Main Ships Propulsion Boiler Control and Hardware-in-Loop Model Implementation
Abstract
:1. Introduction and Scope of the Work
- Testing of the control system in conditions similar to real ones and a detailed and supervised analysis of the operation of the entire system.
- Searching for errors related to the variety of cooperating subassemblies and components, e.g., sensors or communication systems.
- Shortening the project implementation time and, consequently, minimizing costs.
2. The Description of the Combustion Process in the Ship’s Propulsion Boiler
- Possibility of frequency analysis;
- Ease of creating models with complex structures.
- Fuel pressure fed to the burners;
- Air pressure in the air duct;
- Angular speed of the blower.
2.1. Determining the Identification Algorithm
- Statistical or probabilistic methods;
- Classical methods based on frequency and step response.
- T—inertia time constant;
- K1—inertial element gain factor;
- K—integration gain factor;
- ti—step on the timeline;
- dl—measurement length in inertial time constants.
- Tcal—calculated time constant;
- K1cal—calculated proportional gain factor;
- Kcal—calculated integral gain factor.
2.2. Conditions and Method of Identification
- Automatic control systems for PORT and STBD boilers have been disconnected;
- In the ECR (Engine Control Room), step signals were manually entered from the control panels forcing the position of the fuel valves (at the input of one boiler);
- During identification, the efficiency of the PORT and STBD boilers and the output signal of the steam pressure were recorded;
- Additional parameters were recorded and observed, stabilized by separate control systems and which may also affect the transmittance parameters (fuel viscosity, superheated steam temperature).
2.3. Parameter Identification
- for the integrating term—integration gain k;
- for the inertial term—time constant T of inertia and k1 gain.
1-st series | propeller speed = 0 [rpm], load—average fuel pressure = 5.0–7.0 [at], on anchor. | |
2-nd series | propeller speed = 40–55 [rpm], average fuel pressure = 11–12 [at], good sailing conditions. | |
3-rd series | 3-rd series | propeller speed = 65 [rpm], average fuel pressure = 13.4 [at]. bad sailing conditions. |
2.4. Summary
3. Computer Simulation of the Identified Object and Optimization of the Control Structure of the Boiler Efficiency Control System
3.1. Optimization of the Structure of the Boiler Control System
3.2. Determination of the Optimal Control of the Boiler Capacity Control System
- k = 0.0056 [at/s·at].
- k1 = 0.18 [at/at].
- T = 31 [s].
- a = 0.32258 [1/s].
- b = 0.0114 [at/s·at].
- c = 0.00018 [at/s2·at].
4. Test of the Optimal Model Structures
- Determination of the extortion compensation (at the optimum settings Td and kr) for a system with a phase-delay controller;
- Check of a slip compensation at settings Ti = 1 s and kPI = krTd = 347.391, resulting from relations (59) and the comparison of (57) and (58) for the system with a PI controller.
4.1. Hardware in Loop Implementation
4.2. Discussion on the Test Results
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Solberg, B. Optimization of Marine Boilers using Model-based Multivariable Control. Ph.D. Thesis, Aalborg University, Aalborg, Denmark, 2008. [Google Scholar]
- Åström, K.J.; Bell, R.D. Drum boiler dynamics. Automatica 2000, 36, 363–378. [Google Scholar] [CrossRef]
- Solberg, B.; Andersen, P.; Stoustrup, J. Advanced Water Level Control in a Onepass Smoke Tube Marine Boiler; Technical Report; Department of Electronic Systems, Aalborg University: Aalborg, Denmark, 2007. [Google Scholar]
- Hultgren, M.; Ikonen, E.; Kovács, J. Integrated control and process design for improved load changes in fluidized bed boiler steam path. Chem. Eng. Sci. 2019, 199, 164–178. [Google Scholar] [CrossRef]
- Whalley, R. The Control of Marine Propulsion Plant; The University of Manchester (United Kingdom) ProQuest Dissertations Publishing: Manchester, UK, 1976. [Google Scholar]
- Matyszczak, M. Sterowanie Wydajnością Okrętowych Kotłów Napędu Głównego z Uwzględnieniem Wymuszeń Losowych. Ph.D. Dissertation, Politechnika Wrocławska, Wrocław, Poland, 1980. [Google Scholar]
- Andersen, S.; Jørgensen, L. Scheme for Auto Tuning Control of Marine Boilers. Master’s Thesis, Aalborg University, Aalborg, Denmark, 2007. [Google Scholar]
- Combustion Process Control, Technical Review, Emerson Process Management, Industrial Systems and Control Limited. 2013. Available online: https://www.emerson.com/documents/automation/white-paper-combustion-process-control-technical-review-isc-ltd-en-41958.pdf (accessed on 1 July 2024).
- Brayanov, N.; Stoynova, A. Review of hardware-in-the-loop—A hundred years progress in the pseudo-real testing. Electrotech. Electron. 2019, 54, 70. [Google Scholar]
- Mihalič, F.; Truntič, M.; Hren, A. Hardware-in-the-Loop Simulations: A Historical Overview of Engineering Challenges. Electronics 2022, 11, 2462. [Google Scholar] [CrossRef]
- Bailey, M.; Doerr, J. Contributions of hardware-in-the-loop simulations to Navy test and evaluation. Proc. Soc. Photo-Opt. Instrum. Eng. 1996, 2741, 33–43. [Google Scholar]
- Greblicki, W. Podstawy Automatyki; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2006. (In Polish) [Google Scholar]
- Moreta, M.J. Rosenbrock Type Methods for Solving Non-Linear Second-Order in Time Problems. Mathematics 2021, 9, 2225. [Google Scholar] [CrossRef]
- Jose, J.; Nafeesa, K.; Arafath, K.M.I.Y. Fuzzy logic based control of marine boiler system. In Proceedings of the 2015 International Conference on Power, Instrumentation, Control and Computing (PICC), Thrissur, India, 9–11 December 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Ai, F.C.; Sun, J.B. Simulation training system of marine auxiliary boiler and its application. In Proceedings of the 2018 Chinese Control and Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; pp. 4236–4240. [Google Scholar]
- Milton, D.C.; Leach, R.M. Marine Steam Boiler; Elsevier Science & Technology: London, UK, 1980. [Google Scholar]
- Perepeczko, A. Okrętowe Kotły Parowe; Wydawnictwo Uczelniane Politechniki Gdańskiej: Gdańsk, Poland, 1979. (In Polish) [Google Scholar]
- Rakowski, J.J. Automatyka Cieplnych Urządzeń Siłowni; Wydawnictwa Naukowo-Techniczne WNT: Warszawa, Poland, 1983. (In Polish) [Google Scholar]
- The V2M-8WW Boiler System Control of T.T "Dorian"; Kockuma Mekanista Verkstands: Malmoe, Sweden, 1988.
- Bendat, J.S.; Piersol, A.G. Metoda Analizy i Pomiaru Sygnałów Losowych; PWN Warszawa: Warszawa, Poland, 1976. (In Polish) [Google Scholar]
- Kaczorek, T. Teoria Sterowania; PWN Warszawa: Warszawa, Poland, 1997. (In Polish) [Google Scholar]
- Kaczorek, T. Synteza Liniowych Układów Stacjonarnych Metodą Przestrzeni Stanów; PWN Warszawa: Warszawa, Poland, 1975. (In Polish) [Google Scholar]
- Kaczorek, T. Teoria Układów Regulacji Automatycznej; WNT Warszawa: Warszawa, Poland, 1977. (In Polish) [Google Scholar]
- Sourdille, P.; O’Dwyer, A. New Modified Smith Predictor Designs. In Proceedings of the 4th IFAC Workshop on Time Delay Systems (TDS’03), Rocquencourt, France, 8–10 September 2003. [Google Scholar]
- Niederliński, A. Systemy Cyfrowe Automatyki Przemysłowej; Wydawnictwa Naukowo-Techniczne WNT Warszawa: Warszawa, Poland, 1974. (In Polish) [Google Scholar]
- Mańczak, K. Metody Identyfikacji Wielowymiarowych Obiektów Sterowania; Wydawnictwa Naukowo-Techniczne WNT Warszawa: Warszawa, Poland, 1979. (In Polish) [Google Scholar]
- Jacobson, P.; Hagerman, G.; Scott, G. Mapping and Assessment of the United States Ocean Wave Energy Resource; Electric Power Research Institute: Washington, DC, USA, 2011. [Google Scholar]
Control System | Control | Controlled Parameter | Parameter Value during Identification Process | ||
---|---|---|---|---|---|
PORT Boiler | STBD Boiler | PORT Boiler | STBD Boiler | ||
Air flow | auto | auto | Flaps’ position | Const. | Var. |
Fuel dose | man. | man. | Fuel valve position | Const. | Var. |
Graph No. | T | K1 | K | Extorsion | Fuel av. Press | Propeller rev. |
---|---|---|---|---|---|---|
[s] | [at/at] | [at/s·at] | [at] | [at] | [rpm] | |
11p | 32.97 | 0.7600 | 0.0170 | 0.6 | 4.9 | 0 |
12p | 25.28 | 0.0500 | 0.0040 | 2.0 | 6.5 | 0 |
15p | 31.47 | 0.1800 | 0.0040 | 1.0 | 6.5 | 0 |
16p | 41.92 | 0.0900 | 0.0030 | 1.2 | 6.5 | 0 |
19p | 53.28 | 0.0300 | 0.0040 | 1.0 | 6.0 | 0 |
20p | 41.38 | 0.0900 | 0.0030 | 1.5 | 6.3 | 0 |
10p | 54.28 | 0.0300 | 0.0070 | 1.6 | 7.5 | 50 |
28p | 26.08 | 0.0700 | 0.0030 | 1.8 | 10.2 | 55 |
30p | 40.30 | 0.1000 | 0.0030 | 1.4 | 11.0 | 53 |
31p | 36.00 | 0.0500 | 0.0020 | 2.4 | 11.8 | 45 |
32p | 12.33 | 0.0300 | 0.0030 | 3.0 | 12.0 | 45 |
33p | 24.60 | 0.0500 | 0.0030 | 2.0 | 11.0 | 40 |
22p | 22.33 | 0.1000 | 0.0050 | 1.8 | 13.4 | 65 |
23p | 20.61 | 0.4400 | 0.0110 | 0.6 | 13.4 | 65 |
Serie | T | K1 | K |
---|---|---|---|
[s] | [at/at] | [at/s·at] | |
1 | 37.71 | 0.2 | 0.0058 |
2 | 36.25 | 0.06 | 0.0036 |
3 | 21.47 | 0.28 | 0.0075 |
1, 2, 3 | 31.81 | 0.18 | 0.0056 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puszkarek, A.; Dorobczyński, L.; Kozak, M. Main Ships Propulsion Boiler Control and Hardware-in-Loop Model Implementation. Energies 2024, 17, 4453. https://doi.org/10.3390/en17174453
Puszkarek A, Dorobczyński L, Kozak M. Main Ships Propulsion Boiler Control and Hardware-in-Loop Model Implementation. Energies. 2024; 17(17):4453. https://doi.org/10.3390/en17174453
Chicago/Turabian StylePuszkarek, Arkadiusz, Lech Dorobczyński, and Maciej Kozak. 2024. "Main Ships Propulsion Boiler Control and Hardware-in-Loop Model Implementation" Energies 17, no. 17: 4453. https://doi.org/10.3390/en17174453
APA StylePuszkarek, A., Dorobczyński, L., & Kozak, M. (2024). Main Ships Propulsion Boiler Control and Hardware-in-Loop Model Implementation. Energies, 17(17), 4453. https://doi.org/10.3390/en17174453