Thermal History and Hydrocarbon Accumulation Stages in Majiagou Formation of Ordovician in the East-Central Ordos Basin
Abstract
1. Introduction
2. Regional Geological Background
3. Samples and Analysis Methods
4. Results and Discussion
4.1. Degree of Thermal Evolution
4.2. Thermal History Simulation
4.2.1. The Present Geothermal Field
4.2.2. Paleotemperature
4.2.3. Denudation Thickness Recovery
4.2.4. Thermal Evaluation History
4.3. Hydrocarbon Accumulation Period
4.3.1. Fluid Inclusion Components and Characteristics
4.3.2. Analysis of Inclusions’ Homogenization Temperature and Period of Accumulation
5. Conclusions
- The Ro distribution of the Ordovician strata in the central part of the basin is between 1% and 3.2%, while the southern part of the basin is situated in the center of the Early Cretaceous thermal anomaly. This region exhibits a high maximum paleo-geotemperature gradient and a markedly elevated degree of thermal evolution. The present geothermal gradient is 28.6 °C/km, the average paleo-geotemperature gradient of the Ordovician is about 54.2 °C/km, and the paleoheat flux is about 55 mW/m2. The paleo-geotemperature gradient is larger than the present geothermal gradient.
- The Ordovician strata in the study area have undergone three significant thermal evolution stages: (i) The slow warming stage before the Late Permian, from the Middle and Late Ordovician to the Permian. This stage consisted of shallow stratigraphic depths, low thermal evolution, and immature organic matter. (ii) The rapid warming stage from the Late Permian to the Late Cretaceous. In this stage, the strata again subsided. Additionally, as a result of the Early Cretaceous tectono-thermal event, the organic matter reached maturity or even overmaturity, and a large number of hydrocarbons were produced, with a warming rate of 0.78 °C/Ma. (iii) The rapid cooling stage at the end of the Early Cretaceous. In this stage, the basin was subjected to the Yanshanian and Himalayan movements, and the strata were uplifted and denuded. Additionally, the geotemperature dropped rapidly, with a cooling rate of 0.8 °C/Ma, and the generation of hydrocarbons was weakened.
- The Ordovician strata in the study area develop carbonate–gypsum salt assemblages. Asphalt inclusions, gas inclusions, and accompanying aqueous inclusions are mainly distributed in fracture-pore dolomite, dolomite veins, fracture-pore calcite, and the calcite veins of carbonatite reservoirs.
- The homogenization temperature of the Ordovician fluid inclusions in the central region of the basin is between 76 °C and 182 °C, with a distinctive distribution characterized by two peaks. The peak homogenization temperature of the early-stage fluid inclusions is 110–130 °C, with a hydrocarbon charging time of 210–165 Ma, corresponding to the end of the Late Triassic to the end of the Middle Jurassic. The peak homogenization temperature of the late-stage fluid inclusions is 160–170 °C, with a hydrocarbon charging time of 123–97 Ma, corresponding to the end of the Early Cretaceous. The two periods of hydrocarbon charging occurred during the rapid stratigraphic warming stage associated with the Early Cretaceous tectono-thermal event, in addition to an increase in stratigraphic tectonic fracturing caused by the Yanshan movement, which also favored hydrocarbon charging.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, W.; Tu, J.; Zhang, J.; Zhang, B. Accumulation and Potential Analysis of Self-Sourced Natural Gas in the Ordovician Majiagou Formation of Ordos Basin, NW China. Shiyou Kantan Yu Kaifa/Pet. Explor. Dev. 2017, 44, 552–562. [Google Scholar] [CrossRef]
- Fu, J.; Bai, H.; Sun, L.; Ma, Z. Types and Characteristics of the Ordovician Carbonate Reservoirs in Ordos Basin, China. Shiyou Xuebao/Acta Pet. Sin. 2012, 33, 110–117. [Google Scholar]
- Cai, C.; Hu, G.; He, H.; Li, J.; Li, J.; Wu, Y. Geochemical Characteristics and Origin of Natural Gas and Thermochemical Sulphate Reduction in Ordovician Carbonates in The Ordos Basin, China. J. Pet. Sci. Eng. 2005, 48, 209–226. [Google Scholar] [CrossRef]
- Yang, S.; Wu, G.; Zhu, Y.; Zhang, Y.; Zhao, X.; Lu, Z.; Zhang, B. Key Oil Accumulation Periods of Ultra-Deep Fault-Controlled Oil Reservoir in Northern Tarim Basin, NW China. Pet. Explor. Dev. 2022, 49, 285–299. [Google Scholar] [CrossRef]
- Sweeney, J.; Burnham, A. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics. Aapg Bull. 1990, 74, 1559–1570. [Google Scholar]
- Ketcham, R.A.; Donelick, R.A.; Carlson, W.D. Variability of Apatite Fission-Track Annealing Kinetics; III, Extrapolation to Geological Time Scales. Am. Miner. 1999, 84, 1235–1255. [Google Scholar] [CrossRef]
- Mora, A.; Casallas, W.; Ketcham, R.; Gomez, D.; Parra, M.; Namson, J.; Stockli, D.; Almendral Vazquez, A.; Robles, W.; Ghorbal, B. Kinematic Restoration of Contractional Basement Structures Using Thermokinematic Models: A Key Tool for Petroleum System Modeling. Aapg Bull. 2015, 99, 1575–1598. [Google Scholar] [CrossRef]
- Qiu, N.; Liu, X.; Xiong, Y.; Liu, Y.; Xu, Q.; Chang, Q. Progress in the Study of Carbonate Clumped Isotope in the Thermal History of Marine Basins. Pet. Geol. Exp. 2023, 45, 891. [Google Scholar] [CrossRef]
- Liu, Q.; He, L.; Chen, L. Tectono-Thermal Modeling of Cenozoic Multiple Rift Episodes in the Bohai Bay Basin, Eastern China and Its Geodynamic Implications. Int. J. Earth Sci. 2018, 107, 53–69. [Google Scholar] [CrossRef]
- Chen, L. Stretching Factor Estimation for the Long-Duration and Multi-Stage Continental Extensional Tectonics: Application to The Baiyun Sag in the Northern Margin of the South China Sea. Tectonophysics 2014, 611, 167–180. [Google Scholar] [CrossRef]
- Shenton, B.; Grossman, E.; Passey, B.; Henkes, G.; Becker, T.; Laya, J.C.; Perez-Huerta, A.; Becker, S.; Lawson, M. Clumped Isotope Thermometry in Deeply Buried Sedimentary Carbonates: The Effects of Bond Reordering and Recrystallization. Geol. Soc. Am. Bull. 2015, 127, 1036–1051. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, L.; Liu, B.; Wang, T.; Zhang, Z.; Wu, K.; Feng, C.; Dou, W.; Wang, Y.; Shu, Y. Geochemical Characteristics of the Triassic Chang 7 Lacustrine Source Rocks, Ordos Basin, China: Implications for Paleoenvironment, Petroleum Potential and Tight Oil Occurrence. J. Asian Earth Sci. 2019, 178, 112–138. [Google Scholar] [CrossRef]
- Tao, S. Sequence of Diagenetic Authigenic Mineral: The Basis of Timing the Inclusions Formation in Sedimentary Rocks. Pet. Explor. Dev. 2006, 33, 154–160. [Google Scholar]
- Chen, G.; Li, S.; Zhang, H.; Ding, C.; Yang, F.; Lei, P. Timing and Stages of the Permian Oil-Gas Accumulations in Northeastern Ordos Basin. Geol. China 2013, 40, 1453–1465. [Google Scholar]
- Wei, X.; Zhu, Y.; Xu, H.; Zhao, G.; Li, Y. Discussion on Neogene Dolostone Forming Condition in Xisha Islands: Evidences From Isotope C and O and Fluid Inclosures. Acta Petrol. Sin. 2006, 22, 2394–2404. [Google Scholar]
- Rajabzadeh, M.A.; Rasti, S. Investigation on Mineralogy, Geochemistry and Fluid Inclusions of the Goushti Hydrothermal Magnetite Deposit, Fars Province, SW Iran: A Comparison with IOCGs. Ore Geol. Rev. 2017, 82, 93–107. [Google Scholar] [CrossRef]
- Kerkhof, A.; Hein, U. Fluid Inclusion Petrography. Lithos 2001, 55, 27–47. [Google Scholar] [CrossRef]
- Zhu, H.; Luo, Q.; Zhou, L.; Tang, M.; Chang, H. Application Prospect of Natural Gas Component Analysis Using Laser Raman Spectroscopy. Nat. Gas Ind. 2013, 33, 110–114. [Google Scholar] [CrossRef]
- Jayanthi, J.; Nandakumar, V.; Anoop, S. Feasibility of a 785 nm Diode Laser in Raman Spectroscopy for Characterizing Hydrocarbon-Bearing Fluid Inclusions in Mumbai Offshore Basin, India. Pet. Geosci. 2017, 23, 369–375. [Google Scholar] [CrossRef]
- Prieto, A.C.; Guedes, A.; Dória, A.; Noronha, F.; Jimenez, J. Quantitative Determination of Gaseous Phase Compositions in Fluid Inclusions by Raman Microspectrometry. Spectrosc. Lett. 2012, 45, 156–160. [Google Scholar] [CrossRef]
- Xie, K.; Tan, X.; Feng, M.; Wang, B.; Zhong, S.; Yang, M.; Nie, W.; Qiao, Z.; Zeng, W. Eogenetic Karst and Its Control on Reservoirs in the Ordovician Majiagou Formation, Eastern Sulige Gas Field, Ordos Basin, NW China. Pet. Explor. Dev. 2020, 47, 1246–1261. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, C.; Huang, L.; Wang, J.; Zhao, J.; Shao, D.; Yang, L.; Zhao, X.; Khalaf, E.; Zhang, S.; et al. Characteristics of the Low-Pressure Spatial and Temporal Distributions of Oil- and Gas-Bearing Layers in the Ordos Basin, China. Int. J. Coal Geol. 2024, 285, 104476. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J.; Zhang, D.; Zhao, H.; Zhao, J.; Huang, L.; Wang, W.; Qin, Y. Genesis of Rich Hydrocarbon Resources and Their Occurrence and Accumulation Characteristics in the OrdosBasin. Oil Gas Geol. 2021, 42, 1011–1029. [Google Scholar]
- Zhao, J.; Liu, C.; Huang, L.; Zhang, D.; Wang, D.; Wang, D. Paleogeography Reconstruction of a Multi-Stage Modified Intra-Cratonic Basin—A Case Study from the Jurassic Ordos Basin, Western North China Craton. J. Asian Earth Sci. 2020, 190, 104191. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, H.; Gui, X.; Yue, L.; Zhao, J.; Wang, J. Space-Time Coordinate of the Evolution and Reformation and Mineralization Response in Ordos Basin. Acta Geol. Sin. 2006, 80, 618–638. [Google Scholar]
- Yang, P.; Ren, Z.; Fu, J.; Bao, H.; Xiao, H.; Shi, Z.; Wang, K.; Zhang, Y.; Liu, W.; Li, W. A Tectono-Thermal Perspective on the Petroleum Generation, Accumulation and Preservation in the Southern Ordos Basin, North China. Pet. Sci. 2024, 21, 1459–1473. [Google Scholar] [CrossRef]
- Darby, B.J.; Ritts, B.D. Mesozoic Contractional Deformation in the Middle of the Asian Tectonic Collage: The Intraplate Western Ordos Fold–Thrust Belt, China. Earth Planet. Sci. Lett. 2002, 205, 13–24. [Google Scholar] [CrossRef]
- FU, J.; Zheng, C. Evolution Between North China Sea and Qilian Sea of the Ordovician and the Characteristics of Lithofacies Palaeogeography in Ordos Basin. J. Palaeogeogr. 2001, 3, 25–34. [Google Scholar]
- Zhang, X.; Zhang, T.; Lei, B.; Zhang, J.; Zhang, J.; Zhao, Z.; Yong, J. Origin and Characteristics of Grain Dolomite of Ordovician Ma55 Member in The Northwest of Ordos Basin, NW China. Pet. Explor. Dev. 2019, 46, 1182–1194. [Google Scholar] [CrossRef]
- He, H.; Guo, X.; Zhao, Z.; Xi, S.; Wang, J.; Song, W.; Ren, J.; Wu, X.; Bi, H. New Understandings on Gas Accumulation and Major Exploration Breakthroughs in Subsalt Ma 4 Member of Ordovician Majiagou Formation, Ordos Basin, NW China. Pet. Explor. Dev. 2022, 49, 489–501. [Google Scholar] [CrossRef]
- Peng, H.; Wang, J.; Liu, C.; Zhao, H.; Huang, L.; Zhao, X.; Zhang, S.; Liang, C.; Wang, Z.; Cattò, S.; et al. Long-term and Multiple Stage Exhumation of the Ordos Basin, Western North China Craton: Insights from Seismic Reflection, Borehole and Geochronological Data. Earth-Sci. Rev. 2023, 238, 104349. [Google Scholar] [CrossRef]
- Tu, J.; Dong, Y.; Zhang, B.; Nan, H.; Li, C.; Wang, X.; Fei, X.; Zhou, W. Discovery of Effective Scale Source Rocks of the Ordovician Majiagou Fm in the Ordos Basin and Its Geological Significance. Nat. Gas Ind. B 2016, 3, 330–338. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, Z.; Zhang, Q.; Xu, W.; Bao, H.; Zhang, Y.; Gao, J.; Song, W. Development Characteristics and New Exploration Areas of Marine Source Rocks in Ordos Basin. Acta Pet. Sin. 2016, 37, 939–951. [Google Scholar] [CrossRef]
- Hu, D.; Han, C.; Ma, R.; Liu, Y.; Wang, J.; Gao, Z. The Very Low Grade Metamorphism in the Upper Paleozoic in Xinlingol Area of Inner Mongolia, NE China: Evidence from Studies of Illite and Vitrinite Reflectance. Acta Petrol. Sin. 2012, 28, 3042–3050. [Google Scholar]
- Qin, J.; Tenger, B.; Shen, B.; Tao, G.; Lu, L.; Yang, Y. Ultramicroscopic Organic Petrology Characteristics and Component Classification of Excellent Marine Source Rocks. Pet. Geol. Exp. 2015, 37, 671–680. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, Z.; Yu, P. Relations Between Vitrinite Reflectance, Peek Temperature and Its Neighboring Temperature Variation Rate: A Comparison of Methods. Chin. J. Geophys. 2005, 48, 162–170. [Google Scholar] [CrossRef]
- Ren, Z.; Tian, T.; Li, J.; Wang, J.; Cui, J.; Li, H.; Tang, J.; Guo, K. Review on Methods of Thermal Evolution History in Sedimentary Basins and Thermal Evolution History Reconstruction of Superimposed Basins. J. Earth Sci. Environ. 2014, 36, 12–21. [Google Scholar]
- Qiu, N.; Li, H.; Jin, Z. Study of the Thermal History Reconstruction for Lower Paleozoic Carbonate Succession. Earth Sci. Front. 2005, 4, 561–567. [Google Scholar]
- Zhu, C.; Qiu, N.; Jiang, Q.; Hu, S.; Zhang, S. Thermal History Reconstruction Based on Multiple Paleo-Thermal Records of the Yazihe Area, Western Sichuan Depression. Chin. J. Geophys. 2015, 58, 3660–3670. [Google Scholar] [CrossRef]
- Barker, C.E.; Pawlewicz, M.J. An Empirical Determination of The Minimum Number of Measurements Needed to Estimate the Mean Random Vitrinite Reflectance of Disseminated Organic Matter. Org. Geochem. 1993, 20, 643–651. [Google Scholar] [CrossRef]
- Barker, C.E.; Goldstein, R.H. Fluid-inclusion Technique for Determining Maximum Temperature in Calcite and Its Comparison to the Vitrinite Reflectance Geothermometer. Geology 1990, 18, 1003–1006. [Google Scholar] [CrossRef]
- Teichmüller, M. Recent Advances in Coalification Studies and Their Application to Geology. Geol. Soc. Lond. Spec. Publ. 1987, 32, 127–169. [Google Scholar] [CrossRef]
- Fu, S.; Peng, P.; Zhang, W.; Liu, D.; Liu, J. Palaeo-water and Gas Boundary in the Upper Paleozoic Gas Reservoir of Ordos Basin Reconstructed Using Vitrinite Reflectance Kinetics and the Homogenization Temperature of Fluid Inclusion. Acta Petrolei Sinica 2004, 24, 46–51. [Google Scholar]
- Frings, K.; Lutz, R.; de Wall, H.; Warr, L. Coalification History of the Stephanian Ciñera- Matallana Pull- Part Basin, NW Spain: Combining Anisotropy of Vitrinite Reflectance and Thermal Modelling. Int. J. Earth Sci. 2004, 93, 92–106. [Google Scholar] [CrossRef]
- Sakaguchi, A.; Yanagihara, A.; Ujiie, K.; Tanaka, H.; Kameyama, M. Thermal Maturity of a Fold–Thrust Belt Based on Vitrinite Reflectance Analysis in the Western Foothills Complex, Western Taiwan. Tectonophysics 2007, 443, 220–232. [Google Scholar] [CrossRef]
- Ren, Z.; Yu, Q.; Cui, J.; Qi, K.; Chen, Z.; Cao, Z.; Yang, P. Thermal History and Its Controls on Oil and Gas of the Ordos Basin. Earth Sci. Front. 2017, 24, 137–148. [Google Scholar] [CrossRef]
- Qi, K. Meso-Cenozoic Lithospheric Thermal-Rheological Structure and Deep Magmatic-Thermal Process in the WNCC. Ph.D. Thesis, Northwest University, Xi’an, China, 2021. [Google Scholar]
- Keith, M.L.; Weber, J.N. Carbon and Oxygen Isotopic Composition of Selected Limestones and Fossils. Geochim. Cosmochim. Acta 1964, 28, 1787–1816. [Google Scholar] [CrossRef]
- Bemis, B.; Spero, H.; Bijma, J.; Lea, D. Reevaluation of the Oxygen Isotopic Composition of Planktonic Foraminifera: Experimental Results and Revised Paleotemperature Equations. Paleoceanography 1998, 13, 150–160. [Google Scholar] [CrossRef]
- O'Neil, J.R.; Clayton, R.N.; Mayeda, T.K. Oxygen Isotope Fractionation in Divalent Metal Carbonates. J. Chem. Phys. 1969, 51, 5547–5558. [Google Scholar] [CrossRef]
- Pawlewicz, M.J.; Barker, C.E. Vitrinite Reflectance of Tertiary Coal Across the Surface of the Northern Powder River Basin, Wyoming-Montana; AAPG: Tulsa, OK, USA, 1989; pp. 341–352. [Google Scholar]
- Ren, Z.; Cui, J.; QI, K.; Yang, P.; Liu, X.; Zhang, C.; Yang, G.; Gao, Y.; Zhang, Y.; Xing, G. New Progress in Research on Theories and Methods for Reconstruction of Deep and Ultra-Deep Thermal Evolution History in Superimposed Basins. J. Northwest Univ. (Nat. Sci. Ed.) 2022, 52, 910–929. [Google Scholar] [CrossRef]
- Dow, W. Kerogen studies and geological interpretations. J. Geochem. Explor. 1977, 7, 79–99. [Google Scholar] [CrossRef]
- Wu, X.Q. Study on Thermal Evolution History and Hydrocarbon Accumulation Period of B Basin. Master’s Thesis, Northwest University, Xi’an, China, 2013. [Google Scholar]
- Ren, Z.; Cui, J.; Qi, K.; Yang, G.; Chen, Z.; Yang, P.; Wang, K. Control Effects of Temperature and Thermal Evolution History of Deep and Ultra-Deep Layers on Hydrocarbon Phase State and Hydrocarbon Generation History. Nat. Gas Ind. B 2020, 7, 453–461. [Google Scholar] [CrossRef]
- Yang, P.; Ren, Z.; Zhou, R.; Cui, J.; Qi, K.; Fu, J.; Li, J.; Liu, X.; Li, W.; Wang, K. Tectonic Evolution and Controls on Natural Gas Generation and Accumulation in the Ordovician System of the Ordos Basin, North China. Energy Rep. 2021, 7, 6887–6898. [Google Scholar] [CrossRef]
- Roedder, E. Volume 12: Fluid inclusions. Rev. Mineral. 1984, 12, 644. [Google Scholar]
- Cao, Q.; Wei, X.; Chen, Z.; Zhao, J.; Tang, M. Hydrocarbon Charge History of the Upper Paleozoic, Ordos Basin as Revealed by Fluid Inclusions. Front. Phys. 2022, 10, 836977. [Google Scholar] [CrossRef]
- Zhao, G. Characterization of Fluid Inclusions and Timing of Gas Accumulation in Upper Paleozoic Reservoirs of Hangjinqi Area, Ordos Basin. Oil Gas Geol. 2017, 38, 905–912. [Google Scholar] [CrossRef]
- Song, T.; Liu, L.; Li, F.; Liu, N.; Zhou, B. The Study of The Tight Sandstone Reservoir's Characteristics and The Fluid Inclusions in Fuyu Oil Layer, Daqing Placanticline. Acta Geol. Sin.—Engl. Ed. 2015, 89, 79–80. [Google Scholar] [CrossRef]
- Guo, X.; Liu, K.; He, S.; Song, G.; Wang, Y.; Hao, X.; Wang, B. Petroleum Generation and Charge History of the Northern Dongying Depression, Bohai Bay Basin, China: Insight from Integrated Fluid Inclusion Analysis and Basin Modelling. Mar. Pet. Geol. 2012, 32, 21–35. [Google Scholar] [CrossRef]
- Zhu, R.; Li, R.; Wu, X.; Qin, X.; Zhao, B.; Liu, F.; Zhao, D. The Accumulation Characteristics of the Paleozoic Reservoir in the Central-Southern Ordos Basin Recorded by Organic Inclusions. Geofluids 2021, 2021, 9365364. [Google Scholar] [CrossRef]
- Ren, Z.; Cui, J.; Li, J.; Wang, J.; Guo, K.; Wang, W.; Tian, T.; Cao, Z.; Yang, P. Tectonic-Thermal History Reconstruction of Ordovician in the Weibei Uplift of Ordos Basin. Acta Geol. Sin. 2014, 88, 2044–2056. [Google Scholar]
Well | Depth/m | Strata | Host Mineral | Morphology | Occurrence | Gas–Liquid Ratio/% | Origin | Homogenization Temperature/°C | Number |
---|---|---|---|---|---|---|---|---|---|
Y1207 | 3932.8 | O1m | Calcite | Irregular | Vein filling | ≤5 | Primary | 160~170 | 6 |
Y1262 | 4049.6 | O1m | Calcite | Irregular | Vein filling | ≤5 | Primary | 170~174 | 5 |
Y1353 | 3998.5 | O1m | Dolomite | Regular | Pore filling | ≤5 | Primary | >180 | 2 |
Y1008 | 4036.2 | O1m | Calcite | Irregular | Pore filling | ≤5 | Primary | 175~180 | 3 |
Y1237 | 3870.3 | O1m | Calcite | Irregular, triangular | Pore filling | ≤5 | Primary | 171~180 | 7 |
Y1147 | 4057.9 | O1m | Dolomite | Regular | Vein, pore filling | ≤5 | Primary | 128~150 | 4 |
Y1355 | 4093.7 | O1m | Dolomite | Regular | Vein, pore filling | ≤5 | Primary | 125~155 | 6 |
Y1366 | 3976 | O1m | Calcite | Regular | Vein, pore filling | ≤5 | Primary | 122~182 | 14 |
L3 | 4183.7 | O1m | Calcite | Irregular | Vein filling | 3~8 | Primary | 90~155 | 13 |
S101 | 4065 | O1m | Calcite | Irregular, triangular | Pore filling | 3~8 | Primary | 85~140 | 11 |
S96 | 3298 | O1m | Calcite | Irregular | Pore filling | 3~8 | Primary | 112~168 | 15 |
S110 | 3575.5 | O1m | Calcite | Irregular | Pore filling | 3~8 | Primary | 105~138 | 12 |
S110 | 3579.8 | O1m | Calcite | Irregular | Pore filling | 3~8 | Primary | 102~163 | 10 |
S111 | 3522.9 | O1m | Calcite | Round, triangular | Pore filling | 3~8 | Primary | 78~116 | 9 |
S123 | 3850.5 | O1m | Calcite | Irregular | Pore filling | 3~8 | Primary | 96~170 | 14 |
S138 | 3787.4 | O1m | Calcite | Irregular | Pore filling | 3~8 | Primary | 78~146 | 12 |
L6 | 4351 | O1m | Calcite | Irregular, triangular | Pore filling | 3~8 | Primary | 98~148 | 13 |
L6 | 4508.9 | O1m | Calcite | Irregular, triangular | Pore filling | 3~8 | Primary | 106~116 | 10 |
S44 | 4089 | O1m | Calcite | Round, triangular | Pore filling | 3~8 | Primary | 103~178 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, H.; Cui, J.; Zhao, F.; Ren, Z.; Qi, K.; Liu, H.; Su, S. Thermal History and Hydrocarbon Accumulation Stages in Majiagou Formation of Ordovician in the East-Central Ordos Basin. Energies 2024, 17, 4435. https://doi.org/10.3390/en17174435
Tao H, Cui J, Zhao F, Ren Z, Qi K, Liu H, Su S. Thermal History and Hydrocarbon Accumulation Stages in Majiagou Formation of Ordovician in the East-Central Ordos Basin. Energies. 2024; 17(17):4435. https://doi.org/10.3390/en17174435
Chicago/Turabian StyleTao, Hua, Junping Cui, Fanfan Zhao, Zhanli Ren, Kai Qi, Hao Liu, and Shihao Su. 2024. "Thermal History and Hydrocarbon Accumulation Stages in Majiagou Formation of Ordovician in the East-Central Ordos Basin" Energies 17, no. 17: 4435. https://doi.org/10.3390/en17174435
APA StyleTao, H., Cui, J., Zhao, F., Ren, Z., Qi, K., Liu, H., & Su, S. (2024). Thermal History and Hydrocarbon Accumulation Stages in Majiagou Formation of Ordovician in the East-Central Ordos Basin. Energies, 17(17), 4435. https://doi.org/10.3390/en17174435