- Zhou, T.; Yang, D.; Meng, H.; Wan, M.; Zhang, S.; Guo, R. A bibliometric review of climate change cascading effects: Past focus and future prospects. Environ. Dev. Sustain. 2023. [Google Scholar] [CrossRef]
- Krol, M.; Houweling, S.; Bregman, B.; Van Den Broek, M.; Segers, A.; Van Velthoven, P.; Peters, W.; Dentener, F.; Bergamaschi, P. The two-way nested global chemistry-transport zoom model TM5: Algorithm and applications. Atmos. Chem. Phys. 2005, 5, 417–432. [Google Scholar] [CrossRef]
- Liu, H.; Wang, N.; Chen, D.; Tan, Q.; Song, D.; Huang, F. How Photochemically Consumed Volatile Organic Compounds Affect Ozone Formation: A Case Study in Chengdu, China. Atmosphere 2022, 13, 1534. [Google Scholar] [CrossRef]
- Norris, G.A. Impact Characterization in the Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts: Methods for Acidification, Eutrophication, and Ozone Formation. J. Ind. Ecol. 2002, 6, 79–101. [Google Scholar] [CrossRef]
- Hayashi, K.; Okazaki, M.; Itsubo, N.; Inaba, A. Development of damage function of acidification for terrestrial ecosystems based on the effect of aluminum toxicity on net primary production. Int. J. Life Cycle Assess. 2004, 9, 13–22. [Google Scholar] [CrossRef]
- Huijbregts MA, J.; Schöpp, W.; Verkuijlen, E.; Heijungs, R.; Reijnders, L. Spatially Explicit Characterization of Acidifying and Eutrophying Air Pollution in Life-Cycle Assessment. J. Ind. Ecol. 2000, 4, 75–92. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Van Vuuren, D.P.; Derwent, R.G.; Posch, M. A Global Analysis of Acidification and Eutrophication of Terrestrial Ecosystems. Water Air Soil Pollut. 2002, 141, 349–382. [Google Scholar] [CrossRef]
- Kobetičová, K.; Černý, R. Terrestrial eutrophication of building materials and buildings: An emerging topic in environmental studies. Sci. Total Environ. 2019, 689, 1316–1328. [Google Scholar] [CrossRef]
- Brandão, M.; ICanals, L.M. Global characterisation factors to assess land use impacts on biotic production. Int. J. Life Cycle Assess. 2013, 18, 1243–1252. [Google Scholar] [CrossRef]
- Milà I Canals, L.; Romanyà, J.; Cowell, S.J. Method for assessing impacts on life support functions (LSF) related to the use of ‘fertile land’ in Life Cycle Assessment (LCA). J. Clean. Prod. 2007, 15, 1426–1440. [Google Scholar] [CrossRef]
- Scholz, R. Assessment of Land Use Impacts on the Natural Environment. Part 1: An Analytical Framework for Pure Land Occupation and Land Use Change (8 pp). Int. J. Life Cycle Assess. 2007, 12, 16–23. [Google Scholar] [CrossRef]
- Boulay, A.-M.; Bulle, C.; Bayart, J.-B.; Deschênes, L.; Margni, M. Regional Characterization of Freshwater Use in LCA: Modeling Direct Impacts on Human Health. Environ. Sci. Technol. 2011, 45, 8948–8957. [Google Scholar] [CrossRef]
- Kounina, A.; Margni, M.; Bayart, J.-B.; Boulay, A.-M.; Berger, M.; Bulle, C.; Frischknecht, R.; Koehler, A.; Milà I Canals, L.; Motoshita, M.; et al. Review of methods addressing freshwater use in life cycle inventory and impact assessment. Int. J. Life Cycle Assess. 2013, 18, 707–721. [Google Scholar] [CrossRef]
- Pfister, S.; Koehler, A.; Hellweg, S. Assessing the Environmental Impacts of Freshwater Consumption in LCA. Environ. Sci. Technol. 2009, 43, 4098–4104. [Google Scholar] [CrossRef]
- Heijungs, R.; Guinée, J.B. Allocation and ‘what-if’ scenarios in life cycle assessment of waste management systems. Waste Manag. 2007, 27, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Hertwich, E.G.; Peters, G.P. Carbon Footprint of Nations: A Global, Trade-Linked Analysis. Environ. Sci. Technol. 2009, 43, 6414–6420. [Google Scholar] [CrossRef] [PubMed]
- Drielsma, J.A.; Russell-Vaccari, A.J.; Drnek, T.; Brady, T.; Weihed, P.; Mistry, M.; Simbor, L.P. Mineral resources in life cycle impact assessment—Defining the path forward. Int. J. Life Cycle Assess. 2016, 21, 85–105. [Google Scholar] [CrossRef]
- Norgate, T.E.; Jahanshahi, S.; Rankin, W.J. Assessing the environmental impact of metal production processes. J. Clean. Prod. 2007, 15, 838–848. [Google Scholar] [CrossRef]
- Jørgensen, A.; Finkbeiner, M.; Jørgensen, M.S.; Hauschild, M.Z. Defining the baseline in social life cycle assessment. Int. J. Life Cycle Assess. 2010, 15, 376–384. [Google Scholar] [CrossRef]
- Ramirez PK, S.; Petti, L.; Haberland, N.T.; Ugaya CM, L. Subcategory assessment method for social life cycle assessment. Part 1: Methodological framework. Int. J. Life Cycle Assess. 2014, 19, 1515–1523. [Google Scholar] [CrossRef]
- Martínez-Blanco, J.; Lehmann, A.; Chang, Y.-J.; Finkbeiner, M. Social organizational LCA (SOLCA)—A new approach for implementing social LCA. Int. J. Life Cycle Assess. 2015, 20, 1586–1599. [Google Scholar] [CrossRef]
- Wu, R.; Yang, D.; Chen, J. Social Life Cycle Assessment Revisited. Sustainability 2014, 6, 4200–4226. [Google Scholar] [CrossRef]
- Norris, C.; Norris, G.; Aulisio, D. Efficient Assessment of Social Hotspots in the Supply Chains of 100 Product Categories Using the Social Hotspots Database. Sustainability 2014, 6, 6973–6984. [Google Scholar] [CrossRef]
- Weidema, B.P. Towards a Taxonomy for Social Impact Pathway Indicators. In Perspectives on Social LCA; Traverso, M., Petti, L., Zamagni, A., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 11–23. [Google Scholar] [CrossRef]
- Ekener, E.; Hansson, J.; Gustavsson, M. Addressing positive impacts in social LCA—Discussing current and new approaches exemplified by the case of vehicle fuels. Int. J. Life Cycle Assess. 2018, 23, 556–568. [Google Scholar] [CrossRef]
- Ekener-Petersen, E.; Finnveden, G. Potential hotspots identified by social LCA—Part 1: A case study of a laptop computer. Int. J. Life Cycle Assess. 2013, 18, 127–143. [Google Scholar] [CrossRef]
- Siebert, A.; Bezama, A.; O’Keeffe, S.; Thrän, D. Social life cycle assessment indices and indicators to monitor the social implications of wood-based products. J. Clean. Prod. 2018, 172, 4074–4084. [Google Scholar] [CrossRef]
- Roh, S.; Tae, S.; Kim, R.; Martínez, D. Analysis of Worker Category Social Impacts in Different Types of Concrete Plant Operations: A Case Study in South Korea. Sustainability 2018, 10, 3661. [Google Scholar] [CrossRef]
- Huertas-Valdivia, I.; Ferrari, A.M.; Settembre-Blundo, D.; García-Muiña, F.E. Social Life-Cycle Assessment: A Review by Bibliometric Analysis. Sustainability 2020, 12, 6211. [Google Scholar] [CrossRef]
- Nubi, O.; Morse, S.; Murphy, R.J. A Prospective Social Life Cycle Assessment (sLCA) of Electricity Generation from Municipal Solid Waste in Nigeria. Sustainability 2021, 13, 10177. [Google Scholar] [CrossRef]
- Hochschorner, E.; Finnveden, G. Evaluation of two simplified Life Cycle assessment methods. Int. J. Life Cycle Assess. 2003, 8, 119. [Google Scholar] [CrossRef]
- Wang, S.; Su, D.; Wu, Y. Environmental and social life cycle assessments of an industrial LED lighting product. Environ. Impact Assess. Rev. 2022, 95, 106804. [Google Scholar] [CrossRef]
- Fan, L.; Pang, B.; Zhang, Y.; Zhang, X.; Sun, Y.; Wang, Y. Evaluation for social and humanity demand on green residential districts in China based on SLCA. Int. J. Life Cycle Assess. 2018, 23, 640–650. [Google Scholar] [CrossRef]
- Pasciucco, F.; Francini, G.; Pecorini, I.; Baccioli, A.; Lombardi, L.; Ferrari, L. Valorization of biogas from the anaerobic co-treatment of sewage sludge and organic waste: Life cycle assessment and life cycle costing of different recovery strategies. J. Clean. Prod. 2023, 401, 136762. [Google Scholar] [CrossRef]
- Sharma, V.; Sharma, D.; Tsai, M.; Ortizo RG, G.; Yadav, A.; Nargotra, P.; Chen, C.; Sun, P.; Dong, C. Insights into the recent advances of agro-industrial waste valorization for sustainable biogas production. Bioresour. Technol. 2023, 390, 129829. [Google Scholar] [CrossRef]
- Rillo, E.; Gandiglio, M.; Lanzini, A.; Bobba, S.; Santarelli, M.; Blengini, G. Life Cycle Assessment (LCA) of biogas-fed Solid Oxide Fuel Cell (SOFC) plant. Energy 2017, 126, 585–602. [Google Scholar] [CrossRef]
- Mehmeti, A.; McPhail, S.J.; Pumiglia, D.; Carlini, M. Life cycle sustainability of solid oxide fuel cells: From methodological aspects to system implications. J. Power Sources 2016, 325, 772–785. [Google Scholar] [CrossRef]
- Tian, H.; Wang, X.; Lim, E.Y.; Lee, J.T.; Ee, A.W.; Zhang, J.; Tong, Y.W. Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization. Renew. Sustain. Energy Rev. 2021, 150, 111489. [Google Scholar] [CrossRef]
- Pobeheim, H.; Munk, B.; Lindorfer, H.; Guebitz, G.M. Impact of nickel and cobalt on biogas production and process stability during semi-continuous anaerobic fermentation of a model substrate for maize silage. Water Res. 2010, 45, 781–787. [Google Scholar] [CrossRef] [PubMed]
- Ardolino, F.; Cardamone, G.; Parrillo, F.; Arena, U. Biogas-to-biomethane upgrading: A comparative review and assessment in a life cycle perspective. Renew. Sustain. Energy Rev. 2021, 139, 110588. [Google Scholar] [CrossRef]
- Venkatesh, G.; Elmi, R.A. Economic–environmental analysis of handling biogas from sewage sludge digesters in WWTPs (wastewater treatment plants) for energy recovery: Case study of Bekkelaget WWTP in Oslo (Norway). Energy 2013, 58, 220–235. [Google Scholar] [CrossRef]
- Fedeli, M.; Di Pretoro, A.; Montastruc, L.; Manenti, F. Conventional vs. Alternative biogas utilizations: An LCA-AHP based comparative study. Clean. Environ. Syst. 2023, 11, 100150. [Google Scholar] [CrossRef]
- Kruse, S.A.; Flysjö, A.; Kasperczyk, N.; Scholz, A.J. Socioeconomic indicators as a complement to life cycle assessment—An application to salmon production systems. Int. J. Life Cycle Assess. 2009, 14, 8–18. [Google Scholar] [CrossRef]
- Pollok, L.; Spierling, S.; Endres, H.-J.; Grote, U. Social Life Cycle Assessments: A Review on Past Development, Advances and Methodological Challenges. Sustainability 2021, 13, 10286. [Google Scholar] [CrossRef]
- Neugebauer, S.; Emara, Y.; Hellerström, C.; Finkbeiner, M. Calculation of Fair wage potentials along products’ life cycle–Introduction of a new midpoint impact category for social life cycle assessment. J. Clean. Prod. 2017, 143, 1221–1232. [Google Scholar] [CrossRef]
- Dreyer, L.C.; Hauschild, M.Z.; Schierbeck, J. Characterisation of social impacts in LCA. Part 2: Implementation in six company case studies. Int. J. Life Cycle Assess. 2010, 15, 385–402. [Google Scholar] [CrossRef]
- Lindkvist, M.; Ekener, E. Analysis of human well-being as the area of protection in social life cycle assessment. Int. J. Life Cycle Assess. 2023, 28, 1428–1442. [Google Scholar] [CrossRef]
- Arcese, G.; Lucchetti, M.C.; Massa, I. Modeling Social Life Cycle Assessment framework for the Italian wine sector. J. Clean. Prod. 2017, 140, 1027–1036. [Google Scholar] [CrossRef]
- Alessandro, M.; Cardinale Lagomarsino, B.; Scartascini, C.; Streb, J.; Torrealday, J. Transparency and Trust in Government. Evidence from a Survey Experiment. World Dev. 2021, 138, 105223. [Google Scholar] [CrossRef]
- Hallste Pérez, T.; Rodríguez-Chueca, J.; Pérez Rodríguez, J. Inclusion of key social indices for a comparative assessment of the sustainability of the life cycle of current and future electricity generation in Spain: A proposed methodology. Sci. Total Environ. 2023, 899, 165541. [Google Scholar] [CrossRef]
- Peters, H. Finite Games with Incomplete Information. In Game Theory; Springer: Berlin/Heidelberg, Germany, 2008; pp. 59–71. [Google Scholar] [CrossRef]
Subsystem Analysed | On-Site Equipment |
---|---|
DC module | Immersion cooled system electronics |
SOFC module | 9 SOFC Biogas input |
Energy Production | Annual Production | Unit |
---|---|---|
Thermal energy | 15,600 | kWht/year |
Electricity | 78,785 | kWhe/year |
Category | Sub-Category | Indicator |
---|---|---|
Worker | Freedom of association and collective bargaining |
|
Child Labour |
| |
Fair Salary |
| |
Equal opportunities |
| |
Health and safety |
| |
Local community | Local employment |
|
Safe and healthy living conditions |
| |
Society | Product utility |
|
Commitments to sustainability |
| |
Corruption |
| |
Value chain | Fair competition |
|
Consumers | Health |
|
Quality |
|
Environmental Impact Category (Acronym) | Units (/kWht) | Baseline | WEDISTRICT |
---|---|---|---|
Climate change (CC) | kg CO2 eq | 1.23 × 10−1 | 6.44 × 10−2 |
Photochemical ozone formation (POF) | kg NMVOC eq | 5.57 × 10−4 | 2.33 × 10−4 |
Acidification (AC) | mol H+ eq | 4.95 × 10−4 | 5.73 × 10−4 |
Eutrophication, terrestrial (EUT) | mol N eq | 1.05 × 10−3 | 7.63 × 10−4 |
Land use (LU) | Pt | 1.75 × 100 | 1.85 × 100 |
Water use (WU) | m3 depriv. | 8.64 × 10−3 | 2.31 × 100 |
Resource use, fossils (RUF) | MJ | 1.07 × 100 | 1.91 × 100 |
Resource use, minerals and metals (RUM) | kg Sb eq | 1.06 × 10−6 | 3.93 × 10−6 |
Environmental Impact Category | Units (/kWht) | Baseline | WEDISTRICT | WEDISTRICT + Avoided Burden |
---|---|---|---|---|
CC | kg CO2 eq | 1.23 × 10−1 | 6.44 × 10−2 | −1.46 × 10−1 |
POF | kg NMVOC eq | 5.57 × 10−4 | 2.33 × 10−4 | −6.52 × 10−4 |
AC | mol H+ eq | 4.95 × 10−4 | 5.73 × 10−4 | −8.17 × 10−4 |
EUT | mol N eq | 1.05 × 10−3 | 7.63 × 10−4 | −3.37 × 10−3 |
LU | Pt | 1.75 × 100 | 1.85 × 100 | −2.29 × 101 |
WU | m3 depriv. | 8.64 × 10−3 | 2.31 × 100 | 1.80 × 100 |
RUF | MJ | 1.07 × 100 | 1.91 × 100 | −2.07 × 101 |
RUM | kg Sb eq | 1.06 × 10−6 | 3.93 × 10−6 | −5.84 × 10−7 |
Impact Category | Units | Baseline | WEDISTRICT | |
---|---|---|---|---|
Workers (directly involved in WEDISTRICT boundaries) | ||||
Men to women occupation ratio in the company | Ratio | 1.15 | 0.40 | |
Men to women executive managers ratio | Ratio | 1.1 | 0.5 | |
Total number of affiliates | % (people in union/total) | 68 | 75 | |
Wage inequality (average salary compared to managers salary) | % (average salary/managers salary) | 46 | 50 | |
Lowest paid worker | € | 24,194 | 25,000 | |
Average annual wage in the sector | € | 60,750 | 50,000 | |
Employment rates of people with special needs with respect to the total employed people | % | 52 | 0 | |
Sick-leave days | #/year/employee | 14 | N/A | |
Accident ratio per employee | accidents/year/1000 workers | 2.6 | Unknown | |
Local community | ||||
Percentage of workers who reside in the local community | % | 72 | 90 | |
Environmental certifications | Yes/No | Yes | No | |
Society | ||||
Relevance of the product to the satisfaction of basic needs | Yes/No | No | Yes | |
Legal actions during the assessment period | Yes/No | Yes | No | |
Value chain | ||||
Legal actions during the reporting period | Yes/No | Yes | No | |
Consumers (people in general using the facilities of the target building) | ||||
Access to objective information | Yes/No | No | Yes | |
Legend:
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puentes Bejarano, C.A.; Pérez Rodríguez, J.; de Andrés Almeida, J.M.; Hidalgo-Carvajal, D.; Gustaffson, J.; Summers, J.; Abánades, A. Environmental and Social Life Cycle Assessment of Data Centre Heat Recovery Technologies Combined with Fuel Cells for Energy Generation. Energies 2024, 17, 4745. https://doi.org/10.3390/en17184745
Puentes Bejarano CA, Pérez Rodríguez J, de Andrés Almeida JM, Hidalgo-Carvajal D, Gustaffson J, Summers J, Abánades A. Environmental and Social Life Cycle Assessment of Data Centre Heat Recovery Technologies Combined with Fuel Cells for Energy Generation. Energies. 2024; 17(18):4745. https://doi.org/10.3390/en17184745
Chicago/Turabian StylePuentes Bejarano, Camila Andrea, Javier Pérez Rodríguez, Juan Manuel de Andrés Almeida, David Hidalgo-Carvajal, Jonas Gustaffson, Jon Summers, and Alberto Abánades. 2024. "Environmental and Social Life Cycle Assessment of Data Centre Heat Recovery Technologies Combined with Fuel Cells for Energy Generation" Energies 17, no. 18: 4745. https://doi.org/10.3390/en17184745
APA StylePuentes Bejarano, C. A., Pérez Rodríguez, J., de Andrés Almeida, J. M., Hidalgo-Carvajal, D., Gustaffson, J., Summers, J., & Abánades, A. (2024). Environmental and Social Life Cycle Assessment of Data Centre Heat Recovery Technologies Combined with Fuel Cells for Energy Generation. Energies, 17(18), 4745. https://doi.org/10.3390/en17184745