Recent Development of Thermal Insulating Materials for Li-Ion Batteries
Abstract
:1. Introduction
2. Battery Thermal Behavior
2.1. Battery Heat Generation
2.2. TR in LIBs
2.3. The Necessity of Thermal Management
3. Phase Change Materials
3.1. The Organic PCM
3.1.1. Paraffin
- Properties
- Synthesis and modification
3.1.2. Non-Paraffin
- Properties
- Synthesis and modification.
3.2. The Inorganic PCM
3.2.1. Salt and Salt Hydrates
- Properties
- Synthesis and modification
3.2.2. Metals and Alloys
3.3. The Composite PCM
4. Barrier-Type Insulating Materials
4.1. Organic Thermal Insulating Materials
4.1.1. Polymer Thermal Insulating Film
- Properties
- Synthesis
- Modification of polymer thermal insulating film
4.1.2. Fiber and Foam Materials
- Properties
- Synthesis
- Modification of foam and fiber materials
4.2. Inorganic Thermal Insulating Materials
4.2.1. Aerogels
- Properties
- Synthesis
- Modification of Aerogel
4.2.2. Ceramics
- Properties
- Synthesis
5. Application of Thermal Insulating Materials in Batteries
5.1. Performance of PCM
5.2. Performance of Barrier-Type Insulation
6. Conclusions and Prospect
Funding
Conflicts of Interest
References
- Tilley, S.D. Recent advances and emerging trends in photo-electrochemical solar energy conversion. Adv. Energy Mater. 2018, 9, 1802877. [Google Scholar] [CrossRef]
- Neill, S.P.; Angeloudis, A.; Robins, P.E.; Walkington, I.; Ward, S.L.; Masters, I.; Lewis, M.J.; Piano, M.; Avdis, A.; Piggott, M.D.; et al. Tidal range energy resource and optimization–Past perspectives and future challenges. Renew. Energy 2018, 127, 763–778. [Google Scholar] [CrossRef]
- Medhaug, I.; Stolpe, M.B.; Fischer, E.M.; Knutti, R. Reconciling controversies about the ‘global warming hiatus’. Nature 2017, 545, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Cano, Z.P.; Banham, D.; Ye, S.Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z.W. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289. [Google Scholar] [CrossRef]
- Goodenough, J.B. Energy storage materials: A perspective. Energy Storage Mater. 2015, 1, 158–161. [Google Scholar] [CrossRef]
- Song, Z.Y.; Zhang, X.B.; Li, J.Q.; Hofmann, H.; Ouyang, M.G.; Du, J.Y. Component sizing optimization of plug-in hybrid electric vehicles with the hybrid energy storage system. Energy 2018, 144, 393–403. [Google Scholar] [CrossRef]
- Saxena, A.; Gnanaseelan, N.; Kamaraj, S.; Caballero-Briones, F. Polymer electrolytes for lithium ion batteries. In Rechargeable Lithium-Ion Batteries; CRC Press: Boca Raton, FL, USA, 2020; pp. 260–288. [Google Scholar]
- Zhang, Q.-K.; Zhang, X.-Q.; Yuan, H.; Huang, J.-Q. Thermally stable and nonflammable electrolytes for lithium metal batteries: Progress and perspectives. Small Sci. 2021, 1, 2100058. [Google Scholar] [CrossRef]
- Kim, J.; Oh, J.; Lee, H. Review on battery thermal management system for electric vehicles. Appl. Therm. Eng. 2019, 149, 192–212. [Google Scholar] [CrossRef]
- Wei, C.; Yu, C.; Chen, S.; Chen, S.; Peng, L.; Wu, Y.; Li, S.; Cheng, S.; Xie, J. Unraveling the LiNbO3 coating layer on battery performances of lithium argyrodite-based all-solid-state batteries under different cut-off voltages. Electrochim. Acta 2023, 438, 141545. [Google Scholar] [CrossRef]
- Tete, P.R.; Gupta, M.M.; Joshi, S.S. Developments in battery thermal management systems for electric vehicles: A technical review. J. Energy Storage 2021, 35, 102255. [Google Scholar] [CrossRef]
- Wu, W.X.; Wang, S.F.; Wu, W.; Chen, K.; Hong, S.H.; Lai, Y.X. A critical review of battery thermal performance and liquid based battery thermal management. Energy Convers. Manag. 2019, 182, 262–281. [Google Scholar] [CrossRef]
- Longchamps, R.S.; Yang, X.G.; Wang, C.Y. Fundamental insights into battery thermal management and safety. ACS Energy Lett. 2022, 7, 1103–1111. [Google Scholar] [CrossRef]
- Liu, C.; Xu, D.; Weng, J.; Zhou, S.; Li, W.; Wan, Y.; Jiang, S.; Zhou, D.; Wang, J.; Huang, Q. Phase change materials application in battery thermal management system: A Review. Materials 2020, 13, 4622. [Google Scholar] [CrossRef] [PubMed]
- Nazir, H.; Batool, M.; Osorio, F.J.B.; Isaza-Ruiz, M.; Xu, X.H.; Vignarooban, K.; Phelan, P.; Inamuddin; Kannan, A.M. Recent developments in phase change materials for energy storage applications: A review. Int. J. Heat Mass Tran. 2019, 129, 491–523. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, Q.; Guo, S.; Yu, L.; Hu, X. Thermoregulating separators based on phase-change materials for safe lithium-ion batteries. Adv. Mater. 2021, 33, 2008088. [Google Scholar] [CrossRef]
- Tang, S.; Guo, W.; Fu, Y. Advances in composite polymer electrolytes for lithium batteries and beyond. Adv. Energy Mater. 2021, 11, 2000802. [Google Scholar] [CrossRef]
- Tian, X.L.; Yi, Y.K.; Fang, B.R.; Yang, P.; Wang, T.; Liu, P.; Qu, L.; Li, M.T.; Zhang, S.Q. Design strategies of safe electrolytes for preventing thermal runaway in lithium ion batteries. Chem. Mater. 2020, 32, 9821–9848. [Google Scholar] [CrossRef]
- Zheng, Y.; Yao, Y.; Ou, J.; Li, M.; Luo, D.; Dou, H.; Li, Z.; Amine, K.; Yu, A.; Chen, Z. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures. Chem. Soc. Rev. 2020, 49, 8790–8839. [Google Scholar] [CrossRef]
- Li, S.; Zhang, S.Q.; Shen, L.; Liu, Q.; Ma, J.B.; Lv, W.; He, Y.B.; Yang, Q.H. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv. Sci. 2020, 7, 1903088. [Google Scholar] [CrossRef]
- Zhang, S.; Li, S.; Lu, Y. Designing safer lithium-based batteries with nonflammable electrolytes: A review. eScience 2021, 1, 163–177. [Google Scholar] [CrossRef]
- Dirican, M.; Yan, C.; Zhu, P.; Zhang, X. Composite solid electrolytes for all-solid-state lithium batteries. Mater. Sci. Eng. R Rep. 2019, 136, 27–46. [Google Scholar] [CrossRef]
- Chen, N.; Zhang, H.; Li, L.; Chen, R.; Guo, S. Ionogel electrolytes for high-performance lithium batteries: A review. Adv. Energy Mater. 2018, 8, 1702675. [Google Scholar] [CrossRef]
- Wang, H.C.; Sheng, L.; Yasin, G.; Wang, L.; Xu, H.; He, X.M. Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries. Energy Storage Mater. 2020, 33, 188–215. [Google Scholar] [CrossRef]
- Hubble, D.; Brown, D.E.; Zhao, Y.Z.; Fang, C.; Lau, J.; McCloskey, B.D.; Liu, G. Liquid electrolyte development for low-temperature lithium-ion batteries. Energy Environ. Sci. 2022, 15, 550–578. [Google Scholar] [CrossRef]
- Adenusi, H.; Chass, G.A.; Passerini, S.; Tian, K.V.; Chen, G. Lithium batteries and the solid electrolyte interphase (SEI)—Progress and outlook. Adv. Energy Mater. 2023, 13, 2203307. [Google Scholar] [CrossRef]
- Liu, X.; Ren, D.S.; Hsu, H.J.; Feng, X.N.; Xu, G.L.; Zhuang, M.H.; Gao, H.; Lu, L.G.; Han, X.B.; Chu, Z.Y.; et al. Thermal runaway of lithium-ion batteries without internal short circuit. Joule 2018, 2, 2047–2064. [Google Scholar] [CrossRef]
- Palacín, M.R.; de Guibert, A. Why do batteries fail? Science 2016, 351, 1253292. [Google Scholar] [CrossRef]
- Liu, H.Q.; Wei, Z.B.; He, W.D.; Zhao, J.Y. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review. Energy Convers. Manag. 2017, 150, 304–330. [Google Scholar] [CrossRef]
- Ren, D.S.; Feng, X.N.; Liu, L.S.; Hsu, H.J.; Lu, L.G.; Wang, L.; He, X.M.; Ouyang, M.G. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition. Energy Storage Mater. 2021, 34, 563–573. [Google Scholar] [CrossRef]
- Zheng, S.Q.; Wang, L.; Feng, X.N.; He, X.M. Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries. J. Power Sources 2018, 378, 527–536. [Google Scholar] [CrossRef]
- Feng, X.N.; Zheng, S.Q.; Ren, D.S.; He, X.M.; Wang, L.; Cui, H.; Liu, X.; Jin, C.Y.; Zhang, F.S.; Xu, C.S.; et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database. Appl. Energy 2019, 246, 53–64. [Google Scholar] [CrossRef]
- Mao, B.B.; Huang, P.F.; Chen, H.D.; Wang, Q.S.; Sun, J.H. Self-heating reaction and thermal runaway criticality of the lithium ion battery. Int. J. Heat Mass Tran. 2020, 149, 119178. [Google Scholar] [CrossRef]
- Liu, J.L.; Huang, Z.H.; Sun, J.H.; Wang, Q.S. Heat generation and thermal runaway of lithium-ion battery induced by slight overcharging cycling. J. Power Sources 2022, 526, 231136. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Qu, Z.G.; Zhang, J.F.; Rao, Z.H. Rapid prediction method for thermal runaway propagation in battery pack based on lumped thermal resistance network and electric circuit analogy. Appl. Energy 2020, 268, 115007. [Google Scholar] [CrossRef]
- Hong, J.C.; Wang, Z.P.; Qu, C.H.; Zhou, Y.J.; Shan, T.X.; Zhang, J.H.; Hou, Y.K. Investigation on overcharge-caused thermal runaway of lithium-ion batteries in real-world electric vehicles. Appl. Energy 2022, 321, 119229. [Google Scholar] [CrossRef]
- Ren, D.S.; Feng, X.N.; Lu, L.G.; He, X.M.; Ouyang, M.G. Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions. Appl. Energy 2019, 250, 323–332. [Google Scholar] [CrossRef]
- Yuan, Q.F.; Zhao, F.G.; Wang, W.D.; Zhao, Y.M.; Liang, Z.Y.; Yan, D.L. Overcharge failure investigation of lithium-ion batteries. Electrochim. Acta 2015, 178, 682–688. [Google Scholar] [CrossRef]
- Ouyang, D.; Chen, M.; Liu, J.; Wei, R.; Weng, J.; Wang, J. Investigation of a commercial lithium-ion battery under overcharge/over-discharge failure conditions. RSC Adv. 2018, 8, 33414–33424. [Google Scholar] [CrossRef]
- Ouyang, D.X.; He, Y.P.; Chen, M.Y.; Liu, J.H.; Wang, J. Experimental study on the thermal behaviors of lithium-ion batteries under discharge and overcharge conditions. J. Therm. Anal. Calorim. 2018, 132, 65–75. [Google Scholar] [CrossRef]
- Liang, J.L.; Gan, Y.H.; Li, Y. Investigation on the thermal performance of a battery thermal management system using heat pipe under different ambient temperatures. Energy Convers. Manag. 2018, 155, 1–9. [Google Scholar] [CrossRef]
- Kvasha, A.; Gutiérrez, C.; Osa, U.; de Meatza, I.; Blazquez, J.A.; Macicior, H.; Urdampilleta, I. A comparative study of thermal runaway of commercial lithium ion cells. Energy 2018, 159, 547–557. [Google Scholar] [CrossRef]
- Feng, X.N.; Ouyang, M.G.; Liu, X.; Lu, L.G.; Xia, Y.; He, X.M. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 246–267. [Google Scholar] [CrossRef]
- Zhang, Q.; Niu, J.; Zhao, Z.; Wang, Q. Research on the effect of thermal runaway gas components and explosion limits of lithium-ion batteries under different charge states. J. Energy Storage 2022, 45, 103759. [Google Scholar] [CrossRef]
- Koch, S.; Fill, A.; Birke, K.P. Comprehensive gas analysis on large scale automotive lithium-ion cells in thermal runaway. J. Power Sources 2018, 398, 106–112. [Google Scholar] [CrossRef]
- Wang, Z.P.; Yuan, J.; Zhu, X.Q.; Wang, H.; Huang, W.; Wang, Y.T.; Xu, S.Q. Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: A comparison study. J. Energy Chem. 2021, 55, 484–498. [Google Scholar] [CrossRef]
- Chen, R.S.; Nolan, A.M.; Lu, J.Z.; Wang, J.Y.; Yu, X.Q.; Mo, Y.F.; Chen, L.Q.; Huang, X.J.; Li, H. The thermal stability of lithium solid electrolytes with metallic lithium. Joule 2020, 4, 812–821. [Google Scholar] [CrossRef]
- Hou, J.X.; Lu, L.G.; Wang, L.; Ohma, A.; Ren, D.S.; Feng, X.N.; Li, Y.; Li, Y.L.; Ootani, I.; Han, X.B.; et al. Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nat. Commun. 2020, 11, 5100. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Dong, Y.; Sun, P.; Zheng, B. Effects of thermal insulation layer material on thermal runaway of energy storage lithium battery pack. J. Energy Storage 2024, 76, 109812. [Google Scholar] [CrossRef]
- Liu, F.; Wang, J.F.; Yang, N.; Wang, F.Q.; Chen, Y.P.; Lu, D.C.; Liu, H.; Du, Q.; Ren, X.T.; Shi, M.Y. Experimental study on the alleviation of thermal runaway propagation from an overcharged lithium-ion battery module using different thermal insulation layers. Energy 2022, 257, 124768. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, L.; Tian, J.; Mei, W.; Jiang, L.; Sun, J.; Wang, Q. Modeling the propagation of internal thermal runaway in lithium-ion battery. Appl. Energy 2024, 362, 123004. [Google Scholar] [CrossRef]
- Zhao, L.; Hou, J.; Feng, X.; Xu, J.; Xu, C.; Wang, H.; Liu, H.; Hou, B.; Rui, X.; Gu, Y.; et al. The trade-off characteristic between battery thermal runaway and combustion. Energy Storage Mater. 2024, 69, 103380. [Google Scholar] [CrossRef]
- Chen, S.; Peng, Q.; Wei, Z.; Li, Y.; Yue, Y.; Zhang, Y.; Zeng, W.; Jin, K.; Jiang, L.; Wang, Q. Revealing the quasi-solid-state electrolyte role on the thermal runaway behavior of lithium metal battery. Energy Storage Mater. 2024, 70, 103481. [Google Scholar] [CrossRef]
- Sun, Z.; Guo, Y.; Zhang, C.; Xu, H.; Zhou, Q.; Wang, C. A novel hybrid battery thermal management system for prevention of thermal runaway propagation. IEEE Trans. Transp. Electrif. 2022, 9, 5028–5038. [Google Scholar] [CrossRef]
- Farid, M.M.; Khudhair, A.M.; Razack, S.A.K.; Al-Hallaj, S. A review on phase change energy storage: Materials and applications. Energy Convers. Manag. 2004, 45, 1597–1615. [Google Scholar] [CrossRef]
- Kenisarin, M.; Mahkamov, K. Solar energy storage using phase change materials. Renew. Sustain. Energy Rev. 2007, 11, 1913–1965. [Google Scholar] [CrossRef]
- Wuttig, M.; Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 2007, 6, 824–832. [Google Scholar] [CrossRef]
- Raoux, S. Phase change materials. Annu. Rev. Mater. Res. 2009, 39, 25–48. [Google Scholar] [CrossRef]
- Mehling, H.; Cabeza, L.F. Phase change materials and their basic properties. In Thermal Energy Storage for Sustainable Energy Consumption: Fundamentals, Case Studies and Design; Springer: Berlin/Heidelberg, Germany, 2007; pp. 257–277. [Google Scholar]
- Umair, M.M.; Zhang, Y.; Iqbal, K.; Zhang, S.; Tang, B. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage—A review. Appl. Energy 2019, 235, 846–873. [Google Scholar] [CrossRef]
- Zhang, N.; Yuan, Y.; Cao, X.; Du, Y.; Zhang, Z.; Gui, Y. Latent heat thermal energy storage systems with solid–liquid phase change materials: A review. Adv. Eng. Mater. 2018, 20, 1700753. [Google Scholar] [CrossRef]
- Sharma, R.; Ganesan, P.; Tyagi, V.; Metselaar, H.; Sandaran, S. Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Convers. Manag. 2015, 95, 193–228. [Google Scholar] [CrossRef]
- Sarier, N.; Onder, E. Organic phase change materials and their textile applications: An overview. Thermochim. Acta 2012, 540, 7–60. [Google Scholar] [CrossRef]
- Gulfam, R.; Zhang, P.; Meng, Z. Advanced thermal systems driven by paraffin-based phase change materials–A review. Appl. Energy 2019, 238, 582–611. [Google Scholar] [CrossRef]
- Zhang, Z.G.; Zhang, N.; Peng, J.; Fang, X.M.; Gao, X.N.; Fang, Y.T. Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material. Appl. Energy 2012, 91, 426–431. [Google Scholar] [CrossRef]
- Hong, Y.; Xin-Shi, G. Preparation of polyethylene–paraffin compound as a form-stable solid-liquid phase change material. Sol. Energy Mater. Sol. Cells 2000, 64, 37–44. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Zhang, X.L.; Hua, W.S. Review of preparation technologies of organic composite phase change materials in energy storage. J. Mol. Liq. 2021, 336, 115923. [Google Scholar] [CrossRef]
- Li, W.; Dong, Y.; Zhang, X.; Liu, X.L. Preparation and Performance Analysis of Graphite Additive/Paraffin Composite Phase Change Materials. Processes 2019, 7, 447. [Google Scholar] [CrossRef]
- Dong, X.; Zheng, B.; Zhang, G.; Xiao, C.; Yang, X. Preparation of Quasi-Thermoplastic Phase Change Polymer with Intrinsic Antileakage Performance for Battery Thermal Management. Adv. Mater. Interfaces 2021, 8, 2100807. [Google Scholar] [CrossRef]
- Xia, L.; Zhang, P.; Wang, R.Z. Preparation and thermal characterization of expanded graphite/paraffin composite phase change material. Carbon 2010, 48, 2538–2548. [Google Scholar] [CrossRef]
- Zhao, X.W.; Liu, P.F.; Ye, L. Synthesis, structure and phase transition property of acrylic acid grafted paraffin. J. Mol. Struct. 2014, 1064, 37–43. [Google Scholar] [CrossRef]
- Shen, Z.; Kwon, S.; Lee, H.L.; Toivakka, M.; Oh, K. Cellulose nanofibril/carbon nanotube composite foam-stabilized paraffin phase change material for thermal energy storage and conversion. Carbohydr. Polym. 2021, 273, 118585. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, S.; Zhao, Y.; Ling, Z.; Zhang, Z.; Fang, X. Compatible paraffin@ SiO2 microcapsules/polydimethylsiloxane composites with heat storage capacity and enhanced thermal conductivity for thermal management. Compos. Sci. Technol. 2022, 218, 109192. [Google Scholar] [CrossRef]
- Gunasekara, S.N.; Pan, R.J.; Chiu, J.N.; Martin, V. Polyols as phase change materials for surplus thermal energy storage. Appl. Energy 2016, 162, 1439–1452. [Google Scholar] [CrossRef]
- Tao, J.L.; Luan, J.D.; Liu, Y.; Qu, D.Y.; Yan, Z.; Ke, X. Technology development and application prospects of organic-based phase change materials: An overview. Renew. Sustain. Energy Rev. 2022, 159, 112175. [Google Scholar] [CrossRef]
- Tomassetti, S.; Aquilanti, A.; Muciaccia, P.F.; Coccia, G.; Mankel, C.; Koenders, E.A.B.; Di Nicola, G. A review on thermophysical properties and thermal stability of sugar alcohols as phase change materials. J. Energy Storage 2022, 55, 105456. [Google Scholar] [CrossRef]
- Kou, Y.; Wang, S.Y.; Luo, J.P.; Sun, K.Y.; Zhang, J.; Tan, Z.C.; Shi, Q. Thermal analysis and heat capacity study of polyethylene glycol (PEG) phase change materials for thermal energy storage applications. J. Chem. Thermodyn. 2019, 128, 259–274. [Google Scholar] [CrossRef]
- Tariq, S.L.; Ali, H.M.; Akram, M.A.; Janjua, M.M.; Ahmadlouydarab, M. Nanoparticles enhanced phase change materials (NePCMs)-A recent review. Appl. Therm. Eng. 2020, 176, 115305. [Google Scholar] [CrossRef]
- Sipponen, M.H.; Henn, A.; Penttilä, P.; Österberg, M. Lignin-fatty acid hybrid nanocapsules for scalable thermal energy storage in phase-change materials. Chem. Eng. J. 2020, 393, 124711. [Google Scholar] [CrossRef]
- Abdulmunem, A.R.; Hamed, H.M.; Samin, P.M.; Mazali, I.I.; Sopian, K. Thermal management of lithium-ion batteries using palm fatty acid distillate as a sustainable bio-phase change material. J. Energy Storage 2023, 73, 109187. [Google Scholar] [CrossRef]
- Nazari, M.; Jebrane, M.; Terziev, N. Multicomponent bio-based fatty acids system as phase change material for low temperature energy storage. J. Energy Storage 2021, 39, 102645. [Google Scholar] [CrossRef]
- Yuan, M.; Ren, Y.; Xu, C.; Ye, F.; Du, X. Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage. Renew. Energy 2019, 136, 211–222. [Google Scholar] [CrossRef]
- Yan, K.; Feng, Y.; Qiu, L. Thermal and photo/electro-thermal conversion characteristics of high energy storage density expanded graphite/polyethylene glycol shaped composite phase change materials. Sol. Energy 2024, 272, 112477. [Google Scholar] [CrossRef]
- Qiu, L.; Yan, K.; Feng, Y.; Liu, X. Nano additives-enhanced PEG /AlN composites with high cycle stability to improve thermal and heat storage properties. Energy 2023, 278, 127794. [Google Scholar] [CrossRef]
- Oya, T.; Nomura, T.; Okinaka, N.; Akiyama, T. Phase change composite based on porous nickel and erythritol. Appl. Therm. Eng. 2012, 40, 373–377. [Google Scholar] [CrossRef]
- Yu, K.Y.; Liu, Y.S.; Yang, Y.Z. Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties. Appl. Energy 2021, 292, 116845. [Google Scholar] [CrossRef]
- Li, Y.X.; Li, C.C.; Lin, N.Z.; Xie, B.S.; Zhang, D.Y.; Chen, J. Review on tailored phase change behavior of hydrated salt as phase change materials for energy storage. Mater. Today Energy 2021, 22, 100866. [Google Scholar] [CrossRef]
- Man, X.; Lu, H.; Xu, Q.; Wang, C.; Ling, Z. Review on the thermal property enhancement of inorganic salt hydrate phase change materials. J. Energy Storage 2023, 72, 108699. [Google Scholar] [CrossRef]
- Huang, J.; Dai, J.; Peng, S.; Wang, T.; Hong, S. Modification on hydrated salt-based phase change composites with carbon fillers for electronic thermal management. Int. J. Energy Res. 2019, 43, 3550–3560. [Google Scholar] [CrossRef]
- Mombeki Pea, H.J.; An, Z.; Du, X.; Hou, W.; Zhang, D.; Liu, X. Experimental and analytical studies on latent heat of hydrated salt/modified EG-based form-stable composite PCMs for energy storage application. Renew. Energy 2024, 222, 119978. [Google Scholar] [CrossRef]
- Deng, Y.; Li, J.; Deng, Y.; Nian, H.; Jiang, H. Supercooling suppression and thermal conductivity enhancement of Na2HPO4·12H2O/expanded vermiculite form-stable composite phase change materials with alumina for heat storage. ACS Sustain. Chem. Eng. 2018, 6, 6792–6801. [Google Scholar] [CrossRef]
- Lu, J.; Deng, Y.; Luo, D.; Wu, F.; Dai, X. Preparation and performance enhancement of MXene/Na2HPO4· 12H2O@ SiO2 phase change microcapsule. J. Energy Storage 2024, 91, 112079. [Google Scholar] [CrossRef]
- McGillicuddy, R.D.; Thapa, S.; Wenny, M.B.; Gonzalez, M.I.; Mason, J.A. Metal–organic phase-change materials for thermal energy storage. J. Am. Chem. Soc. 2020, 142, 19170–19180. [Google Scholar] [CrossRef]
- Chen, X.; Gao, H.Y.; Tang, Z.D.; Dong, W.J.; Li, A.; Wang, G. Optimization strategies of composite phase change materials for thermal energy storage, transfer, conversion and utilization. Energy Environ. Sci. 2020, 13, 4498–4535. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, P.; Tang, Z.; Xu, X.; Gao, H.; Wang, G. Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion. Adv. Sci. 2021, 8, 2001274. [Google Scholar] [CrossRef]
- Dai, X.; Ping, P.; Kong, D.; Gao, X.; Zhang, Y.; Wang, G.; Peng, R. Heat transfer enhanced inorganic phase change material compositing carbon nanotubes for battery thermal management and thermal runaway propagation mitigation. J. Energy Chem. 2024, 89, 226–238. [Google Scholar] [CrossRef]
- Sun, M.; Liu, T.; Li, M.; Tan, J.; Tian, P.; Wang, H.; Chen, G.; Jiang, D.; Liu, X. A deep supercooling eutectic phase change material for low-temperature battery thermal management. J. Energy Storage 2022, 50, 104240. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, S.; He, J.; Xu, D.; Abdou, S.N.; Ibrahim, M.M.; Sun, S.; Chen, Y.; Li, H.; Xu, B.B.; et al. Experimental design of paraffin/methylated melamine-formaldehyde microencapsulated composite phase change material and the application in battery thermal management system. J. Mater. Sci. Technol. 2024, 169, 124–136. [Google Scholar] [CrossRef]
- Wen, R.; Chen, B.; Yin, L.; Yuan, X.; Ma, A. Thermal properties and non-isothermal crystallization behavior of ternary eutectic phase change material for thermal energy storage. J. Energy Storage 2024, 84, 110566. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, D.; Chen, L.; Cao, X.; Li, X.; Qu, Y. Preparation and thermal properties analysis of fatty acids/1-hexadecanol binary eutectic phase change materials reinforced with TiO2 particles. J. Energy Storage 2022, 51, 104546. [Google Scholar] [CrossRef]
- Abu-Jdayil, B.; Mourad, A.H.; Hittini, W.; Hassan, M.; Hameedi, S. Traditional, state-of-the-art and renewable thermal building insulation materials: An overview. Constr. Build. Mater. 2019, 214, 709–735. [Google Scholar] [CrossRef]
- Villasmil, W.; Fischer, L.J.; Worlitschek, J. A review and evaluation of thermal insulation materials and methods for thermal energy storage systems. Renew. Sustain. Energy Rev. 2019, 103, 71–84. [Google Scholar] [CrossRef]
- Kumar, D.; Alam, M.; Zou, P.X.W.; Sanjayan, J.G.; Memon, R.A. Comparative analysis of building insulation material properties and performance. Renew. Sustain. Energy Rev. 2020, 131, 110038. [Google Scholar] [CrossRef]
- Xu, Y.; Kraemer, D.; Song, B.; Jiang, Z.; Zhou, J.; Loomis, J.; Wang, J.; Li, M.; Ghasemi, H.; Huang, X.; et al. Nanostructured polymer films with metal-like thermal conductivity. Nat. Commun. 2019, 10, 1771. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Zhang, X.; Ding, X.; Zhang, P.; Shu, M.T.; Zhang, Q.; Gong, Y.; Zheng, K.; Tian, X.Y. Imidization-induced carbon nitride nanosheets orientation towards highly thermally conductive polyimide film with superior flexibility and electrical insulation. Compos. Part B Eng. 2020, 199, 108267. [Google Scholar] [CrossRef]
- Fraleoni-Morgera, A.; Chhikara, M. Polymer-based nano-composites for thermal insulation. Adv. Eng. Mater. 2019, 21, 1801162. [Google Scholar] [CrossRef]
- Wang, F.; Ke, X.; Shen, K.; Zhu, L.; Yuan, C. A critical review on materials and fabrications of thermally stable separators for lithium-ion batteries. Adv. Mater. Technol. 2022, 7, 2100772. [Google Scholar] [CrossRef]
- Waqas, M.; Ali, S.; Feng, C.; Chen, D.; Han, J.; He, W. Recent development in separators for high-temperature lithium-ion batteries. Small 2019, 15, 1901689. [Google Scholar] [CrossRef]
- Dai, X.; Zhang, X.; Wen, J.; Wang, C.; Ma, X.; Yang, Y.; Huang, G.; Ye, H.-M.; Xu, S. Research progress on high-temperature resistant polymer separators for lithium-ion batteries. Energy Storage Mater. 2022, 51, 638–659. [Google Scholar] [CrossRef]
- Ge, C.B.; Zhai, W.T. Cellular thermoplastic polyurethane thin film: Preparation, elasticity, and thermal insulation performance. Ind. Eng. Chem. Res. 2018, 57, 4688–4696. [Google Scholar] [CrossRef]
- Tan, X.; Rodrigue, D. A review on porous polymeric membrane preparation. part II: Production techniques with polyethylene, polydimethylsiloxane, polypropylene, polyimide, and polytetrafluoroethylene. Polymers 2019, 11, 1310. [Google Scholar] [CrossRef]
- Ismail, N.; Venault, A.; Mikkola, J.P.; Bouyer, D.; Drioli, E.; Kiadeh, N.T.H. Investigating the potential of membranes formed by the vapor induced phase separation process. J. Membr. Sci. 2020, 597, 117601. [Google Scholar] [CrossRef]
- Wang, F.; Altschuh, P.; Ratke, L.; Zhang, H.; Selzer, M.; Nestler, B. Progress report on phase separation in polymer solutions. Adv. Mater. 2019, 31, e1806733. [Google Scholar] [CrossRef] [PubMed]
- Muche, Z.B.; Nikodimos, Y.; Tekaligne, T.M.; Merso, S.K.; Agnihotri, T.; Serbessa, G.G.; Wu, S.H.; Su, W.N.; Hwang, B.J. Thermally stable 3D cross-linked fluorinated polyimide/PVDF-HFP hybrid separator for lithium battery applications. Chem. Eng. J. 2023, 476, 146400. [Google Scholar] [CrossRef]
- Li, L.; Zhou, M.; Xiong, R.; Wang, X.; Shen, G.; Sun, S.; Chen, Y.; Huang, T.; Zhou, H.; Zhang, Y. High-safety poly(ethylene-co-vinyl acetate)/poly(ether ether ketone)/poly(ethylene-co-vinyl acetate) composite separator with the thermal shutdown feature for lithium-ion battery. J. Membr. Sci. 2023, 687, 122059. [Google Scholar] [CrossRef]
- Yu, J.; Dong, N.; Liu, B.; Tian, G.; Qi, S.; Wu, D. A newly-developed heat-resistance polyimide microsphere coating to enhance the thermal stability of commercial polyolefin separators for advanced lithium-ion battery. Chem. Eng. J. 2022, 442, 136314. [Google Scholar] [CrossRef]
- Hu, W.; Fu, W.; Jhulki, S.; Chen, L.; Narla, A.; Sun, Z.; Wang, F.; Magasinski, A.; Yushin, G. Heat-resistant Al2O3 nanowire-polyetherimide separator for safer and faster lithium-ion batteries. J. Mater. Sci. Technol. 2023, 142, 112–120. [Google Scholar] [CrossRef]
- Hu, F.; Wu, S.; Sun, Y. Hollow-structured materials for thermal insulation. Adv. Mater. 2019, 31, e1801001. [Google Scholar] [CrossRef]
- Doğan, B.; Tan, H. The numerical and experimental investigation of the change of the thermal conductivity of expanded polystyrene at different temperatures and densities. Int. J. Polym. Sci. 2019, 2019, 6350326. [Google Scholar] [CrossRef]
- Chung, S.Y.; Abd Elrahman, M.; Kim, J.S.; Han, T.S.; Stephan, D.; Sikora, P. Comparison of lightweight aggregate and foamed concrete with the same density level using image-based characterizations. Constr. Build. Mater. 2019, 211, 988–999. [Google Scholar] [CrossRef]
- Peng, F.; Jiang, Y.; Feng, J.; Cai, H.; Feng, J.; Li, L. Thermally insulating, fiber-reinforced alumina–silica aerogel composites with ultra-low shrinkage up to 1500 °C. Chem. Eng. J. 2021, 411, 128402. [Google Scholar] [CrossRef]
- Apostolopoulou-Kalkavoura, V.; Munier, P.; Bergström, L. Thermally insulating nanocellulose-based materials. Adv. Mater. 2021, 33, 2001839. [Google Scholar] [CrossRef]
- Yang, C.G.; Zhang, Q.; Zhang, W.L.; Xia, M.; Yan, K.; Lu, J.; Wu, G.Z. High thermal insulation and compressive strength polypropylene microcellular foams with honeycomb structure. Polym. Degrad. Stab. 2021, 183, 109406. [Google Scholar] [CrossRef]
- Leng, W.Q.; Pan, B. Thermal insulating and mechanical properties of cellulose nanofibrils modified polyurethane foam composite as structural insulated material. Forests 2019, 10, 200. [Google Scholar] [CrossRef]
- Wang, S.; Li, H.Q.; Zou, S.; Zhang, G.Q. Experimental research on a feasible rice husk/geopolymer foam building insulation material. Energ Build. 2020, 226, 110358. [Google Scholar] [CrossRef]
- Karami, P.; Khorshidi, B.; McGregor, M.; Peichel, J.T.; Soares, J.B.P.; Sadrzadeh, M. Thermally stable thin film composite polymeric membranes for water treatment: A review. J. Clean. Prod. 2020, 250, 119447. [Google Scholar] [CrossRef]
- Yi, C.; Li, W.; Shi, S.; He, K.; Ma, P.; Chen, M.; Yang, C. High-temperature-resistant and colorless polyimide: Preparations, properties, and applications. Sol. Energy 2020, 195, 340–354. [Google Scholar] [CrossRef]
- Lee, J.W.; Sun, C.; Ma, B.S.; Kim, H.J.; Wang, C.; Ryu, J.M.; Lim, C.; Kim, T.S.; Kim, Y.H.; Kwon, S.K. Efficient, thermally stable, and mechanically robust all-polymer solar cells consisting of the same benzodithiophene unit-based polymer acceptor and donor with high molecular compatibility. Adv. Energy Mater. 2021, 11, 2003367. [Google Scholar] [CrossRef]
- Zhang, L.L.; Wu, W.J.; Wei, J.; Bian, Y.P.; Luo, H.G. Preparation of foamed gel for preventing spontaneous combustion of coal. Fuel 2021, 300, 121024. [Google Scholar] [CrossRef]
- Wang, J.; Chai, J.; Wang, G.; Zhao, J.; Zhang, D.; Li, B.; Zhao, H.; Zhao, G. Strong and thermally insulating polylactic acid/glass fiber composite foam fabricated by supercritical carbon dioxide foaming. Int. J. Biol. Macromol. 2019, 138, 144–155. [Google Scholar] [CrossRef]
- Okolieocha, C.; Raps, D.; Subramaniam, K.; Altstädt, V. Microcellular to nanocellular polymer foams: Progress (2004–2015) and future directions—A review. Eur. Polym. J. 2015, 73, 500–519. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, M.; Fu, H.; Wu, Z.; Zhang, Y.; Chao, G.; Chen, S.; Zhang, L.; Liu, T. Thermotolerant separator of cross-linked polyimide fibers with narrowed pore size for lithium-ion batteries. J. Membr. Sci. 2022, 662, 121004. [Google Scholar] [CrossRef]
- Cha, H.-A.; Jo, M.-G.; Moon, Y.K.; Hahn, B.-D.; Ahn, C.-W.; Choi, J.-J.; Kim, D.K. Highly porous YSZ ceramic foams using hollow spheres with holes in their shell for high-performance thermal insulation. J. Eur. Ceram. Soc. 2023, 43, 7041–7052. [Google Scholar] [CrossRef]
- Lee, W.; Kim, J. Fabrication of organic based thermal resistance material using pyrolyzed cellulose nanofiber and carbon fiber for high performance thermal insulation. Mater. Today Chem. 2023, 33, 101734. [Google Scholar] [CrossRef]
- Zygmunt-Kowalska, B.; Zakrzewska, P.; Szajding, A.; Handke, B.; Kuznia, M. Polyurethane foams reinforced with microspheres-assessment of the application in construction as a thermal insulation material. Thermochim. Acta 2023, 726, 179556. [Google Scholar] [CrossRef]
- Bausch, B.; Frankl, S.; Becher, D.; Menz, F.; Baier, T.; Bauer, M.; Böse, O.; Hölzle, M. Naturally-derived thermal barrier based on fiber-reinforced hydrogel for the prevention of thermal runaway propagation in high-energetic lithium-ion battery packs. J. Energy Storage 2023, 61, 106841. [Google Scholar] [CrossRef]
- Wu, Q.; Yang, M.; Chen, Z.; Lu, L.; Ma, Z.; Ding, Y.; Yin, L.; Liu, T.; Li, M.; Yang, L.; et al. A layered aerogel composite with silica fibers, SiC nanowires, and silica aerogels ternary networks for thermal insulation at high-temperature. J. Mater. Sci. Technol. 2025, 204, 71–80. [Google Scholar] [CrossRef]
- Almeida, C.M.R.; Ghica, M.E.; Duraes, L. An overview on alumina-silica-based aerogels. Adv. Colloid Interface Sci. 2020, 282, 102189. [Google Scholar] [CrossRef]
- Hu, L.; He, R.J.; Lei, H.S.; Fang, D.N. Carbon aerogel for insulation applications: A Review. Int. J. Thermophys. 2019, 40, 39. [Google Scholar] [CrossRef]
- Zhao, S.; Siqueira, G.; Drdova, S.; Norris, D.; Ubert, C.; Bonnin, A.; Galmarini, S.; Ganobjak, M.; Pan, Z.; Brunner, S.; et al. Additive manufacturing of silica aerogels. Nature 2020, 584, 387–392. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Z.; Wei, Z.; Chen, S.; Huang, Z.; Fang, Z.; Li, Y.; Wang, J.; Mei, W.; Wang, Q. Enhancing battery module safety with insulation material: Hollow glass microspheres incorporating aerogel of varying particle sizes. Chem. Eng. J. 2023, 478, 147400. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Yang, Y.; Pang, B.; Xu, W.; Duan, G.; Jiang, S.; Zhang, K. Recent progress on nanocellulose aerogels: Preparation, modification, composite fabrication, applications. Adv. Mater. 2021, 33, e2005569. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, S.J. Recent advances in preparations and applications of carbon aerogels: A review. Carbon 2020, 163, 1–18. [Google Scholar] [CrossRef]
- Peng, F.; Jiang, Y.; Feng, J.; Li, L.; Cai, H.; Feng, J. A facile method to fabricate monolithic alumina–silica aerogels with high surface areas and good mechanical properties. J. Eur. Ceram. Soc. 2020, 40, 2480–2488. [Google Scholar] [CrossRef]
- Kharissova, O.V.; Torres, C.E.I.; González, L.T.; Kharisov, B.I. All-carbon hybrid aerogels: Synthesis, properties, and applications. Ind. Eng. Chem. Res. 2019, 58, 16258–16286. [Google Scholar] [CrossRef]
- Li, M.; Zhu, Z.; Jiao, R.; Chen, Y.; Cao, X.; Sun, H.; Li, J.; Li, A. Preparation of DOPO-KH550 modified hollow glass microspheres/PVA composite aerogel for thermal insulation and flame retardancy. J. Colloid Interface Sci. 2024, 654, 719–730. [Google Scholar] [CrossRef]
- Yang, D.; Dong, S.; Xin, J.; Liu, C.; Hu, P.; Xia, L.; Hong, C.; Zhang, X. Robust and thermostable C/SiOC composite aerogel for efficient microwave absorption, thermal insulation and flame retardancy. Chem. Eng. J. 2023, 469, 143851. [Google Scholar] [CrossRef]
- Yang, R.; Hu, F.; An, L.; Armstrong, J.; Hu, Y.; Li, C.; Huang, Y.; Ren, S. A hierarchical mesoporous insulation ceramic. Nano Lett. 2019, 20, 1110–1116. [Google Scholar] [CrossRef]
- Dutto, A.; Zanini, M.; Jeoffroy, E.; Tervoort, E.; Mhatre, S.A.; Seibold, Z.B.; Bechthold, M.; Studart, A.R. 3D printing of hierarchical porous ceramics for thermal insulation and evaporative cooling. Adv. Mater. Technol. 2023, 8, 2201109. [Google Scholar] [CrossRef]
- Rajan, J.T.; Jayapal, V.S.; Krishna, M.J.; Mohammed Firose, K.A.; Vaisakh, S.; John, A.K.; Suryan, A. Analysis of battery thermal management system for electric vehicles using 1-tetradecanol phase change material. Sustain. Energy Technol. Assess. 2022, 51, 101943. [Google Scholar] [CrossRef]
- Ping, P.; Dai, X.; Kong, D.; Zhang, Y.; Zhao, H.; Gao, X.; Gao, W. Experimental study on nano-encapsulated inorganic phase change material for lithium-ion battery thermal management and thermal runaway suppression. Chem. Eng. J. 2023, 463, 142401. [Google Scholar] [CrossRef]
- Zou, D.Q.; Liu, X.S.; He, R.J.; Zhu, S.X.; Bao, J.M.; Guo, J.R.; Hu, Z.G.; Wang, B.H. Preparation of a novel composite phase change material (PCM) and its locally enhanced heat transfer for power battery module. Energy Convers. Manag. 2019, 180, 1196–1202. [Google Scholar] [CrossRef]
- Palanisamy, M.; Lin, K.W.; Lo, C.T.; Pol, V.G. In situ thermal safety aspect of the electrospun polyimide-Al2O3 separator reveals less exothermic heat energies than polypropylene at the thermal runaway event of lithium-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 28310–28320. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Guo, Y.; Li, X.; Zhang, L.; Yan, J. Continuous rapid fabrication of ceramic fiber sponge aerogels with high thermomechanical properties via a green and low-cost electrospinning technique. ACS Nano 2024, 18, 19054–19063. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Mu, X.; Zhu, Y.; Liao, C.; Han, L.; Wang, J.; Cai, W.; Kan, Y.; Song, L.; Hu, Y. Sandwich structured ultra-strong-heat-shielding aerogel/copper composite insulation board for safe lithium-ion batteries modules. J. Energy Chem. 2023, 76, 438–447. [Google Scholar] [CrossRef]
Paraffin Wax | Molecular Formula | Melting Temperature (°C) | Crystallization Temperature (°C) | ΔHfus (kJ·kg−1) |
---|---|---|---|---|
n-Dodecane | CH3(CH2)10CH3 | −10 | −16 | 216 |
n-Tridecane | CH3(CH2)11CH3 | −5 | −9 | 160 |
n-Tetradecane | CH3(CH2)12CH3 | 5–6 | 0 | 227 |
n-Pentadecane | CH3(CH2)13CH3 | 10 | 5 | 205 |
n-Hexadecane | CH3(CH2)14CH3 | 18–19 | 17 | 237 |
n-Heptadecane | CH3(CH2)15CH3 | 22 | 22 | 171 |
n-Octadecane | CH3(CH2)16CH3 | 28 | 25 | 242 |
n-Nonadecane | CH3(CH2)17CH3 | 32–33 | 27 | 222 |
n-Eicosane | CH3(CH2)18CH3 | 36–37 | 31 | 247 |
n-Heneicosane | CH3(CH2)19CH3 | 39–41 | 32 | 201 |
n-Docosane | CH3(CH2)20CH3 | 42–45 | 43 | 157 |
n-Tricosane | CH3(CH2)21CH3 | 48.9 | 51 | 142 |
n-Tetracosane | CH3(CH2)22CH3 | 50–51 | 48–49 | 160 |
n-Pentacosane | CH3(CH2)23CH3 | 54 | 47 | 164 |
n-Hexacosane | CH3(CH2)24CH3 | 56 | 53–54 | 255 |
n-Heptacosane | CH3(CH2)25CH3 | 59 | 53 | 159 |
n-Octacosane | CH3(CH2)26CH3 | 61 | 54 | 202 |
Synthesis Method | Advantages | Disadvantages |
---|---|---|
Physical mixing | simple operation | poor uniformity |
Copolymerization | performance improvement | strict process |
Melt impregnation | high production efficiency | obvious internal voids |
Microencapsulation | high material stability | high cost |
Average Molar
Mass (g mol−1) |
Melting
Temperature (°C) | ΔHfus (kJ·kg−1) | Crystallization Temperature (°C) | ΔHcryst (kJ·kg−1) |
---|---|---|---|---|
400 | 3.2 | 91.4 | −24 | 85–86 |
600 | 22.2 | 108.4 | −7 | 116 |
1000 | 32.0 | 149.5 | 28 | 140 |
1500 | 46.5 | 176.3 | 39–40 | 169 |
2000 | 51.0 | 181.4 | 35 | 168 |
3400 | 56.6 | 174.1 | 29 | 159 |
4000 | 59.7 | 189.7 | 22 | 167 |
6000 | 64.8 | 189.0 | 33 | 161 |
10,000 | 66.0 | 189.6 | 38 | 167 |
20,000 | 68.7 | 187.8 | 38 | 161 |
Eutectic Mixture of Fatty Acids | # of C Atoms in Fatty Acids | Composition by Mass | Melting Temperature (°C) | ΔHfus (kJ·kg−1) |
---|---|---|---|---|
Lauric-palmitic | 12C:16C | 66:34 | 33–37 | 169 |
Lauric-myristic | 12C:14C | 63:37 | 31–37 | 170 |
Lauric-stearic | 12C:18C | 76:24 | 37 | 171 |
Myristic-stearic | 14C:18C | 50:50 | 35−52 | 189 |
Myristic-palmitic | 14C:16C | 66:34 | 44 | 181 |
Palmitic-stearic | 16C:18C | 65:35 | 51 | 179 |
Capric-lauric | 10C:12C | 65:35 | 13–14 | 117 |
Capric-palmitic | 10C:16C | 75:25 | 26–33 | 142 |
Capric-myristic | 10C:14C | 74:26 | 23 | 155 |
Capric-stearic | 10C:18C | 87:13 | 27 | 160 |
Compound | Latent Heat (J/g) | Thermal Conductivity (W/m·K) | Supercooling Degree (°C) | Drawback |
---|---|---|---|---|
LiClO3·3H2O | 253 | NR * | 8.00 | high price |
CaCl2·6H2O | 174 | 0.550 | 47.6 | high supercooling |
LiNO3·3H2O | 256 | NR | 10.1 | high price |
Na2CO3·10H2O | 247 | 0.600 | 13.7 | high supercooling |
Na2HPO4·12H2O | 280 | 0.514 | 13.0 | high supercooling |
FeCl3·6H2O | 223 | NR | NR | NR |
Ca(NO3)2·4H2O | 153 | 0.570 | 87.0 | high supercooling |
Mg(NO3)2·2H2O | 142 | NR | NR | NR |
Fe(NO3)2·9H2O | 155 | NR | NR | NR |
MgSO4·7H2O | 202 | NR | NR | NR |
Ca(NO3)2·3H2O | 104 | NR | NR | NR |
Zn(NO3)2·2H2O | 68.0 | NR | NR | NR |
FeCl3·2H2O | 90.0 | NR | NR | NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quan, T.; Xia, Q.; Wei, X.; Zhu, Y. Recent Development of Thermal Insulating Materials for Li-Ion Batteries. Energies 2024, 17, 4412. https://doi.org/10.3390/en17174412
Quan T, Xia Q, Wei X, Zhu Y. Recent Development of Thermal Insulating Materials for Li-Ion Batteries. Energies. 2024; 17(17):4412. https://doi.org/10.3390/en17174412
Chicago/Turabian StyleQuan, Ting, Qi Xia, Xiaoyu Wei, and Yanli Zhu. 2024. "Recent Development of Thermal Insulating Materials for Li-Ion Batteries" Energies 17, no. 17: 4412. https://doi.org/10.3390/en17174412
APA StyleQuan, T., Xia, Q., Wei, X., & Zhu, Y. (2024). Recent Development of Thermal Insulating Materials for Li-Ion Batteries. Energies, 17(17), 4412. https://doi.org/10.3390/en17174412