An Updated Review for Performance Enhancement of Solar Cells by Spectral Modification
Abstract
1. Introduction
2. Brief Introduction of Photovoltaic Cells and General Guidelines of Spectral Modification Materials
2.1. Classification of Solar Cells
2.2. General Guidelines of Spectral Modification Materials
3. Applications of Three Spectral Modifications to Photovoltaic Cells
3.1. Up-Conversion (UC) Technology
3.2. Down-Conversion (DC) Technology
3.3. Luminescent Down-Shifting (LDS) Technology
4. Primary Concerns and Challenges
5. Recommendations and Future Outlook
6. Conclusions
- 1.
- Up-conversion technology is commonly used in solar cells like thin-film solar cells, perovskite cells (PSCs), dye-sensitized cells (DSSCs) and quantum-dot-sensitized solar cells (QDSSCs), with the method of doping Er3+ in NaYF4 matrix as an up-conversion layer being quite popular. Its emission band typically ranges from 523 nm to 669 nm, corresponding to green to red light, while the excitation band ranges from 800 nm to 1550 nm, corresponding to near-infrared light.
- 2.
- Down-conversion technology is commonly applied in silicon-based solar cells, typically doping Yb3+ in its matrix material. Its emission band typically ranges from 520 nm to 1031 nm, corresponding to green to near-infrared light, while the excitation band ranges from 250 nm to 488 nm, corresponding to ultraviolet-to-blue light. The quantum yield efficiency of down-conversion is usually lower than 100%.
- 3.
- Luminescent down-shifting technology is typically used in silicon-based cells. Similar to down-conversion, it usually involves doping Yb3+ in the luminescent down-shifting matrix material. Its emission band generally spans from 490 nm to 1010 nm, corresponding to green to near-infrared light, while the excitation band ranges from 250 nm to 488 nm, corresponding to ultraviolet-to-blue light. The quantum yield efficiency of luminescent down-shifting is usually higher than 60%.
- 4.
- Based on the current state of research, there are three common issues prevalent in the fields of spectral modification: low absorption efficiency of spectral modification layers, suboptimal quantum efficiency during spectral modification processes, and hurdles in commercialization.
- 5.
- In response to the main issues present in spectral modification, this review proposes the following solutions: Concerning the issue of low absorption efficiency, one method that can be employed is coating the spectral modification layer with anti-reflection materials to enhance the absorption rate of incident photons. To address the suboptimal quantum efficiency during spectral modification process, we can take experimental approaches including adjusting rare-earth elements, improving synthesis methods, tuning synthesis temperatures, and modifying the crystal structure of the spectral modification layer to improve its energy transfer mechanisms. Moreover, to ensure more charge carriers are transported to external circuits, it is an excellent method for coating a layer to suppress electron recombination losses. To achieve commercialization of spectral modification technologies, it is essential to first refine experimental protocols, enhance the absorption efficiency of solar spectra and efficiency of quantum yield, and stabilize the crystal structures of UC, DC, and DS layer materials.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shockley, W.; Queisser, H.J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Wagner, H.; Dastgheib-Shirazi, A.; Min, B.; Morishige, A.E.; Steyer, M.; Hahn, G.; Del Cañizo, C.; Buonassisi, T.; Altermatt, P.P. Optimizing Phosphorus Diffusion for Photovoltaic Applications: Peak Doping, Inactive Phosphorus, Gettering, and Contact Formation. J. Appl. Phys. 2016, 119, 185704. [Google Scholar] [CrossRef]
- Stern, F. Elementary theory of the optical properties of solids. Solid State Phys. 1963, 15, 299–408. [Google Scholar] [CrossRef]
- Fu, Y. Optical Properties of Semiconductors, 2nd ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 111–183. [Google Scholar] [CrossRef]
- Edwards, D.F. Handbook of Optical Constants of Solids; Academic Press: Boston, MA, USA, 1985; pp. 547–569. [Google Scholar] [CrossRef]
- Hirst, L.C.; Ekins-Daukes, N.J. Fundamental Losses in Solar Cells. Prog. Photovolt. 2011, 19, 286–293. [Google Scholar] [CrossRef]
- Shalav, A.; Richards, B.S.; Green, M.A. Luminescent Layers for Enhanced Silicon Solar Cell Performance: Up-Conversion. Sol. Energy Mater. Sol. Cells 2007, 91, 829–842. [Google Scholar] [CrossRef]
- Wegh, R.T.; Donker, H.; Oskam, K.D.; Meijerink, A. Visible Quantum Cutting in LiGdF4:Eu3+ through Downconversion. Science 1999, 283, 663–666. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Han, S.; Huang, W.; Liu, X. Enhancing Solar Cell Efficiency: The Search for Luminescent Materials as Spectral Converters. Chem. Soc. Rev. 2013, 42, 173–201. [Google Scholar] [CrossRef]
- Day, J.; Senthilarasu, S.; Mallick, T.K. Improving Spectral Modification for Applications in Solar Cells: A Review. Renew. Energy 2019, 132, 186–205. [Google Scholar] [CrossRef]
- Klampaftis, E.; Ross, D.; McIntosh, K.R.; Richards, B.S. Enhancing the Performance of Solar Cells via Luminescent Down-Shifting of the Incident Spectrum: A Review. Sol. Energy Mater. Sol. Cells 2009, 93, 1182–1194. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Wu, Y.; Dong, B.; Song, H. Novel Broad Spectral Response Perovskite Solar Cells: A Review of the Current Status and Advanced Strategies for Breaking the Theoretical Limit Efficiency. J. Mater. Sci. Technol. 2023, 140, 33–57. [Google Scholar] [CrossRef]
- Matakgane, M.; Mokoena, T.P.; Mhlongo, M.R. Recent Trends of Oxides Heterostructures Based Upconversion Phosphors for Improving Power Efficiencies of Solar Cells: A Review. Inorg. Chem. Commun. 2023, 156, 111202. [Google Scholar] [CrossRef]
- Shilpa, G.; Kumar, P.M.; Kumar, D.K.; Deepthi, P.R.; Sadhu, V.; Sukhdev, A.; Kakarla, R.R. Recent Advances in the Development of High Efficiency Quantum Dot Sensitized Solar Cells (QDSSCs): A Review. Mater. Sci. Energy Technol. 2023, 6, 533–546. [Google Scholar] [CrossRef]
- Suyver, J.F.; Aebischer, A.; Biner, D.; Gerner, P.; Grimm, J.; Heer, S.; Krämer, K.W.; Reinhard, C.; Güdel, H.U. Novel Materials Doped with Trivalent Lanthanides and Transition Metal Ions Showing Near-Infrared to Visible Photon Upconversion. Opt. Mater. 2005, 27, 1111–1130. [Google Scholar] [CrossRef]
- Khare, A. A Critical Review on the Efficiency Improvement of Upconversion Assisted Solar Cells. J. Alloys Compd. 2020, 821, 153214. [Google Scholar] [CrossRef]
- Chen, G.; Qiu, H.; Prasad, P.N.; Chen, X. Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics. Chem. Rev. 2014, 114, 5161–5214. [Google Scholar] [CrossRef]
- Auzel, F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chem. Rev. 2004, 104, 139–174. [Google Scholar] [CrossRef]
- Arunkumar, S.; Marimuthu, K. Spectroscopic Properties of Er3+ Doped Bismuth Leadtelluroborate Glasses for 1.53 μm Optical Amplifiers. J. Alloys Compd. 2015, 627, 54–68. [Google Scholar] [CrossRef]
- Cai, W.; Zhang, Z.; Jin, Y.; Lv, Y.; Wang, L.; Chen, K.; Zhou, X. Application of TiO2 Hollow Microspheres Incorporated with Up-Conversion NaYF4:Yb3+, Er3+ Nanoparticles and Commercial Available Carbon Counter Electrodes in Dye-Sensitized Solar Cells. Sol. Energy 2019, 188, 441–449. [Google Scholar] [CrossRef]
- Ho, W.-J.; Wei, C.-Y.; Liu, J.-J.; Lin, W.-C.; Ho, C.-H. Performance Characterization of Planar Silicon Solar Cells Using NIR Up-Conversion Layer Comprising YF3:Yb3+/Er3+ Phosphors. Vacuum 2019, 166, 1–5. [Google Scholar] [CrossRef]
- Wang, M.; Wu, Y.; Juan, F.; Li, Y.; Shi, B.; Xu, F.; Jia, J.; Wei, H.; Cao, B. Enhanced Photocurrent of Perovskite Solar Cells by Dual-Sensitized β-NaYF4:Nd3+/Yb3+/Er3+ up-Conversion Nanoparticles. Chem. Phys. Lett. 2021, 763, 138253. [Google Scholar] [CrossRef]
- Zhang, H.; Lv, X.; Li, R.; Zhang, M.; Guo, M. Titanium Mesh-Supported “TiO2 Nanowire Arrays/Yb-Er-F Tri-Doped TiO2 up-Conversion Nanoparticles” Composite Structure: Designation for High Efficient Flexible Dye-Sensitized Solar Cells. Thin Solid Films 2019, 681, 103–113. [Google Scholar] [CrossRef]
- Chen, L.; Jing, Y.; Xu, Z.; Shao, M.; Ge, S.; Zhou, X. Air-Processed Hole-Conductor–Free and Printable Infrared Light Responded Carbon-Based Perovskite Solar Cells Using up-Conversion NaYF4:Yb3+, Er3+ Nanoparticles. Ceram. Int. 2023, 49, 6974–6983. [Google Scholar] [CrossRef]
- Fang, D.; Zhang, X.; Zhao, C.; Liu, X.; Shu, X.; Wang, J. Application of Bidirectional (up and down)-Conversion Luminescence Material (GdBO3:Yb3+/Tb3+) in CdSe0.4S0.6 Quantum Dot-Sensitized Solar Cells. Opt. Mater. 2019, 88, 80–90. [Google Scholar] [CrossRef]
- Yuliantini, L.; Nursam, N.M.; Pranoto, L.M.; Hidayat, J.; Sova, R.R.; Rahayu, E.S.; Djamal, M.; Yasaka, P.; Boonin, K.; Kaewkhao, J. Photon Up-Conversion in Er3+ Ion-Doped ZnO-Al2O3-BaO-B2O3 Glass for Enhancing the Performance of Dye-Sensitized Solar Cells. J. Alloys Compd. 2023, 954, 170163. [Google Scholar] [CrossRef]
- Meng, R.; He, Z.; Luo, X.; Zhang, C.; Chen, M.; Lu, H.; Yang, Y. Wide Spectral Response Perovskite Solar Cells Mixed with NaGdF4:Yb3+, Er3+@NaGdF4:Eu3+ Core-Shell Rare Earth Nanoparticles. Opt. Mater. 2021, 119, 111326. [Google Scholar] [CrossRef]
- Qiu, L.; Yang, Y.; Dong, G.; Xia, D.; Li, M.; Fan, X.; Fan, R. Surfaces Modification of MAPbI3 Films with Hydrophobic β-NaYF4:Yb,Er up-Conversion Ultrathin Layers for Improving the Performance of Perovskite Solar Cells. Appl. Surf. Sci. 2018, 448, 145–153. [Google Scholar] [CrossRef]
- Deng, X. Highly Bright Li(Gd,Y)F4:Yb,Er Upconverting Nanocrystals Incorporated Hole Transport Layer for Efficient Perovskite Solar Cells. Appl. Surf. Sci. 2019, 485, 332–341. [Google Scholar] [CrossRef]
- Shi, W. Interface Modification by Up-Conversion Material of Ho3+-Yb3+-Li+ Tri-Doped TiO2 to Improve the Performance of Perovskite Solar Cells. J. Alloys Compd. 2018, 754, 124–130. [Google Scholar] [CrossRef]
- Alotaibi, A.; Alsardi, F.; Alshwikhat, F.; Aldossary, M.; Almarwani, F.S.; Talidi, F.J.; Almenhali, S.A.; Almotawa, S.F.; Alzahrani, Y.A.; Alenzi, S.; et al. Fabrication of Erbium-Doped Upconversion Nanoparticles and Carbon Quantum Dots for Efficient Perovskite Solar Cells. Molecules 2024, 29, 2556. [Google Scholar] [CrossRef]
- Osman, M.M.; Alanazi, A.Q.; Alanazi, T.I.; Alkahtani, M.H.; El-naggar, A.M.; Albassam, A.A.; Aldhafiri, A.M.; Al-Gawati, M.; Almalki, M.; Alenzi, S.M.; et al. Enhanced Performance of Perovskite Solar Cell via Up-Conversion YLiF4:Yb, Er Nanoparticles. Sol. Energy Mater. Sol. Cells 2024, 273, 112955. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, G. Multifunctional Photon Conversion Materials for Enhancing Silicon Solar Cells. Light Sci. Appl. 2024, 13, 87. [Google Scholar] [CrossRef] [PubMed]
- Olivier, D. Physics of the Thermal Behavior of Photovoltaic Devices; Institut National des Sciences Appliquées de Lyon: Lyon, France, 2015. [Google Scholar]
- Green, M.A. Intrinsic Concentration, Effective Densities of States, and Effective Mass in Silicon. J. Appl. Phys. 1990, 67, 2944–2954. [Google Scholar] [CrossRef]
- Singh, P.; Ravindra, N.M. Temperature Dependence of Solar Cell Performance—An Analysis. Sol. Energy Mater. Sol. Cells 2012, 101, 36–45. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Meyer, J.R.; Ram-Mohan, L.R. Band Parameters for III–V Compound Semiconductors and Their Alloys. J. Appl. Phys. 2001, 89, 5815–5875. [Google Scholar] [CrossRef]
- Yu, C.; Chen, Z.; Wang, J.; Pfenninger, W.; Vockic, N.; Kenney, J.T.; Shum, K. Temperature Dependence of the Band Gap of Perovskite Semiconductor Compound CsSnI3. J. Appl. Phys. 2011, 110, 063526. [Google Scholar] [CrossRef]
- Zeng, N.; Xu, S.; Zhang, H.; Wu, W.; Zhu, Z.; Wang, Y.; Zhang, P.; Wu, L.; Goodman, B.A.; Deng, W. Up- and down-Conversion Photoluminescence Properties of Ho2O3 Doped YbAG Single Crystals Prepared by Optical Floating Zone Method. Ceram. Int. 2024, 50, 14800–14807. [Google Scholar] [CrossRef]
- Zheng, J.; Shen, H.; Li, Y.; Li, H.; Yue, Z. Structural and Luminescent Performance and Optical Thermometry of Pr3+ Doped SrWO4 Down-Conversion Phosphors. J. Alloys Compd. 2023, 968, 172112. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, H.; Di, Y.; Yao, Z.; Yang, F.; Cai, H.; Sun, H.; Liu, Q. Luminescence and Stability of CaS: Eu2+, Sm3+ down/up Conversion Phosphor and Film. Mater. Today Commun. 2023, 34, 105457. [Google Scholar] [CrossRef]
- Derouiche, M.; Salhi, R.; Baklouti, S. Efficient Down-Conversion ZnO Codoped (Er, Yb) Nanopowders Synthesized via Sol-Gel Process for Si Solar Cell Applications. J. Radiat. Res. Appl. Sci. 2023, 16, 100497. [Google Scholar] [CrossRef]
- Wang, P.; Yan, X.; Wang, H.; Luo, C.; Wang, C. Study on Improving the Efficiency of Crystalline Silicon Photovoltaic Module with Down-Conversion Chlorophyll Film. Opt. Mater. 2022, 132, 112821. [Google Scholar] [CrossRef]
- Khurshid, S.; Latif, H.; Rasheed, S.; Sharif, R.; Sattar, A.; Amjad, R.J. Enhancement in Absorption Spectrum by ITO Coated, down Converting Glass as a Photoanode Substrate for Efficient PbS/CdS Quantum Dots Sensitized ZnO Nano-Rods Array Solar Cell. Opt. Mater. 2022, 124, 111991. [Google Scholar] [CrossRef]
- Benrejeb, H.; Soler-Carracedo, K.; Hraiech, S.; Martin, I.R. Analysis of down Conversion and Back-Transfer Processes in Pr3+-Yb3+ Co-Doped Phosphate Glasses. Opt. Mater. 2022, 131, 112604. [Google Scholar] [CrossRef]
- Aouaini, F.; Maaoui, A.; Mohamed, N.B.H.; Alanazi, M.M.; El Maati, L.A. Visible to Infrared down Conversion of Er3+ Doped Tellurite Glass for Luminescent Solar Converters. J. Alloys Compd. 2022, 894, 162506. [Google Scholar] [CrossRef]
- Romero-Romo, W.; Carmona-Téllez, S.; Lozada-Morales, R.; Soriano-Romero, O.; Caldiño, U.; Álvarez-Ramos, M.E.; Zayas, M.E.; Meza-Rocha, A.N. Down-Shifting and down-Conversion Emission Properties of Novel CdO–P2O5 Invert Glasses Activated with Pr3+ and Pr3+/Yb3+ for Photonic Applications. Opt. Mater. 2021, 116, 111009. [Google Scholar] [CrossRef]
- Reddappa, R.; Suresh, K.; Jayasankar, C.K. Down Conversion Studies in Ce3+ and Yb3+ Doped Ca2SiO4 Phosphors from Agricultural Waste: Si Based Solar Cell Applications. Opt. Mater. 2021, 122, 111700. [Google Scholar] [CrossRef]
- Mattos, G.R.S.; Bordon, C.D.S.; Gómez-Malagón, L.A.; Gunji, R.M.; Kassab, L.R.P. Performance Improvement of Si Solar Cell via down—Conversion and Plasmonic Processes Using Eu3+ Doped TeO2-GeO2-PbO Glasses with Silver Nanoparticles as Cover Layer. J. Lumin. 2021, 238, 118271. [Google Scholar] [CrossRef]
- De Anda, J.; Enrichi, F.; Righini, G.C.; Falcony, C. Ultraviolet to near Infrared Down-Conversion in CaF2:Nd3+/Yb3+/Li+ Phosphors. J. Lumin. 2021, 238, 118241. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, H.; Tong, H.; Wang, L.; Tao, L.; Wang, K.; Zhang, Y.; Zhou, X. Down-Conversion Ce-Doped TiO2 Nanorod Arrays and Commercial Available Carbon Based Perovskite Solar Cells: Improved Performance and UV Photostability. Int. J. Hydrogen Energy 2021, 46, 5677–5688. [Google Scholar] [CrossRef]
- Karavioti, A.; Duros, V.; Stathatos, E. Transparent Luminescent Down-Conversion Coating for Improved Performance and Enhanced Stability of Carbon-Based Perovskite Solar Cells. Opt. Mater. 2024, 154, 115757. [Google Scholar] [CrossRef]
- Tao, R. Lanthanide-Containing Polyoxometalate as Luminescent down-Conversion Material for Improved Printable Perovskite Solar Cells. J. Alloys Compd. 2020, 823, 153738. [Google Scholar] [CrossRef]
- Yang, J.W.; Jeong, R.H.; Boo, J.-H. Enhancement of UV-Light Harvesting in Perovskite Solar Cells by Internal Down-conversion with Eu-Complex Hole Transport Layer. Energy Rep. 2022, 8, 214–222. [Google Scholar] [CrossRef]
- Zhao, X.-Y.; Zhang, X.-S.; Liu, X.; Gong, X.-K.; Yuan, X.-R.; Zhou, B.; Xu, J.-P.; Kong, L.-N.; Li, L. Improving Efficiency of Silicon Solar Cells by Integrating SiO2-Coated Lead-Free Cs3Bi2Br9 Perovskites Quantum Dots as Luminescence down-Shifting Layer. Colloids Surf. A Physicochem. Eng. Asp. 2024, 682, 132887. [Google Scholar] [CrossRef]
- Xu, Y.; Luo, L.; Zhao, W.; Zhang, W.; Hu, Z. Highly Efficient and Stable Near-Infrared Broadband Luminescence in SrGa4O7:Cr3+, Yb3+ Phosphor. Opt. Mater. 2023, 145, 114460. [Google Scholar] [CrossRef]
- Xu, J.; Pan, W.; Shen, W. Efficiency Enhancement of Solar Cell by Using Methylammonium Lead Tribromide/Polymethyl Methacrylate Hybrid Film as Luminescent down Shifting Layer. Sol. Energy Mater. Sol. Cells 2023, 260, 112478. [Google Scholar] [CrossRef]
- Ma, X.; Chen, Y.; Liu, Y.; Zhang, X.; Chi, S.; Jin, T.; Wu, H.; Fang, D.; Wang, J. Ce3+-Yb3+, Tb3+-Yb3+ and Pr3+-Nd3+-Yb3+ Mixed-Doped TeO2–ZnO–Na2O Glasses for Enhancing the Efficiency of Silicon Solar Cells. Opt. Mater. 2023, 145, 114501. [Google Scholar] [CrossRef]
- Diao, H.; Lou, C.; Wang, Z.; Razzaq, S.; Asghar, A.; Huang, S.; Yin, Y.; Tian, Y.; Li, L.; Sun, X. Effect of Down-Shifting Phosphor Particles on Crystalline Silicon Solar Cells. J. Lumin. 2023, 260, 119830. [Google Scholar] [CrossRef]
- Zhang, Z.; Ju, J.; Qin, X.; Yan, H.; Shen, M.; Chen, C.; Na, F. Enhancing Conversion Efficiency of Crystalline Silicon Photovoltaic Modules through Luminescent Down-Shifting by Using Eu3+-Zn2+complexes. Mater. Chem. Phys. 2022, 290, 126599. [Google Scholar] [CrossRef]
- Razzaq, S.; Asghar, A.; Lou, C.; Diao, H.; Huang, S.; Yin, Y. Influence of Down-Shifting Particle’s Size on Monocrystalline Silicon Solar Cells. J. Alloys Compd. 2022, 907, 164512. [Google Scholar] [CrossRef]
- Huang, J.Y.; Wang, Y.; Fei, G.T.; Xu, S.H.; Wang, B.; Zeng, Z. Dual-Functional Antireflection and down-Shifting Coating for Si Solar Cells. Colloids Surf. A Physicochem. Eng. Asp. 2022, 652, 129907. [Google Scholar] [CrossRef]
- Flores-Pacheco, A.; Montes-Bojórquez, J.R.; Álvarez-Ramos, M.E.; Ayón, A.A. Down-Shifting and Antireflective Effects of ZnO/PMMA Thin Films and Their Influence on Silicon Solar Cells Performance. Micro Nano Eng. 2022, 15, 100128. [Google Scholar] [CrossRef]
- Meng, L.; Shi, L.; Ge, Y.; Tang, J.; Chen, Y.; Zhong, H. Photon Management of Combining Nanostructural Antireflection and Perovskite Down-Shifting Composite Films for Improving the Efficiency of Silicon Solar Cells. Sol. Energy Mater. Sol. Cells 2021, 220, 110856. [Google Scholar] [CrossRef]
- Fu, H.; Cui, S.; Luo, Q.; Qiao, X.; Fan, X.; Zhang, X. Broadband Downshifting Luminescence of Cr3+/Yb3+-Codoped Fluorosilicate Glass. J. Non-Cryst. Solids 2012, 358, 1217–1220. [Google Scholar] [CrossRef]
- Johnson, A.R.; Lee, S.-J.; Klein, J.; Kanicki, J. Absolute Photoluminescence Quantum Efficiency Measurement of Light-Emitting Thin Films. Rev. Sci. Instrum. 2007, 78, 096101. [Google Scholar] [CrossRef] [PubMed]
- Raut, H.K.; Ganesh, V.A.; Nair, A.S.; Ramakrishna, S. Anti-Reflective Coatings: A Critical, in-Depth Review. Energy Environ. Sci. 2011, 4, 3779. [Google Scholar] [CrossRef]
- Ho, W.-J.; Chen, G.-Y.; Liu, J.-J. Enhancing Photovoltaic Performance of Plasmonic Silicon Solar Cells with ITO Nanoparticles Dispersed in SiO2 Anti-Reflective Layer. Materials 2019, 12, 1614. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, H.; Wang, H.; Zhang, M.; Guo, M. Titanium Mesh Supported TiO2 Nanowire Arrays/Upconversion Luminescence Er3+-Yb3+ Codoped TiO2 Nanoparticles Novel Composites for Flexible Dye-Sensitized Solar Cells. Appl. Surf. Sci. 2017, 422, 304–315. [Google Scholar] [CrossRef]
- Qadir, M.B.; Sun, K.C.; Sahito, I.A.; Arbab, A.A.; Choi, B.J.; Yi, S.C.; Jeong, S.H. Composite Multi-Functional over Layer: A Novel Design to Improve the Photovoltaic Performance of DSSC. Sol. Energy Mater. Sol. Cells 2015, 140, 141–149. [Google Scholar] [CrossRef]
Ref. | Materials | Solar Cell Type | Excitation Peak (nm) | Emission Peak (nm) | Emission Band (nm) | PCE Improvement (%) |
---|---|---|---|---|---|---|
[20] | NaYF4: Yb3+, Er3+ | DSSCs | 980 | 543 654 | 500–600 600–700 | 16 |
[21] | YF3: Yb3+/Er3+ | c-Si | 1550 | 653 669 | 625–700 | 13.26 |
[22] | β-NaYF4: Nd3+/Yb3+/Er3+ | PSCs | 980 808 | 523 541 659 | 520–570 640–675 | 7.13 |
[23] | TiO2: Yb, Er, F | DSSCs | 980 | 525 545 658 | 515–560 640–690 | 37.8 |
[24] | NaYF4: Yb3+, Er3+ | PSCs | - | - | - | 20.6 |
[25] | GdBO3: Yb3+/Tb3+ | QDSSSCs | 980 | 545 | 450–650 | - |
[26] | ZnO-Al2O3-BaO-B2O3: Er3+ | DSSCs | 800 | 550 | 520–570 | 7.21 |
[27] | NaGdF4: Yb3+, Er3+ | PSCs | 980 | 415 525 540 660 | 510–560 630–690 | 10.6 |
395 | 590 610 695 | 580–600 610–675 680–700 | ||||
[28] | β-NaYF4: Yb, Er | PSCs | - | - | - | 13.9 |
[29] | Li(Gd, Y)F4: Yb, Er | PSCs | 980 | 520 540 650 | 515–530 540–550 645–620 | 25 |
[30] | TiO2: Ho3+, Yb3+, Li3+ | PSCs | 980 | 547 663 | 530–560 630–680 | 9.03 |
[31] | LiYF4: Yb, Er | PSCs | 980 | 550 679 | 527–575 650–680 | 9.01 |
[32] | YLiF4: Yb, Er | PSCs | 980 | 550 660 | 525–560 650–675 | 9.61 |
[33] | NaY(WO4)2: Er, Yb | Si | - | - | - | - |
Ref. | Materials | Solar Cell Type | Excitation Peak (nm) | Emission Peak (nm) | Emission Band (nm) | Improvement |
---|---|---|---|---|---|---|
[39] | Yb2.96−xYxHo0.04Al5O12 | - | 454 | 550 | 525–575 | - |
[40] | SrWO4: Pr3+ | - | 250 450 | 645 | - | - |
[41] | CaS: Eu2+, Sm3+ | - | 467 | 625 | 575–675 | - |
[42] | ZnO: Er, Yb | Si | 378 | 550 670 980 | 490–685 790–880 | - |
[43] | chlorophyll (Chl) | c-Si | - | 670 | 650–800 | Maximum power increases by 9.2%. |
[44] | ZnO nano-rods array solar cell: PbS/CdS | ZnO nano-rods array solar cell | 378 | 520 543 658 | - | PCE: 8.6%. |
[45] | Phosphate glasses: Pr3+-Yb3+ | - | 457 | 598 1031 | 590–620 980–1050 | - |
[46] | 70TeO2-20ZnO-(10−x)Nb2O5: Er3+ | - | 488 | 556 672 818 980 | 525–610 650–720 800–850 | Quantum yield efficiency: 91%. |
[47] | CdO-P2O5: Pr3+-Yb3+ | c-Si | 443 | 604 648 977 | 575–650 950–1050 | Quantum yield efficiency: 144%. |
[48] | Ca2SiO4: Ce3+-Yb3+ | Si | 323 | 980 | 870–1050 | Efficiency of energy transfer: 25%. |
[49] | TeO2-GeO2-PbO: Eu3+ | Si | 405 | 613 | 610–630 | Efficiency increase: 11.81%. |
[50] | CaF2: Nd3+/Yb3+ | c-Si | 353 | 975 | 900–1125 | Quantum yield efficiency: 91%. |
[51] | TiO2 nano-rod array: Ce | PSCs | - | - | - | PCE: 10.1%. |
[52] | C30H21EuF9NNaO9 | PSCs | - | 580 592 613 653 | 575–585 585–600 605–630 | PCE: 16.13%. |
[53] | Na9[EuW10O36] | PSCs | 290 | 590 625 650 700 | 580–600 600–670 680–720 | PCE: 14.36% |
[54] | CH3MH3PbI3 | PSCs | - | - | - | PCE: 25% |
Ref. | Materials | Solar Cell Type | Excitation Peak (nm) | Emission Peak (nm) | Emission Band (nm) | Quantum Yield Efficiency |
---|---|---|---|---|---|---|
[55] | Cs3Bi2Br9 | Si | 380 | 490 | 450–510 | - |
[56] | SrGa4O7: Cr3+, Yb3+ | - | 435 | 760 | 650–1100 | 31.4 |
[57] | MAPbBr3+ PMMA hybrid film | Si | 350 | 525 | 500–550 | 85 |
[58] | TeO2–ZnO–Na2O: Ce3+-Yb3+/Tb3+- Yb3+/Pr3+-Nd3+-Yb3+ | Si | 430 355 488 | 520/1010 550/1010 648/980 | - | - |
[59] | YAG:Ce | c-Si | 250 340 460 | 550 | 500–700 | 92 |
[60] | Eu-Zn+ PMMA | c-Si | 350 | 610 | 600–625 | 63 |
[61] | YAG:Ce3++ EVA | c-Si | 340 | 550 | 500–700 | - |
[62] | ZnO | Si | 345 | 525 | 450–625 | 41.6 |
[63] | ZnO+ PMMA | Si | 335 | 500 | 450–600 | - |
[64] | PDMS+ perovskite quantum dots | Si | 365 | 530 | 500–560 | 97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, T.; Li, Z. An Updated Review for Performance Enhancement of Solar Cells by Spectral Modification. Energies 2024, 17, 4492. https://doi.org/10.3390/en17174492
Ju T, Li Z. An Updated Review for Performance Enhancement of Solar Cells by Spectral Modification. Energies. 2024; 17(17):4492. https://doi.org/10.3390/en17174492
Chicago/Turabian StyleJu, Tiancheng, and Zeyu Li. 2024. "An Updated Review for Performance Enhancement of Solar Cells by Spectral Modification" Energies 17, no. 17: 4492. https://doi.org/10.3390/en17174492
APA StyleJu, T., & Li, Z. (2024). An Updated Review for Performance Enhancement of Solar Cells by Spectral Modification. Energies, 17(17), 4492. https://doi.org/10.3390/en17174492