Parameter Identification of PMSG-Based Wind Turbine Based on Sensitivity Analysis and Improved Gray Wolf Optimization
Abstract
:1. Introduction
2. Model of Direct-Driven Permanent Magnet Synchronous Generator
2.1. The Structure and the Control Strategy of the MSC
2.2. The Structure and the Control Strategy of the GSC
3. A Trajectory Sensitivity-Based Method to Obtain the Key Parameters for Identification
4. Improved Gray Wolf Optimization Algorithm
4.1. Gray Wolf Optimization Algorithm
4.2. Improvements on GWO
4.2.1. Cubic Mapping
4.2.2. Nonlinear Convergence Factor
4.2.3. Improved Position Update Equation
5. Case Study
5.1. Parameter Identification Using the Proposed Method
5.2. Model Validation under Different Operating Conditions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, P.; Jiang, K.; Ji, X.; Cai, Y.; Wang, B.; Liu, D.; Cao, K.; Wang, W. A Novel Grid-Forming Strategy for Self-Synchronous PMSG under Nearly 100% Renewable Electricity. Energies 2023, 16, 6648. [Google Scholar] [CrossRef]
- Yesudhas, A.A.; Lee, S.R.; Jeong, J.H.; Govindasami, N.; Joo, Y.H. The Stabilization of a Nonlinear Permanent-Magnet-Synchronous-Generator-Based Wind Energy Conversion System via Coupling-Memory-Sampled Data Control with a Membership-Function-Dependent H∞ Approach. Energies 2024, 17, 3746. [Google Scholar] [CrossRef]
- Krystkowiak, M. Modified Efficient Energy Conversion System Based on PMSG with Magnetic Flux Modulation. Energies 2023, 16, 7437. [Google Scholar] [CrossRef]
- Li, J.; Babayomi, O.; Zhang, Z.; Li, Z. Robust Predictive Current Control of PMSG Wind Turbines with Sensor Noise Suppression. Energies 2023, 16, 6255. [Google Scholar] [CrossRef]
- Jia, K.; Gu, C.; Li, L.; Xuan, Z.; Bi, T.; Thomas, D. Sparse voltage amplitude measurement based fault location in large-scale photovoltaic power plants. Appl. Energy 2018, 211, 568–581. [Google Scholar] [CrossRef]
- Wang, Y.; Zhai, B.; Gao, S.; Guo, Y.; Shen, C.; Chen, Y.; Zheng, Z.; Song, Y. Data-Driven Parameter Calibration of Power System EMT Model Based on Sobol Sensitivity Analysis and Gaussian Mixture Model. IEEE Trans. Power Syst. 2024, 1–12. [Google Scholar] [CrossRef]
- Kong, M.; Sun, D.; He, J.; Nian, H. Control Parameter Identification in Grid-side Converter of Directly Driven Wind Turbine Systems. In Proceedings of the 2020 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Nanjing, China, 20–23 September 2020; pp. 1–5. [Google Scholar]
- Belmokhtar, K.; Ibrahim, H.; Merabet, A. Online parameter identification for a DFIG driven wind turbine generator based on recursive least squares algorithm. In Proceedings of the 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE), Halifax, NS, Canada, 3–6 May 2015; pp. 965–969. [Google Scholar]
- Liu, Z.; Feng, G.; Han, Y. Extended-Kalman-filter-based magnet flux linkage and inductance estimation for PMSM considering magnetic saturation. In Proceedings of the 2021 36th Youth Academic Annual Conference of Chinese Association of Automation (YAC), Nanchang, China, 28–30 May 2021; pp. 430–435. [Google Scholar]
- Abdelrahem, M.; Hackl, C.; Kennel, R. Application of extended Kalman filter to parameter estimation of doubly-fed induction generators in variable-speed wind turbine systems. In Proceedings of the 2015 International Conference on Clean Electrical Power (ICCEP), Taormina, Italy, 16–18 June 2015; pp. 226–233. [Google Scholar]
- Thomsen, S.; Rothenhagen, K.; Fuchs, F.W. Online parameter identification methods for doubly fed induction generators. In Proceedings of the 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 15–19 June 2008; pp. 2735–2741. [Google Scholar]
- Gu, R.; Dai, J.; Zhang, J.; Miao, F.; Tang, Y. Research on Equivalent Modeling of PMSG-based Wind Farms using Parameter Identification method. In Proceedings of the 2020 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Nanjing, China, 20–23 September 2020; pp. 1–5. [Google Scholar]
- Wu, Z.; Du, C. The parameter identification of PMSM based on improved cuckoo algorithm. Neural Process. Lett. 2019, 50, 2701–2715. [Google Scholar] [CrossRef]
- Mahdi, A.; Tang, W.; Wu, Q. Parameter identification of a PMSG using a PSO algorithm based on experimental tests. In Proceedings of the 2010 1st International Conference on Energy, Power and Control (EPC-IQ), Basrah, Iraq, 30 November–2 December 2010; pp. 39–44. [Google Scholar]
- Yang-Wu, S.; Jian, Z.; Yuan-Yang, C.; Ao, P.; Xun, M.; Ding, W.; Jian, Z.; Ting, C. Electromagnetic transient model and parameters identification of PMSG-based wind farm. In Proceedings of the 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2), Changsha, China, 8–10 November 2019; pp. 72–77. [Google Scholar]
- Cheng, X.; Lee, W.J.; Sahni, M.; Cheng, Y.; Lee, L.K. Dynamic Equivalent Model Development to Improve the Operation Efficiency of Wind Farm. IEEE Trans. Ind. Appl. 2016, 52, 2759–2767. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, C.; Zhu, L.; Zhang, G.; Li, X.; Chen, Y. Comprehensive modeling and parameter identification of wind farms based on wide-area measurement systems. J. Mod. Power Syst. Clean Energy. 2016, 4, 383–393. [Google Scholar] [CrossRef]
- Gao, S.; Wang, K.; Jiang, H.; Hu, J. PMSM Parameter Identification Based on Improved Flower Pollination Algorithm. Electr. Mach. Control Appl. 2024, 51, 97–105. [Google Scholar]
- Gao, S.; Wang, K.; Jiang, H.; Hu, J. PMSM Parameter Identification Based on Improved Particle Swarm Optimization Algorithm. Small Spec. Electr. Mach. 2023, 51, 65–70. [Google Scholar]
- Yang, F.; Zeng, Y.; Qian, J.; Li, Y.; Xie, S. Parameter identification of doubly-fed induction wind turbine based on the ISIAGWO algorithm. Energies 2023, 16, 1355. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Zhou, M.; Li, S.; Li, J.; Cheng, Z. PMSM Parameter Identification Based on Chaotic Adaptive Search Grey Wolf Optimization Algorithm. Prog. Electromagn. Res. C 2024, 140, 117–126. [Google Scholar] [CrossRef]
- Li, D.; Shen, C.; Liu, Y.; Chen, Y.; Huang, S. A Dynamic Equivalent Method for PMSG-WTG Based Wind Farms Considering Wind Speeds and Fault Severities. IEEE Trans. Power Syst. 2023, 39, 3738–3751. [Google Scholar] [CrossRef]
- Zhang, Q.; He, J.; Xu, Y.; Hong, Z.; Chen, Y.; Strunz, K. Average-value modeling of direct-driven PMSG-based wind energy conversion systems. IEEE Trans. Energy Convers. 2021, 37, 264–273. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, M.; He, Y. Parameters identification of equivalent model of permanent magnet synchronous generator (PMSG) wind farm based on analysis of trajectory sensitivity. Energies 2020, 13, 4607. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, L.; Lee, W.J. Robustness analysis of dynamic equivalent model of DFIG wind farm for stability study. IEEE Trans. Ind. Appl. 2018, 54, 5682–5690. [Google Scholar] [CrossRef]
- Huang, R.; Diao, R.; Li, Y.; Sanchez-Gasca, J.; Huang, Z.; Thomas, B.; Etingov, P.; Kincic, S.; Wang, S.; Fan, R.; et al. Calibrating parameters of power system stability models using advanced ensemble Kalman filter. IEEE Trans. Power Syst. 2017, 33, 2895–2905. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, H.; Zhou, Q.; Liu, C. Improved hybrid grey wolf optimization algorithm based on dimension learning-based hunting search strategy. IEEE Access 2023, 11, 13738–13753. [Google Scholar] [CrossRef]
- Zhang, S.; Li, L.; Liu, W.; Luo, D.; Zhai, B.; He, H.; Zou, P.; Wang, Y.; Gao, S. Research on Ultra-Low-Frequency Oscillation Suppression Method of High-Head, Large-Capacity Hydropower Units. Energies 2024, 17, 724. [Google Scholar] [CrossRef]
- Liu, D.; Liu, Z.; Wang, T.; Xie, Z.; He, T.; Dai, A.; Chen, Z. A Novel Refined Regulation Method with Modified Genetic Commutation Algorithm to Reduce Three-Phase Imbalanced Ratio in Low-Voltage Distribution Networks. Energies 2023, 16, 7838. [Google Scholar] [CrossRef]
- Guo, K.; Cui, L.; Mao, M.; Zhou, L.; Zhang, Q. An improved gray wolf optimizer MPPT algorithm for PV system with BFBIC converter under partial shading. IEEE Access 2020, 8, 103476–103490. [Google Scholar] [CrossRef]
Function | Dim | Range | |
---|---|---|---|
30 | 0 | ||
30 | 0 | ||
30 | 0 | ||
30 | 0 | ||
2 | 0 | ||
30 | 0 |
Parameter | Value |
---|---|
rated power | 1.5 MVA |
rated rotor speed | 1500 rpm |
rated wind speed | 11.17 m/s |
turbine radius | 36.5 m |
moment of inertia | 30,000 |
rotor flux linkage | 4.727 Wb |
number of pole pairs | 60 |
stator resistance | 0.008 |
stator inductance | 0.68 mH |
Parameter | Quantity | Identification Range |
---|---|---|
voltage outer-loop control proportional gain in GSC | 0–10 | |
voltage inner-loop control proportional gain in GSC | 0–1 | |
voltage inner-loop control proportional gain in GSC | 0–1 | |
proportional gain in chopper control | 0-10 | |
proportional gain in MPPT control | 0–200 | |
voltage outer-loop control integral time constant in GSC | 0–0.1 | |
voltage inner-loop control integral time constant in GSC | 0–1 | |
voltage inner-loop control integral time constant in GSC | 0–1 | |
integral time constant in chopper control | 100–300 | |
integral time constant in MPPT control | 0–0.001 |
Parameter | Real Power Sensitivity () | Reactive Power Sensitivity () |
---|---|---|
0.526 | 0.017 | |
0.184 | 0.007 | |
3.218 | 0.297 | |
2.378 | 0.118 | |
3.106 | 13.38 | |
0.0402 | 2.221 | |
0.139 | 0.008 | |
0.021 | 0.001 | |
0.56 | 0.017 | |
259.45 | 2.501 |
Parameter | PSO (Error) | GWO (Error) | IGWO (Error) | True Value |
---|---|---|---|---|
0.0902 (9.8%) | 0.1 (0) | 0.1003 (0.3%) | 0.1 | |
0.493 (1.4%) | 0.486 (2.8%) | 0.505 (1%) | 0.5 | |
0.118 (18%) | 0.102 (2%) | 0.1 (0) | 0.1 | |
0.206 (58.8%) | 0.516 (9.8%) | 0.5 (0) | 0.5 | |
0.00013 (30%) | 0.0001 (0) | 0.00011(10%) | 0.0001 |
P | 0.0067 | 0.0097 | 0.015 |
Q | 0.0005 | 0.001 | 0.0021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, B.; Ou, K.; Wang, Y.; Cao, T.; Dai, H.; Zheng, Z. Parameter Identification of PMSG-Based Wind Turbine Based on Sensitivity Analysis and Improved Gray Wolf Optimization. Energies 2024, 17, 4361. https://doi.org/10.3390/en17174361
Zhai B, Ou K, Wang Y, Cao T, Dai H, Zheng Z. Parameter Identification of PMSG-Based Wind Turbine Based on Sensitivity Analysis and Improved Gray Wolf Optimization. Energies. 2024; 17(17):4361. https://doi.org/10.3390/en17174361
Chicago/Turabian StyleZhai, Bingjie, Kaijian Ou, Yuhong Wang, Tian Cao, Huaqing Dai, and Zongsheng Zheng. 2024. "Parameter Identification of PMSG-Based Wind Turbine Based on Sensitivity Analysis and Improved Gray Wolf Optimization" Energies 17, no. 17: 4361. https://doi.org/10.3390/en17174361
APA StyleZhai, B., Ou, K., Wang, Y., Cao, T., Dai, H., & Zheng, Z. (2024). Parameter Identification of PMSG-Based Wind Turbine Based on Sensitivity Analysis and Improved Gray Wolf Optimization. Energies, 17(17), 4361. https://doi.org/10.3390/en17174361