Regional-Scale Assessment of the Potential for Shallow Geothermal Energy Development Using Vertical Ground Source Heat Pumps
Abstract
1. Introduction
2. Overview of the Study Area
3. Procedures and Methodology
3.1. Analysis of the Impact of Geological Conditions on SGE
3.1.1. Geological Structures
3.1.2. Topography and Landforms
3.1.3. Geological Strata
3.1.4. Groundwater
3.2. Suitability Zoning for SGE Development Using VGSHP
3.2.1. Suitability Zoning Standards
- Thickness of Quaternary Strata
- Thickness of Gravel Layers
- Thickness of Groundwater Aquifers
- Environmental Protection Requirements
3.2.2. Suitability Zoning Based on the ArcGIS Platform
- Data Input and Basic Information Editing
- 2.
- Digitalization of Indicators and Interpolation Calculations
- 3.
- Visualization of Results and Output
3.3. Evaluation of the Potential for Developing SGE Using VGSHP
- Heat Exchange Capacity Calculation
- 2.
- Heating or Cooling Area per Unit Area Calculation
- 3.
- Calculation of Energy Conservation and Emission Reduction Benefits
4. Results
4.1. Suitability Zoning Results
- Suitable area
- Moderately suitable area
- High-cost area
- Restricted area
4.2. Potential Estimation Results
5. Discussion
- The results of this study reveal that the use of VGSHP for SGE development in Jiangsu Province is not only technically feasible but also holds substantial potential for energy savings and environmental benefits, which aligns with the province’s carbon neutrality goals. It is noteworthy that the geological environment and current development status vary significantly across different cities within the province, leading to differences in shallow geothermal energy resources and development potential. Therefore, it is essential to devise development policies tailored to the specific conditions of each city.
- While this study provides an assessment of SGE potential in Jiangsu Province, there are limitations that should be addressed in future research. The exclusion of certain areas due to high costs or policy restrictions may omit potential sites that could become viable with technological advancements or policy changes. Additionally, the current assessment does not account for the long-term sustainability of heat extraction, such as the impact of climate change on geothermal gradients and groundwater levels, which may affect the efficiency of VGSHP systems over time. Future studies should incorporate dynamic modeling of heat extraction and regeneration processes to provide a more comprehensive evaluation of SGE potential.
- Due to the limited number of cases involving groundwater-source heat pumps collected in the study area, this work focused solely on the quantitative evaluation of SGE development potential using VGSHP. Future studies could expand to include the potential of groundwater-source heat pumps. Additionally, this paper only discusses the positive effects of SGE development. However, issues induced by SGE development, such as thermal imbalance in the geotechnical body, land subsidence, groundwater pollution, and damage to the underground ecological environment, should not be overlooked [32,33,34].
6. Conclusions
- The key indicators determining the suitability of developing SGE in Jiangsu Province using VGSHP include the thickness of the Quaternary strata, the thickness of the pebble layer, the thickness of the underground aquifer, and local protection policy requirements. The areas classified as suitable and moderately suitable for developing SGE using VGSHP are 35,204 km2 and 41,249 km2, respectively, accounting for 34.31% and 40.20% of the total provincial area.
- In Jiangsu Province, the total heat exchange capacity in suitable and moderately suitable areas for VGSHP is 1.21 × 109 kW in summer and 8.70 × 108 kW in winter. The potential cooling area available in summer is 1.21 × 1010 m2, and the potential heating area available in winter is 1.09 × 1010 m2.
- The potential for developing SGE in Jiangsu Province using VGSHP is substantial, with significant energy-saving and emission reduction benefits. Without considering energy extraction efficiency, the annual available resource amount is equivalent to 3.30 × 108 tons of standard coal, nearly matching the province’s annual energy consumption. The emission reductions are equivalent to 7.86 × 108 tons of CO2, 5.60 × 106 tons of SO2, 1.98 × 106 tons of NOx, and 2.64 × 106 tons of dust, corresponding to environmental governance costs of approximately 91.6 billion yuan.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanner, B. Shallow Geothermal Energy; GHC Bulletin: Giessen, Germany, 2001. [Google Scholar]
- Ahmed, A.A.; Assadi, M.; Kalantar, A.; Sliwa, T.; Sapińska-Śliwa, A. A critical review on the use of shallow geothermal energy systems for heating and cooling purposes. Energies 2022, 15, 4281. [Google Scholar] [CrossRef]
- Lund, J.; Sanner, B.; Rybach, L.; Curtis, R.; Hellström, G. Geothermal (ground-source) heat pumps: A world overview. Geo-Heat Cent. Q. Bull. 2004, 25. [Google Scholar] [CrossRef]
- Narsilio, G.A.; Aye, L. Shallow geothermal energy: An emerging technology. In Low Carbon Energy Supply: Trends, Technology, Management; Springer: Singapore, 2018; pp. 387–411. [Google Scholar]
- Cadelano, G.; Cicolin, F.; Emmi, G.; Mezzasalma, G.; Poletto, D.; Galgaro, A.; Bernardi, A. Improving the energy efficiency, limiting costs and reducing CO2 emissions of a museum using geothermal energy and energy management policies. Energies 2019, 12, 3192. [Google Scholar] [CrossRef]
- Walch, A.; Li, X.; Chambers, J.; Mohajeri, N.; Yilmaz, S.; Patel, M.; Scartezzini, J.L. Shallow geothermal energy potential for heating and cooling of buildings with regeneration under climate change scenarios. Energy 2022, 244, 123086. [Google Scholar] [CrossRef]
- Casasso, A.; Sethi, R. Assessment and mapping of the shallow geothermal potential in the province of Cuneo (Piedmont, NW Italy). Renew. Energy 2017, 102, 306–315. [Google Scholar] [CrossRef]
- Ramos-Escudero, A.; García-Cascales, M.S.; Cuevas, J.M.; Sanner, B.; Urchueguía, J.F. Spatial analysis of indicators affecting the exploitation of shallow geothermal energy at European scale. Renew. Energy 2021, 167, 266–281. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Dou, J.; Li, M.; Zeng, M. Geothermal energy in China: Status, challenges, and policy recommendations. Util. Policy 2020, 64, 101020. [Google Scholar] [CrossRef]
- Yu, P.; Liu, H.; Wang, Z.; Fu, J.; Zhang, H.; Wang, J.; Yang, Q. Development of Urban Underground Space in Coastal Cities in China: A Review. Deep. Undergr. Sci. Eng. 2023, 2, 148–172. [Google Scholar] [CrossRef]
- Roka, R.B.; Figueiredo, A.J.P.D.; Vieira, A.M.C.P.; Cardoso, J.C.D.P. A systematic review on shallow geothermal energy system: A light into six major barriers. Soils Rocks 2023, 46, e2023007622. [Google Scholar] [CrossRef]
- Wei, W.; Li, X. Analysis on the Development Strategy of Shallow Geothermal Energy in China in the Next 10~15 Years. Urban Geol. 2021, 16, 1–8. (In Chinese) [Google Scholar]
- Vieira, A.; Alberdi-Pagola, M.; Christodoulides, P.; Javed, S.; Loveridge, F.; Nguyen, F.; Cecinato, F.; Maranha, J.; Florides, G.; Prodan, I.; et al. Characterisation of ground thermal and thermo-mechanical behaviour for shallow geothermal energy applications. Energies 2017, 10, 2044. [Google Scholar] [CrossRef]
- Schiel, K.; Baume, O.; Caruso, G.; Leopold, U. GIS-based modelling of shallow geothermal energy potential for CO2 emission mitigation in urban areas. Renew. Energy 2016, 86, 1023–1036. [Google Scholar] [CrossRef]
- Francesco, T.; Annamaria, P.; Martina, B.; Dario, T.; Dušan, R.; Simona, P.; Dalibor, J.; Tomislav, R.; Slavisa, J.; Branko, Z.; et al. How to boost shallow geothermal energy exploitation in the adriatic area: The LEGEND project experience. Energy Policy 2016, 92, 190–204. [Google Scholar] [CrossRef]
- Omer, A.M. Ground-source heat pumps systems and applications. Renew. Sustain. Energy Rev. 2008, 12, 344–371. [Google Scholar] [CrossRef]
- Wang, G.; Wang, W.; Luo, J.; Zhang, Y. Assessment of three types of shallow geothermal resources and ground-source heat-pump applications in provincial capitals in the Yangtze River Basin, China. Renew. Sustain. Energy Rev. 2019, 111, 392–421. [Google Scholar] [CrossRef]
- Jolie, E.; Scott, S.; Faulds, J.; Chambefort, I.; Axelsson, G.; Gutiérrez-Negrín, L.C.; Regenspurg, S.; Ziegler, M.; Ayling, B.; Richter, A.; et al. Geological controls on geothermal resources for power generation. Nat. Rev. Earth Environ. 2021, 2, 324–339. [Google Scholar] [CrossRef]
- Simms, M.A.; Garven, G. Thermal convection in faulted extensional sedimentary basins: Theoretical results from finite-element modeling. Geofluids 2004, 4, 109–130. [Google Scholar] [CrossRef]
- Duwiquet, H.; Guillou-Frottier, L.; Arbaret, L.; Bellanger, M.; Guillon, T.; Heap, M.J. Crustal fault zones (CFZ) as geothermal power systems: A preliminary 3D THM model constrained by a multidisciplinary approach. Geofluids 2021, 2021, 8855632. [Google Scholar] [CrossRef]
- Muhammad, M.; Williams-Jones, G.; Barendregt, R.W. Structural geology of the Mount Meager Volcanic Complex, BC, Canada: Implications for geothermal energy and geohazards. Can. J. Earth Sci. 2023, 61, 158–186. [Google Scholar] [CrossRef]
- Siombone, S.H.; Jufri, W.; Maba, M.U.S. Land Cover, Land Surface Temperature and Geomorphology Structure at Tulehu Geothermal Area, Ambon, Indonesia. Int. J. Innov. Sci. Eng. Technol. 2021, 8, 279–291. [Google Scholar]
- Di Sipio, E.; Bertermann, D. Factors influencing the thermal efficiency of horizontal ground heat exchangers. Energies 2017, 10, 1897. [Google Scholar] [CrossRef]
- Ramos, R.; Aresti, L.; Yiannoukos, L.; Tsiolakis, E.; Pekris, J.; Vieira, A.; Florides, G.; Christodoulides, P. Thermal and physical characteristics of soils in Cyprus for use in shallow geothermal energy applications. Energy Ecol. Environ. 2019, 4, 300–309. [Google Scholar] [CrossRef]
- Händel, F.; Liedl, R.; Fank, J.; Rock, G. Regional modeling of geothermal energy systems in shallow aquifers: The Leibnitzer Feld case study (Austria). Environ. Earth Sci. 2013, 70, 3433–3446. [Google Scholar] [CrossRef]
- Allen, D.M.; Bayer, P.; Ferguson, G.; Blum, P. Preface: Hydrogeology of shallow thermal systems. Hydrogeol. J. 2014, 22, 1. [Google Scholar] [CrossRef]
- DZ/T 0225-2009; Specification for Shallow Geothermal Energy Investigation and Evaluation. Geological Industry Standards: Beijing, China, 2009. (In Chinese)
- Reddy, G.; Singh, S. Spatial data management, analysis, and modeling in gis: Principles and applications. In Geospatial Technologies in Land Resources Mapping, Monitoring and Management; Springer: Cham, Switzerland, 2018; Chapter 7; pp. 127–142. [Google Scholar] [CrossRef]
- Lu, Y. Practical Handbook of Heating and Air Conditioning Design, 2nd ed.; China Architecture & Building Press: Beijing, China, 2008. (In Chinese) [Google Scholar]
- Long, X.; Yuan, R.; Pi, J.; Sun, X.; Liu, C. Survey and Evaluation of Shallow Geothermal Energy in Changsha. J. Nat. Resour. 2016, 31, 109–130. (In Chinese) [Google Scholar]
- GBT-11615-2010; Geological Exploration Standard of Geothermal Resources. State Administration of Quality Supervision, Inspection and Quarantine: Beijing, China, 2010. (In Chinese)
- Chen, J.; Bao, X.; Peng, Y.; Jia, Y. Heat balance of solar-soil source heat pump compound system. J. Cent. South Univ. 2012, 19, 809–815. [Google Scholar] [CrossRef]
- Simons, A.; Firth, S.K. Life-cycle assessment of a 100% solar fraction thermal supply to a european apartment building using water-based sensible heat storage. Energy Build. 2011, 43, 1231–1240. [Google Scholar] [CrossRef]
- Hhnlein, S.; Bayer, P.; Ferguson, G.; Blum, P. Sustainability and policy for the thermal use of shallow geothermal energy. Energy Policy 2013, 59, 914–925. [Google Scholar] [CrossRef]
Project Title | U-Tube Configuration | Burial Depth (m) | Spacing (m) |
---|---|---|---|
Zhenjiang Intercity Railway | single | 120 | 4.6–5 |
Suqian Star International Hotel | double | 100 | 4.5 |
Yangzhou Sunshine Midtown Community | double | 80 | 5 |
Taicang Yuexing Home Furnishing Plaza (Buildings 1–3) | single | 80 | — |
Nanjing Bafao East Street Residential Project | double | 80 | 5 |
Suzhou Railway Station | double | 103 | 3–6 |
Nanjing Hexi New City G51 Parcel Project | double | 85 | 4.2 |
Nanjing Tech University Houchong Green Low-carbon Industrial Park | double | 100 | 4.5 |
Funing County People’s Hospital South New District Branch | double | 100 | 5 |
Haimen Zhongnan Group Headquarters Office Building | single | 100 | 4.5–6.3 |
Suqian Public Security Bureau Business and Technical Facilities | double | 100 | 4.5–6 |
Lianshui Central City Buildings 24, 25, and 26 | single | 100 | 5 |
Changzhou Wujin Binhu City Commercial and Office Complex | single | 100 | 5 |
Yixing Science and Technology Incubation Park Phase I | single | 100 | 5 |
Changshu Shajiabang Hot Spring Resort Hotel | double | 120 | 3–5 |
People’s Government of Hongqiao Town, Taixing City, Jiangsu Province | single | 100 | — |
Jiangyin Zhonghua Garden Phase I | double | 65–70 | 5 |
Bosch China Headquarters Phase I Building 1 | double | 100 | — |
Wuxi Lan Kwai Fong Commercial Project | single | 100 | 5 |
Huai’an Qingjiang Family Residential Buildings 1–4 | double | 110 | >4.5 |
Taizhou Municipal Government Logistics Service Center | double | 70 | 4–6 |
Nantong Railway Station Building | double | 68–71 | 4.5 |
Changzhou * | single | 80 | 4 |
Taizhou * | single/double | 80–120 | 4.5/5 |
Suzhou * | single/double | 50–100 | 4.5/5 |
A Certain City in Jiangsu Province * | single | 75 | 5 |
Zoning Results | Zoning Criteria (within the 200 m Depth Range) | Comprehensive Evaluation | ||
---|---|---|---|---|
Thickness of Quaternary Strata (m) | Thickness of Gravel Layers (m) | Thickness of Groundwater Aquifers (m) | ||
Suitable area | >100 | <5 | >30 | All three indicators meet the criteria |
Moderately suitable area | <30 or 50~100 | 5~10 | 10~30 | When other comprehensive evaluation criteria are not met |
High-cost area | 30~50 | >10 | <10 | At least two indicators meet the criteria |
Restricted area | Important water source protection areas and special areas with drilling restrictions | Any one indicator meets the criteria |
City | Heat Exchange Capacity per Meter of Single U-Tube (W/m) | Heat Exchange Capacity per Meter of Double U-Tube (W/m) | ||
---|---|---|---|---|
Heat Dissipation | Heat Extraction | Heat Dissipation | Heat Extraction | |
Nanjing | 48/60 | 40/40 | 70/69.6 | 60/51.2 |
Wuxi | 58/65 | 39/35 | 67/65.5 | 48/47 |
Xuzhou | — | — | 69.3 | 46.8 |
Changzhou | 67 | 53 | — | — |
Suzhou | 53/58 | 34/50 | 65/81 | 50/64 |
Nantong | 60/62.6 | 40/49.25 | 75 | 50 |
Huaian | 52 | 45 | 66 | 45 |
Yancheng | — | — | 70 | 50 |
Yangzhou | 55.5 | 43 | 63.5/62.2 | 51/50.7 |
Taizhou | 60.6/49 | 44.3/35.1 | 77.2/62.52 | 52.8/41.99 |
Emissions | CO2 | SO2 | NOx | Dust |
---|---|---|---|---|
Treatment cost (Yuan/kg) | 0.1 | 1.1 | 2.4 | 0.8 |
City | Calculation Area (km2) | Land Utilization Coefficient (%) | Area per Borehole (m2) | Number of Drilled Boreholes | Borehole Depth (m) | Summer Heat Exchange Capacity per Borehole (kW) | Winter Heat Exchange Capacity per Borehole (kW) | Total Summer Heat Exchange Capacity (kW) | Total Winter Heat Exchange Capacity (kW) |
---|---|---|---|---|---|---|---|---|---|
Nanjing | 4897 | 30 | 25 | 1.60 × 107 | 100 | 6.98 | 5.56 | 1.12 × 108 | 8.89 × 107 |
Wuxi | 3458 | 30 | 25 | 9.88 × 106 | 100 | 6.63 | 4.75 | 6.55 × 107 | 4.69 × 107 |
Xuzhou | 9822 | 30 | 25 | 2.36 × 107 | 100 | 6.93 | 4.68 | 1.63 × 108 | 1.10 × 108 |
Changzhou | 3631 | 30 | 25 | 1.02 × 107 | 100 | 6.70 | 5.30 | 6.80 × 107 | 5.38 × 107 |
Suzhou | 4826 | 30 | 25 | 1.32 × 107 | 100 | 7.30 | 5.70 | 9.64 × 107 | 7.53 × 107 |
Nantong | 6209 | 30 | 25 | 1.31 × 107 | 100 | 7.50 | 5.00 | 9.84 × 107 | 6.56 × 107 |
Lianyungang | 4176 | 30 | 25 | 1.15 × 107 | 100 | 7.00 | 5.00 | 8.07 × 107 | 5.76 × 107 |
Huaian | 8334 | 30 | 25 | 1.51 × 107 | 100 | 6.60 | 4.50 | 9.97 × 107 | 6.80 × 107 |
Yancheng | 12,530 | 30 | 25 | 1.98 × 107 | 100 | 7.00 | 5.00 | 1.39 × 108 | 9.92 × 107 |
Yangzhou | 4867 | 30 | 25 | 1.14 × 107 | 100 | 6.29 | 5.09 | 7.20 × 107 | 5.83 × 107 |
Zhenjiang | 2765 | 30 | 25 | 7.80 × 106 | 100 | 6.40 | 4.50 | 4.99 × 107 | 3.51 × 107 |
Taizhou | 4694 | 30 | 25 | 1.32 × 107 | 100 | 6.99 | 4.74 | 9.21 × 107 | 6.25 × 107 |
Suqian | 6244 | 30 | 25 | 1.08 × 107 | 100 | 6.60 | 4.50 | 7.12 × 107 | 4.86 × 107 |
Total | 76,453 | 1.76 × 108 | 1.21 × 109 | 8.70 × 108 |
City | Unit Cooling Load (W/m2) | Unit Heating Load (W/m) | Cooling Area in Summer (m2) | Heating Area in Winter (m2) | Cooling Area Served per Unit Area (m2/km2) | Heating Area Served per Unit Area (m2/km2) |
---|---|---|---|---|---|---|
Nanjing | 100 | 80 | 1.12 × 109 | 1.11 × 109 | 2.28 × 105 | 2.27 × 105 |
Wuxi | 100 | 80 | 6.55 × 108 | 5.86 × 108 | 1.89 × 105 | 1.70 × 105 |
Xuzhou | 100 | 80 | 1.63 × 109 | 1.38 × 109 | 1.66 × 105 | 1.40 × 105 |
Changzhou | 100 | 80 | 6.80 × 108 | 6.73 × 108 | 1.87 × 105 | 1.85 × 105 |
Suzhou | 100 | 80 | 9.64 × 108 | 9.41 × 108 | 2.00 × 105 | 1.95 × 105 |
Nantong | 100 | 80 | 9.84 × 108 | 8.20 × 108 | 1.58 × 105 | 1.32 × 105 |
Lianyungang | 100 | 80 | 8.07 × 108 | 7.20 × 108 | 1.93 × 105 | 1.73 × 105 |
Huaian | 100 | 80 | 9.97 × 108 | 8.49 × 108 | 1.20 × 105 | 1.02 × 105 |
Yancheng | 100 | 80 | 1.39 × 109 | 1.24 × 109 | 1.11 × 105 | 9.90 × 104 |
Yangzhou | 100 | 80 | 7.20 × 108 | 7.28 × 108 | 1.48 × 105 | 1.50 × 105 |
Zhenjiang | 100 | 80 | 4.99 × 108 | 4.39 × 108 | 1.80 × 105 | 1.59 × 105 |
Taizhou | 100 | 80 | 9.21 × 108 | 7.81 × 108 | 1.96 × 105 | 1.66 × 105 |
Suqian | 100 | 80 | 7.12 × 108 | 6.07 × 108 | 1.14 × 105 | 9.72 × 104 |
Total | 1.21 × 1010 | 1.09 × 1010 | 1.58 × 105 | 1.42 × 105 |
City | Available Resource Amount (kWh) | Equivalent Standard Coal (tons) | Emission Reduction (tons) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Summer | Winter | Total Available Resources Amount | Summer | Winter | Total Equivalent Standard Coal | CO2 | SO2 | NOx | Dust | |
Nanjing | 1.61 × 1011 | 9.60 × 1010 | 2.57 × 1011 | 1.98 × 107 | 1.18 × 107 | 3.16 × 107 | 7.53 × 107 | 5.37 × 105 | 1.89 × 105 | 2.53 × 105 |
Wuxi | 9.43 × 1010 | 5.07 × 1010 | 1.45 × 1011 | 1.16 × 107 | 6.23 × 106 | 1.78 × 107 | 4.25 × 107 | 3.03 × 105 | 1.07 × 105 | 1.43 × 105 |
Xuzhou | 2.35 × 1011 | 1.19 × 1011 | 3.54 × 1011 | 2.89 × 107 | 1.47 × 107 | 4.36 × 107 | 1.04 × 108 | 7.41 × 105 | 2.62 × 105 | 3.49 × 105 |
Changzhou | 9.79 × 1010 | 5.81 × 1010 | 1.56 × 1011 | 1.20 × 107 | 7.15 × 106 | 1.92 × 107 | 4.58 × 107 | 3.26 × 105 | 1.15 × 105 | 1.54 × 105 |
Suzhou | 1.39 × 1011 | 8.13 × 1010 | 2.20 × 1011 | 1.71 × 107 | 1.00 × 107 | 2.71 × 107 | 6.46 × 107 | 4.60 × 105 | 1.62 × 105 | 2.17 × 105 |
Nantong | 1.42 × 1011 | 7.08 × 1010 | 2.12 × 1011 | 1.74 × 107 | 8.71 × 106 | 2.61 × 107 | 6.23 × 107 | 4.44 × 105 | 1.57 × 105 | 2.09 × 105 |
Lianyungang | 1.16 × 1011 | 6.22 × 1010 | 1.78 × 1011 | 1.43 × 107 | 7.66 × 106 | 2.19 × 107 | 5.24 × 107 | 3.73 × 105 | 1.32 × 105 | 1.76 × 105 |
Huaian | 1.44 × 1011 | 7.34 × 1010 | 2.17 × 1011 | 1.77 × 107 | 9.03 × 106 | 2.67 × 107 | 6.37 × 107 | 4.54 × 105 | 1.60 × 105 | 2.13 × 105 |
Yancheng | 2.00 × 1011 | 1.07 × 1011 | 3.07 × 1011 | 2.46 × 107 | 1.32 × 107 | 3.78 × 107 | 9.02 × 107 | 6.42 × 105 | 2.27 × 105 | 3.02 × 105 |
Yangzhou | 1.04 × 1011 | 6.29 × 1010 | 1.67 × 1011 | 1.28 × 107 | 7.74 × 106 | 2.05 × 107 | 4.89 × 107 | 3.48 × 105 | 1.23 × 105 | 1.64 × 105 |
Zhenjiang | 7.19 × 1010 | 3.79 × 1010 | 1.10 × 1011 | 8.84 × 106 | 4.66 × 106 | 1.35 × 107 | 3.22 × 107 | 2.29 × 105 | 8.10 × 104 | 1.08 × 105 |
Taizhou | 1.33 × 1011 | 6.75 × 1010 | 2.00 × 1011 | 1.63 × 107 | 8.30 × 106 | 2.46 × 107 | 5.87 × 107 | 4.19 × 105 | 1.48 × 105 | 1.97 × 105 |
Suqian | 1.03 × 1011 | 5.24 × 1010 | 1.55 × 1011 | 1.26 × 107 | 6.45 × 106 | 1.91 × 107 | 4.55 × 107 | 3.24 × 105 | 1.14 × 105 | 1.53 × 105 |
Total | 1.74 × 1012 | 9.40 × 1011 | 2.68 × 1012 | 2.14 × 108 | 1.16 × 108 | 3.30 × 108 | 7.86 × 108 | 5.60 × 106 | 1.98 × 106 | 2.64 × 106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, P.; Xu, Y.; Liu, H.; Liu, X.; Fu, J.; Xu, M.; Zhou, D. Regional-Scale Assessment of the Potential for Shallow Geothermal Energy Development Using Vertical Ground Source Heat Pumps. Energies 2024, 17, 4363. https://doi.org/10.3390/en17174363
Yu P, Xu Y, Liu H, Liu X, Fu J, Xu M, Zhou D. Regional-Scale Assessment of the Potential for Shallow Geothermal Energy Development Using Vertical Ground Source Heat Pumps. Energies. 2024; 17(17):4363. https://doi.org/10.3390/en17174363
Chicago/Turabian StyleYu, Peng, Yufeng Xu, Honghua Liu, Xinyu Liu, Jiani Fu, Meijun Xu, and Dankun Zhou. 2024. "Regional-Scale Assessment of the Potential for Shallow Geothermal Energy Development Using Vertical Ground Source Heat Pumps" Energies 17, no. 17: 4363. https://doi.org/10.3390/en17174363
APA StyleYu, P., Xu, Y., Liu, H., Liu, X., Fu, J., Xu, M., & Zhou, D. (2024). Regional-Scale Assessment of the Potential for Shallow Geothermal Energy Development Using Vertical Ground Source Heat Pumps. Energies, 17(17), 4363. https://doi.org/10.3390/en17174363