Partial Discharge Inception Voltage Monitoring of Enameled Wires under Thermal Stress over Time
Abstract
:1. Introduction
2. Experimental Setup
2.1. Test Circuit Configuration
- AWG—Arbitrary waveform generator. It allows the creation of waveforms of different types, with variable amplitude and frequency. In the case examined here, for electrical aging, a sinusoidal voltage with an amplitude of 395 VRMS, which was lower than the PDIV, and a frequency of 500 Hz was used.
- Amplifier—Variable gain amplifier.
- Fuse—It disconnects the system from the power supply in case of a fault or short circuit currents.
- A step-up high frequency transformer (with transformation ratio and rated frequency 50–1000 Hz).
- HFCT—High-frequency current transformer with a bandwidth of 5 kHz–80 MHz. It is used as a sensor to detect PDIV values.
- Oscilloscope—Digital oscilloscope in which the applied voltage and the PD activity are visualized, and the PDIV values are measured using a voltage divider (VR2/(VR1+R2); ratio, 1/560).
- RL—Limiting resistor (50 kΩ) that limits the short-circuit currents upon possible discharge of the specimen.
- Oven—The chamber where the samples are placed, which is connected in parallel under electrical and thermal stresses, as shown in Figure 2.
- MCP—Maximum current protection.
2.2. Twisted-Pair Specimens
2.3. Test Procedure
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guastavino, F.; Ratto, A. Comparison between conventional and nanofilled enamels under different environmental conditions. IEEE Electr. Insul. Mag. 2012, 28, 35–41. [Google Scholar] [CrossRef]
- Guastavino, F.; Porcile, F.; Ratto, A.; Cordano, D.; Secondo, G. Electrical aging test and repetitive partial discharge inception voltage on random wire wound winding insulation. In Proceedings of the 2014 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Des Moines, IA, USA, 19–22 October 2014; pp. 510–513. [Google Scholar] [CrossRef]
- Guastavino, F.; Dardano, A. Life Tests on Twisted Pairs in Presence of Partial Discharges: Influence of the Voltage Waveform. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 45–52. [Google Scholar] [CrossRef]
- Guastavino, F.; Briano, L.; Gallesi, F.; Torello, E. Effect of Thermal Stress Over the Partial Discharge Inception Voltage on Twisted Pairs. In Proceedings of the 2020 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Virtual, 18–30 October 2020; pp. 366–368. [Google Scholar] [CrossRef]
- Moghadam, D.E.; Herold, C.; Zbinden, R. Effects of Resins on Partial Discharge Activity and Lifetime of Insulation Systems Used in eDrive Motors and Automotive Industries. In Proceedings of the 2020 Electrical Insulation Conference (EIC), Knoxville, TN, USA, 22 June–3 July 2020. [Google Scholar]
- Montanari, G.C.; Cavallini, A.; Ciani, F.; Contin, A. Accelerated aging, partial discharges and breakdown of Type II turn-to-turn insulation system of rotating machines. In Proceedings of the IEEE Electrical Insulation Conference (EIC), Montreal, QC, Canada, 19–22 June 2016; pp. 190–193. [Google Scholar] [CrossRef]
- Fang, L.; Cotton, I.; Wang, Z.J.; Freer, R. Insulation performance evaluation of high temperature wire candidates for aerospace electrical machine winding application. In Proceedings of the IEEE Electrical Insulation Conference (EIC), Ottawa, ON, Canada, 2–5 June 2013; pp. 253–256. [Google Scholar] [CrossRef]
- Cao, W.; Mecrow, B.C.; Atkinson, G.J.; Bennett, J.W.; Atkinson, D.J. Overview of electric motor technologies used for more electric aircraft (MEA). IEEE Trans. Ind. Electron. 2012, 59, 3523–3531. [Google Scholar]
- Mancinelli, P.; Stagnitta, S.; Cavallini, A. Qualification of hairpin motors insulation for automotive applications. IEEE Trans. Ind. Appl. 2017, 53, 3110–3118. [Google Scholar] [CrossRef]
- Gubanski, S.M. Outdoor polymeric insulators: Role of corona in performance of silicone rubber housings. In Proceedings of the 2015 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Ann Arbor, MI, USA, 18–21 October 2015. [Google Scholar]
- Mavrikakis, C.; Mikropoulos, P.N.; Siderakis, K. Evaluation of field-ageing effects on insulating materials of composite suspension insulators. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 490–498. [Google Scholar] [CrossRef]
- Mikropoulos, P.N.; Samaras, P.K. Partial Discharge Activity on Polymeric Insulating Surfaces under Positive Trapezoidal High Voltages. In Proceedings of the 2021 IEEE Electrical Insulation Conference (EIC), Virtual, 7–28 June 2021. [Google Scholar]
- Petitgas, B.; Seytre, G.; Gain, O.; Boiteux, G.; Royaud, I.; Serghei, A.; Gimenez, A.; Anton, A. High temperature aging of enameled copper wire—Relationships between chemical structure and electrical behavior. In Proceedings of the 2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Cancun, Mexico, 16–19 October 2011; pp. 84–88. [Google Scholar] [CrossRef]
- Briano, L.; Gallesi, F.; Guastavino, F. Variation Over Time of Partial Discharge Inception Voltage Due to Combined Electrical and Thermal Stress on Twisted Pairs. In Proceedings of the 2021 IEEE Conference on Electrical Insulation and Dielectric Phenomena, Vancouver, BC, Canada, 12–15 December 2021. [Google Scholar]
- Fréchette, M.F.; Vijh, A.; Trudeau, M.L. Nanodielectrics: A “Universal” Panacea for Solving All Electrical Insulation Problems? In Proceedings of the 2010 International Conference on Solid Dielectrics, Potsdam, Germany, 4–9 July 2010. [Google Scholar]
- Takenouchi, S.; Nishigaki, Y. Partial Discharge Properties till Breakdown of Boehmite Added Enameled Twisted Pair under Bipolar Repetitive Impulse Voltage Application. In Proceedings of the 2020 Electrical Insulation Conference (EIC), Virtual Event, 22 June–3 July 2020. [Google Scholar]
- Gallesi, F.; Guastavino, F. Preliminary Investigations of the Electrical Tree Growth at Frequencies of 50 Hz and 2.2 kHz by means of Partial Discharge Analysis. In Proceedings of the Electrical Insulation Conference (EIC), Virtual Event, 7–28 June 2021. [Google Scholar]
- Ji, Y.; Giangrande, P. Investigation on Humidity Effect on Partial Discharge Considering Thermal Aging. In Proceedings of the 2022 International Conference on Electrical Machines (ICEM), Valencia, Spain, 5–8 September 2022. [Google Scholar]
- Prochazka, R.; Sefl, O. Influence of Voltage Distortion Shape on Partial Discharge Activity in Internal Voids. In Proceedings of the 2020 International Conference on Diagnostics in Electrical Engineering (Diagnostika), Pilsen, Czech Republic, 1–4 September 2020. [Google Scholar]
- Montsinger, V.M. Loading Transformers By Temperature. Trans. Am. Inst. Electr. Eng. 1930, 49, 776–790. [Google Scholar] [CrossRef]
- Brancato, E.L. Insulation Aging a Historical and Critical Review. IEEE Trans. Electr. Insul. 1978, 13, 308–317. [Google Scholar] [CrossRef]
- Azimuddin, A.; Refaat, S.S. A Comprehensive Model for Electrical Degradation of Power Cable Insulation. In Proceedings of the 2021 IEEE Conference on Electrical Insulation and Dielectric Phenomena, Vancouver, BC, Canada, 12–15 December 2021. [Google Scholar]
- Guastavino, F.; Torello, E.; Della Giovanna, L.; Khan, I. Study of the Partial Discharge Inception Voltage Variation Over Time on Enameled Wires Subjected to Thermal-Electrical Stress. In Proceedings of the 2023 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), East Rutherford, NJ, USA, 15–19 October 2023; pp. 1–3. [Google Scholar] [CrossRef]
- Acebsa. Available online: https://www.acebsa.com/productos.php (accessed on 1 June 2023).
- Gherardi, P.; Goetter, R.; Jordan, C.; Lienert, K.W.; Murray, T.; Winkeler, M. Polymers for Electrical Insulation: Coating and Casting Materials for the Electrical Industry; Die Bibliothek der Technik; Süddeutscher Verlag GmbH: Munich, Germany, 2008; Volume 314, ISBN 978-3-937889-82-52. [Google Scholar]
- IEC 60851-5:2008+AMD1:2011+AMD2:2019; Winding Wires—Test Methods—Part 5: Electrical Properties. IEC Standard: Geneva, Switzerland, 2019.
- Guastavino, F.; Ratto, A.; Torello, E.; Biondi, G. Aging Tests on Nanostructured Enamels for Winding Wire Insulation. IEEE Trans. Ind. Electron. 2014, 61, 5550–5557. [Google Scholar] [CrossRef]
- Guastavino, F.; Briano, L.; Gallesi, F.; Torello, E. A review on the comparison of conventional and corona resistant nanofilled enamels. In Proceedings of the 2021 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Modena, Italy, 8–9 April 2021; pp. 213–218. [Google Scholar] [CrossRef]
- Florkowski, M.; Florkowska, B.; Zydron, P. Partial Discharges in Insulating Systems of Low Voltage Electric Motors Fed by Power Electronics—Twisted-Pair Samples Evaluation. Energies 2019, 12, 768. [Google Scholar] [CrossRef]
- Savin, S.; Ait-Amar, S.; Roger, D. Turn-to-Turn Capacitance Variations Correlated to PDIV for AC Motors Monitoring. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 34–41. [Google Scholar] [CrossRef]
- Szczepanski, M.; Fetouhi, L.; Sabatou, M. How does PDIV change during isothermal aging of magnet wire. In Proceedings of the 2022 IEEE Electrical Insulation Conference (EIC), Knoxville, TN, USA, 19–23 June 2022. [Google Scholar]
- Wan, D.; Qi, F.; Zhou, Q.; Zhou, H.; Zhao, M.; Duan, X. Effect of Thermal Aging on Threshold Field Strength and Relative Permittivity of Cross Linked Polyethylene with Different Cross Linking Agent Contents. J. Electr. Eng. Technol. 2021, 16, 2885–2892. [Google Scholar] [CrossRef]
- Fetouhi, L.; Sabatou, M.; Szczepanski, M.; Pin, S.; Thomas, C.; Belijar, G. Thermal aging of enameled wire: Dielectric markers and structural properties drift correlation. In Proceedings of the 2022 IEEE 4th International Conference on Dielectrics (ICD), Palermo, Italy, 3–7 July 2022. [Google Scholar]
- Uchechukwu, A.M.; Anthony, E.; Godspower, E. Electrical Properties of Enamel Wire Insulation. Int. J. Trend Sci. Res. Dev. (IJTSRD) 2019, 3, 803–806. [Google Scholar]
Temperature | Micro TiO2 | Nano SiO2 | Conventional | Applied Voltage |
---|---|---|---|---|
200 °C | A1 | B1 | C1 | Sine, 500 Hz 395 VRMS |
220 °C | A2 | B2 | C2 | |
230 °C | A3 | B3 | C3 | |
240 °C | A4 | B4 | C4 | |
250 °C | A5 | B5 | C5 |
Temperature | K | n | R2 | PDIVexp (1000 h) | PDIVexp (1 Year) |
---|---|---|---|---|---|
200 °C | 685.8 | 0.032 | 0.922 | 538.51 | 512.91 |
220 °C | 650.7 | 0.025 | 0.98 | 547.50 | 518.58 |
230 °C | 622.44 | 0.023 | 0.88 | 531.00 | 505.15 |
240 °C | 654 | 0.035 | 0.94 | 513.54 | 475.98 |
250 °C | 647.4 | 0.051 | 0.96 | 455.17 | 407.48 |
Temperature | K | n | R2 | PDIVexp (1000 h) | PDIVexp (1 Year) |
---|---|---|---|---|---|
200 °C | 606.85 | 0.013 | 0.91 | 554.73 | 539.30 |
220 °C | 621.87 | 0.024 | 0.98 | 526.87 | 500.13 |
230 °C | 631.48 | 0.033 | 0.74 | 502.76 | 468.01 |
240 °C | 631.42 | 0.047 | 0.97 | 456.36 | 412.10 |
250 °C | 615.54 | 0.054 | 0.93 | 423.87 | 376.99 |
Temperature | K | n | R2 | PDIVexp (1000 h) | PDIVexp (1 Year) |
---|---|---|---|---|---|
200 °C | 541.23 | 0.015 | 0.91 | 487.96 | 472.33 |
220 °C | 553.9 | 0.024 | 0.95 | 469.28 | 445.46 |
230 °C | 577.5 | 0.037 | 0.94 | 447.25 | 412.74 |
240 °C | 561.8 | 0.045 | 0.96 | 411.71 | 373.40 |
250 °C | 532.7 | 0.041 | 0.98 | 401.31 | 367.15 |
Enamel ID | A | B | R2 |
---|---|---|---|
micro TiO2 | −0.0054 | 7.435 | 0.923 |
nano SiO2 | −0.0042 | 7.047 | 0.932 |
Conventional | −0.0030 | 6.929 | 0.605 |
Enamel ID | A | B | R2 |
---|---|---|---|
micro TiO2 | −0.0073 | 7.283 | 0.938 |
nano SiO2 | −0.0055 | 7.279 | 0.943 |
Conventional | −0.0041 | 7.114 | 0.627 |
Temperature [°C] | Conventional | Micro TiO2 | Nano SiO2 | |||
---|---|---|---|---|---|---|
Aged | C [pF] | Aging Time [Hour] | C [pF] | Aging Time [Hour] | C [pF] | Aging Time [Hour] |
Unaged | 32 | 0 | 46 | 0 | 50 | 0 |
200 °C | 30 | 427 | 41 | 405 | 47 | 405 |
220 °C | 28 | 382 | 39 | 382 | 45 | 382 |
230 °C | 27 | 398 | 36 | 398 | 43 | 398 |
240 °C | 26 | 382 | 35 | 398 | 42 | 382 |
250 °C | 25 | 300 | 34 | 408 | 41 | 405 |
Enamel ID | Status | RDC [GΩ] | Tanδ | CAC [pF] | CDC [pF] |
---|---|---|---|---|---|
micro TiO2 | Unaged | 3.15 | 0.0445 | 230 | 221 |
micro TiO2 | Aged | 14.8 | 0.0341 | 193 | 198 |
nano SiO2 | Unaged | 3.05 | 0.0313 | 250 | 231 |
nano SiO2 | Aged | 125 | 0.0163 | 196 | 190 |
Conventional | Unaged | 45.5 | 0.0194 | 218 | 160 |
Conventional | Aged | >200 | 0.01 | 153 | 162 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, I.; Guastavino, F.; Della Giovanna, L.; Torello, E. Partial Discharge Inception Voltage Monitoring of Enameled Wires under Thermal Stress over Time. Energies 2024, 17, 4578. https://doi.org/10.3390/en17184578
Khan I, Guastavino F, Della Giovanna L, Torello E. Partial Discharge Inception Voltage Monitoring of Enameled Wires under Thermal Stress over Time. Energies. 2024; 17(18):4578. https://doi.org/10.3390/en17184578
Chicago/Turabian StyleKhan, Ishtiaq, Francesco Guastavino, Laura Della Giovanna, and Eugenia Torello. 2024. "Partial Discharge Inception Voltage Monitoring of Enameled Wires under Thermal Stress over Time" Energies 17, no. 18: 4578. https://doi.org/10.3390/en17184578
APA StyleKhan, I., Guastavino, F., Della Giovanna, L., & Torello, E. (2024). Partial Discharge Inception Voltage Monitoring of Enameled Wires under Thermal Stress over Time. Energies, 17(18), 4578. https://doi.org/10.3390/en17184578